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a b s t r a c t

Kernel methods have been widely used in pattern recognition. Many kernel classifiers such as Support
Vector Machines (SVM) assume that data can be separated by a hyperplane in the kernel-induced
feature space. These methods do not consider the data distribution and are difficult to output the
probabilities or confidences for classification. This paper proposes a novel Kernel-based Maximum A
Posteriori (KMAP) classification method, which makes a Gaussian distribution assumption instead of a
linear separable assumption in the feature space. Robust methods are further proposed to estimate the
probability densities, and the kernel trick is utilized to calculate ourmodel. Themodel is theoretically and
empirically important in the sense that: (1) it presents amore generalized classificationmodel than other
kernel-based algorithms, e.g., Kernel Fisher Discriminant Analysis (KFDA); (2) it can output probability or
confidence for classification, therefore providing potential for reasoning under uncertainty; and (3)multi-
way classification is as straightforward as binary classification in this model, because only probability
calculation is involved and no one-against-one or one-against-others voting is needed. Moreover, we
conduct an extensive experimental comparisonwith state-of-the-art classificationmethods, such as SVM
and KFDA, on both eight UCI benchmark data sets and three face data sets. The results demonstrate that
KMAP achieves very promising performance against other models.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel methods play an important role in machine learning
and pattern recognition (Schölkopf & Smola, 2002; Shawe-
Taylor & Cristianini, 2004). They have achieved success in
almost all traditional tasks of machine learning, i.e., supervised
learning (Mika, Ratsch,Weston, Scholkopf, &Muller, 1999; Vapnik,
1998), unsupervised learning (Schölkopf, Smola, & Müller, 1998),
and semi-supervised learning (Chapelle, Schölkopf, & Zien, 2006;
Xu, Jin, Zhu, King, & Lyu, 2008; Xu, Zhu, Lyu, & King, 2007; Zhu,
Kandola, Ghahramani, & Lafferty, 2005). We focus here on kernel
methods for supervised learning, where the basic idea is to use
the so-called kernel trick to implicitly map the data from the
ordinal input space to a high dimensional feature space, in order
to make the data more separable. Usually, the aim of kernel-based
classifiers is to find an optimal linear decision function in the
feature space, based on certain criteria. The optimal linear decision
hyperplane could be, for example, the one that can maximize
the margin between two different classes of data (as used in
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the Support Vector Machine (SVM) (Vapnik, 1998)), or the one
that minimizes the within-class covariance and at the same time
maximizes the between-class covariance (as used in the Kernel
Fisher Discriminant Analysis (KFDA) (Mika et al., 1999, 2003)), or
the one that minimizes the worst-case accuracy bound (as used in
theMinimax Probability Machine (Huang, Yang, King, & Lyu, 2004;
Huang, Yang, King, Lyu, & Chan, 2004; Huang, Yang, Lyu, & King,
2008; Lanckriet, Ghaoui, Bhattacharyya, & Jordan, 2002)).
These kernel methods usually achieve higher prediction

accuracy than their linear forms (Schölkopf & Smola, 2002). The
reason is that the linear discriminant functions in the feature
space can represent complex separating surfaces when mapped
back to the original input space. However, one drawback of
standard SVM is that it does not consider the data distribution
and cannot properly output the probabilities or confidences for
the resultant classification (Platt, 1999; Wu, Lin, & Weng, 2004).
One needs special transformation in order to output probabilities.
Therefore, it takes a lot of extra effort in order to be applied in
systems that contain inherent uncertainty. In addition, the linear
discriminant function can only separate two classes. For multi-
category problems, we may resort to approaches such as one-
against-one or one-against-others to vote on which class should
be assigned (Hsu & Lin, 2002).
One approach to obtaining classification probabilities is to use a

statistical pattern recognition technique, in which the probability
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density function can be derived from the data. Future items
of data can then be classified using a Maximum A Posteriori
(MAP) method (Duda, Hart, & Stork, 2000). One typical probability
estimation method is to assume multivariate normal density
functions over the data. The multivariate normal density functions
are easy to handle; moreover some problems can also be regarded
as Gaussian problems if there are enough examples, although in
practice the Gaussian distribution cannot be easily satisfied in the
input space.
To solve these problems, in this paper we propose a Kernel-

basedMaximumAPosteriori (KMAP) classificationmethodunder a
Gaussianity assumption in the feature space.With this assumption,
we derive a non-linear discriminant function in the feature space,
in contrast to current kernel-based discriminant methods that
rely only on using an assumption of linear separability for the
data. Moreover, the derived decision function can output the
probabilities or confidences. In addition, the distribution can be
very complex in the original input space when it is mapped back
from the feature space. This is analogous to the case in which
a hyperplane derived with KFDA or SVM in the feature space
could lead to a complex surface in the input space. Therefore,
this approach sets a more valid foundation than the traditional
multivariate probability estimation methods that are usually
conducted in the input space.
Generally speaking, distributions other than the Gaussian

function can also be assumed in the feature space. However, under
a distribution with a complex form, it is hard to get a closed-form
solution and easy to over-fit. More importantly, with the Gaussian
assumption, a kernelized version can be derived without knowing
the explicit form of the mapping functions for our model, while it
is still difficult to formulate the kernel version for other complex
distributions.
It is important to relate our proposed model to other proba-

bilistic kernelmethods. Kernel-based exponential methods (Canua
& Smola, 2006) use parametric exponential families to explic-
itly build mapping functions from the input space to the feature
space. It is also interesting to discuss the Kernel Logistic Regression
(KLR) (Zhu & Hastie, 2005), which employs the logistic regression
to estimate the density function and still leads to a linear func-
tion in the kernel-induced feature space. The kernel-embedded
Gaussian mixture model in Wang, Lee and Zhang (2003) is related
to our model in that a similar distribution is assumed, but their
model is restricted to clustering and cannot be directly used in
classification.
The appealing features of KMAP are summarized as follows.

First, one important feature of KMAP is that it can be regarded
as a more generalized classification model than KFDA and other
kernel-based algorithms. KMAP provides a rich class of family
of kernel-based algorithms, based on different regularization
implementations. Another important feature of KMAP is that it
can output the probabilities of assigning labels to future data,
which can be seen as the confidences of decisions. Therefore, the
proposed method can also be seen as a Bayesian decision method,
which can further be used in systems thatmake an inference under
uncertainty (Smith, 1988). Moreover, multi-way classification is as
easy as binary classification in this model because only probability
calculation is involved and no one-against-one or one-against-
others voting is needed. As shown in Section 2.4, KMAP has the
time complexity O(n3) (where n is the cardinality of data), which
is in the same order as that of KFDA. In addition, the decision
function enjoys the property of sparsity: only a small number of
eigenvectors are needed for future prediction. This leads to low
storage complexity.
The proposed algorithm can be applied in many pattern

recognition tasks, e.g., face recognition, character recognition, and
others. In order to evaluate the performance of our proposed
method, extensive experiments are performedon eight benchmark
data sets from the UCI repository and on three standard face
data sets. Experimental results show that our proposed method
achieves very competitive performance on UCI data. Moreover, its
advantage is especially prominent in face data sets, where only a
small amount of training data are available.
The remainder of this paper is organized as follows. In Section 2,

we derive the kernel-basedMAP classificationmodel in the feature
space and discuss the parameter estimation techniques. Then
the kernel calculation procedure and the theoretical connections
between the KMAPmodel and other kernelmethods are discussed.
Section 3 first reports the experiments on UCI data sets against
other competitive kernel methods, then evaluates our model’s
performance on face data sets. Section 4 draws conclusions and
lists possible future research directions.
We use the following notation. LetX ∈ Rd denote the original

d-dimensional input space, where an instance x is generated from
an unknown distribution. Let C = {1, 2, . . . ,m} be the set of
labels where m is the number of classes. Let P(Ci) denote the
prior probability of class Ci. Let ni be the number of observed data
points in class Ci and n be the amount of training data. A Mercer
kernel is defined as a symmetric function κ , such that κ(x, y) =
〈Φ(x),Φ(y)〉 for all x, y ∈ X, where Φ is a mapping from X
to a feature space H . The form of kernel function κ could be a
linear kernel function, κ(xi, xj) = xi · xj, a Gaussian RBF kernel
function, κ(xi, xj) = exp(−‖xi − xj‖22/σ

2), or a polynomial kernel
function, κ(xi, xj) = (xi · xj + 1)p, for some σ and p respectively.
A kernel matrix or Gram matrix G ∈ Rn×n is a positive semi-
definite matrix such that Gij = κ(xi, xj) for any x1, . . . , xn ∈ X.
G can be further written as [G(1),G(2), . . . ,G(m)], where G(i) is an
n × ni matrix and denotes the subset of G relevant to class Ci.
The covariance matrix of G(i) is denoted by ΣG(i) . We denote µi
and Σi as the mean vector and covariance matrix of class Ci in
the feature space, respectively. The set of eigenvalues and the set
of eigenvectors belonging to Σi are represented as Λi and Ωi. We
write p(Φ(x)|Ci) as the probability density function of class Ci.

2. Kernel-based maximum a posteriori classification

In contrast with the assumption of traditional MAP algorithms,
that the data points satisfy multivariate normal distribution in
the input space, we assume that the mapped data in the high
dimensional feature space follow such a distribution. This is
meaningful in that the distribution can be very complex in the
original input space when the Gaussian distribution is mapped
back from the kernel-induced feature space. In the same sense,
the decision boundary can be more complex when the quadratic
decision boundary is projected into the input space.
In order to make a clear illustration of the reasonability of

the Gaussian distribution in the kernel-induced feature space,
two synthetic data sets, Relevance and Spiral, are used in this
paper. We draw the decision boundary of discriminant functions
conducted in the input space and the feature space, respectively.
Relevance is a data set where only one dimension of the data
is relevant to separate the data. Spiral can only be separated by
highly non-linear decision boundaries. Fig. 1 plots the boundaries
of the discriminant functions for the traditionalMAP algorithmand
the kernel-based MAP algorithm on these two data sets.
It can be observed that theMAP classifier with the Gaussian dis-

tribution assumption in the kernel-induced feature space always
produces more reasonable decision boundaries. For Relevance
data, a simple quadratic decision boundary in the input space can-
not produce good prediction accuracy. However, the kernel-based
MAP classifier separates these two classes of data smoothly. The
difference between the boundaries of these two algorithms is es-
pecially significant for Spiral. This indicates that the kernel-based
MAP classification algorithm can better fit the distribution of data
points through the kernel trick.
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(a) Relevance. (b) Spiral.

Fig. 1. The decision boundaries onRelevance and Spiral. The separating lineswere obtained by projecting test data over a grid. The lines in blue (dark) andmagenta (dashed)
represent decision boundaries for MAP algorithms with Gaussian distribution in the feature space and those in the input space, respectively.
2.1. Model formulation

Under the Gaussian distribution assumption, the conditional
density function for each class Ci(1 ≤ i ≤ m) is written as:

p(Φ(x)|Ci) =
1

(2π)N/2|Σi|1/2

× exp
{
−
1
2
(Φ(x)− µi)TΣ−1i (Φ(x)− µi)

}
, (1)

where N is the dimension of the feature space and |Σi| is the
determinant of the covariance matrix Σi. It is important to note
that N could be infinite for the RBF kernel function. In such case,
we seek to apply the kernel trick to avoid directly computing the
density function, which will be verified in Section 2.3.
Taking logs on both sides of Eq. (1) and removing the constants,

we can get the Mahalanobis distance function of a data point (xi)
to the class center (µi) in the feature space when each class has the
same prior probability:

gi(Φ(x)) = (Φ(x)− µi)TΣ−1i (Φ(x)− µi)+ log |Σi|. (2)

In the case that different class prior probabilities are assumed,
we only need to subtract 2 log P(Ci) in the above equation. The
intuitive meaning of the function is that a data point is more likely
to be assigned to a certain class with a lowerMahalanobis distance
between the data point and the class center.
We revert theMahalanobis distance function to its original class

conditional density function: p(Φ(x)|Ci) = 1
(2π)N/2

exp(− 12gi(Φ
(x))). According to the Bayesian Theorem, the posterior probability
of class Ci is calculated by

P(Ci|Φ(x)) =
p(Φ(x)|Ci)P(Ci)
m∑
j=1
p(Φ(x)|Cj)P(Cj)

. (3)

Based on Eq. (3), the decision rule can be formulated as below:

x ∈ Cw if P(Cw|Φ(x)) = max
1≤j≤m

P(Cj|Φ(x)). (4)

This means that a test data point will be assigned to the class
with the maximum of P(Cw|Φ(x)), i.e., the MAP. Since the MAP is
calculated in the kernel-induced feature space, the output model
is named as the KMAP classification.
Eq. (3) is of importance because it shows that KMAP output not

only a class label, but also the probability of a data point belonging
to a class. This probability can thus be seen as the confidence
of classification of new data points. It can be used in statistical
systems thatmake an inference under uncertainty (Smith, 1988). If
the confidence is lower than some specified threshold, the system
can refuse to make an inference. This is a distinct advantage over
manykernel learningmethods, including SVM,which cannot easily
output these probabilities.

2.2. Parameter estimation

In order to compute the Mahalanobis distance function, the
mean vector and the covariance matrix for each class must
be estimated. Typically, the mean vector (µi) and the within-
covariance matrix (Σi) are calculated by a maximum likelihood
estimation. In the feature space, they are formulated as follows:

µi =
1
ni

ni∑
j=1

Φ(xj), (5)

Σi = Si =
1
ni

ni∑
j=1

(Φ(xj)− µi)(Φ(xj)− µi)T. (6)

Directly employing the maximum likelihood estimation Si
as the covariance matrix will generate quadratic discriminant
functions in the feature space. However, the covariance estimation
problem is clearly ill-posed, because the number of data points in
each class is usually much smaller than the number of dimensions
in the kernel-induced feature space. This problem is especially
obvious in face recognition tasks. The treatment of this ill-posed
problem is to introduce regularization. There are several kinds of
regularization methods. One of them is to replace the individual
within-covariance matrices with their average, i.e.,

Σi =

m∑
i=1
Si

m
+ rI, (7)

where I is the identity matrix and r is a regularization coefficient.
This method is able to substantially reduce the number of
free parameters to be estimated. Moreover, it also reduces the
discriminant function between two classes to a linear one.
Therefore, a linear discriminant analysis method can be obtained.
We will discuss its connection to Kernel Fisher Discriminant
Analysis (KFDA) in Section 2.4.
Alternatively, we can estimate the covariance matrix by

combining the above linear discriminant function with the
quadratic one. Instead of estimating the covariance matrix in
the input space (Friedman, 1989), we can apply this method in
the kernel-induced feature space. After the data are centered
(see Schölkopf et al. (1998) for centering data), the formulation in
the feature space is as follows:
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Σi = (1− η)Σ̃i + η
trace(Σ̃i)
n

I, (8)

where

Σ̃i = (1− θ)Si + θ S̃, (9)

S̃ =
1
n

n∑
l=1

Φ(xl)Φ(xl)T. (10)

In the equations, θ (0 ≤ θ ≤ 1) is a coefficient linked with the
linear and quadratic discriminant term. Also, η (0 ≤ η ≤ 1)
determines the shrinkage to amultiple of the identity matrix. Note
that the formulation of Eq. (10) differs from the one in Friedman
(1989), where S =

∑m
i=1 Si. This is because it is more accurate

to estimate the covariance from all samples rather than only
from those belonging to a single class. The effect is particularly
significant in face recognition, where the sample size is relatively
small and the dimensionality of the feature space is quite high.
Because of this, our approach ismore capable of adjusting the effect
of the regularization.

Remark. Other regularization methods can also be employed for
estimating the covariance matrices. The criteria of selecting the
regularization are based on specific applications of KMAP. For
example, when the number of training samples is small, it is better
to use the regularization method based on Eq. (8).

2.3. Kernel calculation

It is critical to represent the above formulations in a kernelized
or inner product form. In the following, we demonstrate how the
KMAP formulations canbe kernelizedwithout knowing the explicit
form of the mapping functions.
Obviously, Eq. (2) is poorly-posed, since we are estimating

the means and covariance matrices from n samples. To avoid
this problem in calculating the Mahalanobis distance function,
the spectral representation of the covariance matrix, i.e., Σi =∑N
j=1ΛijΩijΩ

>

ij (where Λij and Ωij are the jth eigenvalue and
eigenvector of Σi, respectively), is utilized instead of a direct
calculation (Ruiz & Lopez-de Teruel, 2001). The small eigenvalues
will, in particular, drastically degrade the performance of the
function overwhelmingly, because they are underestimated due to
the small number of examples. In this paper, we only estimate the
k largest eigenvalues and replace each remaining eigenvalue with
a nonnegative number hi. This technique is similar to that used
in Principal Component Analysis (PCA) (Jolliffe, 1986), except that
the non-principal eigenvalues are replaced by a constant hi. Thus
Eq. (2) can be reformulated as follows:

gi(Φ(x)) =
k∑
j=1

1
Λij
[ΩTij (Φ(x)− µi)]

2

+

N∑
j=k+1

1
hi
[ΩTij (Φ(x)− µi)]

2
+ log

(
hN−ki

k∏
j=1

Λij

)
.

In the above equation, gi(Φ(x)) can further be represented as
follows:

1
hi

(
N∑
j=1

[ΩTij (Φ(x)− µi)]
2

−

k∑
j=1

(
1−

hi
Λij

)
[ΩTij (Φ(x)− µi)]

2

)
.

We define g1i(Φ(x)) =
∑N
j=1[Ω

T
ij (Φ(x) − µi)]

2 and g2i(Φ(x)) =∑k
j=1(1−

hi
Λij
)[ΩTij (Φ(x)− µi)]

2, such that

gi(Φ(x)) =
1
hi
[g1i(Φ(x))− g2i(Φ(x))]+ log

(
hN−ki

k∏
j=1

Λij

)
.

In the following, we show that g1i(Φ(x)) and g2i(Φ(x)) can be
entirelywritten in a kernel form. To formulate the above equations,
we need to calculate the eigenvalues Λi and eigenvectors Ωi.
However, due to the unknown dimensionality of the feature space,
Σi cannot be computed directly. Moreover, because of the limited
number of training samples, we can only express each eigenvector
as the span of all the data points, as done in Schölkopf et al.
(1998). The eigenvectors are in the space spanned by all the
training samples, i.e., each eigenvectorΩij can bewritten as a linear
combination of all the training samples:

Ωij =

n∑
l=1

γ
(l)
ij Φ(xl) = Uγij, (11)

where γij = (γ
(1)
ij , γ

(2)
ij , . . . , γ

(n)
ij )

T is an n dimensional column
vector and U = (Φ(x1), . . . ,Φ(xn)).

Theorem 1. γij and Λij are the eigenvector and eigenvalue of the
covariance matrixΣG(i) , respectively.

The proof of Theorem 1 can be found in the Appendix. Based on
Theorem 1, we can express g1i(Φ(x)) in the kernel form:

g1i(Φ(x)) =
n∑
j=1

γ Tij U
T(Φ(x)− µi)T(Φ(x)− µi)Uγij

=

n∑
j=1

[
γ Tij

(
Kx −

1
ni

ni∑
l=1

Kxl

)]2

=

∥∥∥∥∥Kx − 1ni
ni∑
l=1

Kxl

∥∥∥∥∥
2

2

,

where Kx = {K(x1, x), . . . , K(xn, x)}T.
In the same way, g2i(Φ(x)) can be formulated as the follows:

g2i(Φ(x)) =
k∑
j=1

(
1−

hi
Λij

)
ΩTij (Φ(x)− µi)(Φ(x)− µi)

TΩij.

Substituting (11) into the above g2i(Φ(x)), we have:

g2i(Φ(x)) =
k∑
j=1

(
1−

hi
Λij

)
γ Tij

(
Kx −

1
ni

ni∑
j=1

Kxj

)

×

(
Kx −

1
ni

ni∑
j=1

Kxj

)T
γij.

Remark. In calculating g2i(Φ(x)), only the k largest eigenvalues
and relevant eigenvectors are selected for each class. In Williams
and Seeger (2000) and Yang, Frangi, Yang, Zhang and Jin (2005), it
is shown that the eigenvalue spectrum of the covariance matrix
of the Gram matrix rapidly decays and thus is of low rank. This
reinforces the theoretical basis of KMAP from another perspective.

Now, the discriminant function in the feature space gi(Φ(x))
can be finally written in a kernel form, where N is substituted with
the cardinality of data n.
We summarize the proposed KMAP algorithm in Fig. 2.
The overall time complexity of the algorithm is determined by

Step 5 and Step 6. These steps involve computing the within-class
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Fig. 2. The KMAP algorithm for classification.

Table 1
The relationship among KMAP and other kernel methods.

Parameter setting Kernel methods
θ η

0 0 A quadratic discriminant method
1 0 A linear discriminant method
1 1 The nearest mean classifier
0 1 The weighted nearest mean classifier

covariance matrix, and the complexity is O(n2). In addition, it will
cost O(n3) operations to solve the eigenvalues and eigenvectors.
Hence, KMAP has the same time complexity as KFDA. The storage
complexity, which involves O(kn) for storing k columns of the
covariance matrix, can be deduced because the value of k is much
smaller than n. We will evaluate the scale of k in the experiments.

2.4. Connection with other kernel methods

The KMAP model is a generalized classification model and
can be reduced to other kernel-based classification methods with
different implementations of parameter estimation.
In the regularization method based on Eq. (8), by varying the

settings of θ and η, other kernel-based classification methods can
be derived. When (θ = 0, η = 0), the KMAP model represents
a quadratic discriminant method in the kernel-induced feature
space; when (θ = 1, η = 0), it represents a kernel discriminant
method; and when (θ = 0, η = 1) or (θ = 1, η = 1), it represents
the nearestmean classifier. Therefore, by varying θ and η, different
models can be generated from different combinations of quadratic
discriminant, linear discriminant and the nearest mean methods.
The relationship among these kernel methods is summarized in
Table 1.
We show in the following, that a special case of the

regularization method when θ = 1 and η = 0 will reduce
to the well-known Kernel Fisher Discriminant Analysis (KFDA). If
both classes are assumed to have the same covariance structure
for a binary class problem (i.e., Σi =

Σ1+Σ2
2 ) it leads to a linear

discriminant function. Assuming all classes have the same class
prior probabilities, gi(Φ(x)) can be derived as:

gi(Φ(x)) = (Φ(x)− µi)TΣ−1i (Φ(x)− µi)

= (Φ(x)− µi)T
(
Σ1 +Σ2

2

)−1
(Φ(x)− µi),

where i = 1, 2. We can reformulate this equation in the following
form: gi(Φ(x)) = wiΦ(x)+ bi, where

wi = −4(Σ1 +Σ2)−1µi,
bi = 2µTi (Σ1 +Σ2)

−1µi.

The decision hyperplane is f (Φ(x)) = g1(Φ(x))− g2(Φ(x)), i.e.,

f (Φ(x)) = (Σ1 +Σ2)−1(µ1 − µ2)Φ(x)

−
1
2
(µ1 − µ2)

T(Σ1 +Σ2)
−1(µ1 + µ2).
Table 2
Overview of the experimental data sets used.

Data set # samples # features # classes

Twonorm 1000 21 2
Breast 683 9 2
Ionosphere 351 34 2
Pima 768 8 2
Sonar 208 60 2
Iris 150 4 3
Wine 178 13 3
Segment 210 19 7

This equation is just the formulation of KFDA (Kim, Magnani, &
Boyd, 2006; Mika et al., 1999). Therefore, KFDA can be viewed as
a special case of KMAP when all classes have the same covariance
structure.

Remark. KMAP thus provides a rich class of kernel-based clas-
sification algorithms using different regularization methods. This
makes KMAP a flexible framework for classification adaptive to
data distribution.

3. Experiments

In this section, we evaluate the proposed KMAP method on
eight UCI data sets and three facial image data sets. As the
classical methods and the state-of-the-art method in the face
recognition task differ from tradition classification problems, we
employ different comparison algorithms.

3.1. Experimental data sets

We describe these two batches of data sets for further
evaluation in the following. The first batch comprises eight UCI
data sets and the second comprises three facial image data sets.

3.1.1. UCI data sets
Eight data sets from the UCI machine learning repository, with

different numbers of samples, features and classes, are chosen to
test the performance of a variety of methods. Table 2 summarizes
the information of these data sets.

3.1.2. Facial image data sets
To make comprehensive evaluations, we have collected three

different kinds of data sets for our experiments. One is the Facial
Recognition Technology (FERET) Database (Phillips, Moon, Rizvi, &
Rauss, 2000). The second is the Face Recognition Grand Challenge
(FRGC) data set (Phillips et al., 2005). The above two data sets
are the de-facto standard data sets for face recognition evaluation.
The third data set is the Yahoo! News facial images data set,
which was obtained by crawling from the Web (Berg et al.,
2004). These facial data sets are widely used for the performance
evaluation of face recognition (Zhu, Hoi, & Lyu, 2008). In the
following, we first describe the details of these data sets. Then we
discuss our preprocessing methods for face extraction and feature
representation.
FERET FaceData Set. In our experiment, 239 persons in the FERET

data set are selected, and there are four gray scale 256×384 images
for each individual. Among the four images, two images are from
the FA/FB set, respectively, and the remaining two images are from
DupI set. Therefore, there are a total of 956 images for evaluation.
Since the images are acquired from different photo sessions, both
the illumination conditions and the facial expressionsmay vary. All
images are cropped and normalized by aligning the centers of the
eyes to predefined positions, according to themanually located eye
positions supplied by the FERET data. Fig. 3 depicts six individuals
from this data set. The top two rows show the example images, the
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Fig. 5. Example images from the Yahoo! News Face data set, cropped and
normalized to the size of 128× 128.

Table 3
Overview on the face image data sets used in the experiments.

Data set # total # person # per person

FERET 956 239 4
FRGC 1920 80 24
Yahoo! News 1940 97 20

proposed to address the task, such as Local Binary Pattern (Ahonen,
Hadid, & Pietikainen, 2004; Rodriguez & Marcel, 2006) and Gabor
wavelets transform. Among these methods, the Gabor wavelets
representation of facial image has been widely accepted as a
promising approach (Liu & Wechsler, 2002). From earlier studies
in the area of signal processing, Lades et al. (1993) empirically
suggested that good performance can be achieved by extracting
Gabor wavelet features of 5 different scales and 8 orientations. In
our experiments, we employ a similar approach by applying Gabor
wavelet transform on each image (scaled to 128× 128) at 5 scales
and 8 orientations. Finally, we normalize each sub-image to form a
feature vector x ∈ Rn with the sample scale reduced to 64, which
results in a 10240-dimensional feature vector for each facial image.
In summary, the detailed statistics of the data sets used in our

experiments is listed in Table 3.

3.2. Experiments on UCI data sets

In this section, we conduct experiments on eight benchmark
data sets. We first implement many other competitive methods
and compare them with our proposed algorithm. Then we discuss
and analyze the experimental results.

3.2.1. Comparison algorithms
We provide a brief introduction to the comparison algorithms

in this section. Specifically, we compare our proposed model with
theModified Quadratic Discriminant Function (Kimura, Takashina,
T. S., &M. Y., 1987), KFDA, the Kernel Fisher Quadratic Discriminant
Analysis (KFQDA) (Huang, Hwang, & Lin, 2005), and SVM. Due to
the popularity of SVM, we only focus on introducing MQDF, KFDA,
and KFQDA in the following.
In statistical pattern recognition, the probability density

function can first be estimated from the data. Then future examples
could be assigned to the classwith theMAP. One typical probability
estimation method is to assume a multivariate normal density
function over the data. From the multivariate normal distribution,
the Quadratic Discriminant Function (Duda et al., 2000; Fukunaga,
1990) can be derived, which achieves the minimum mean error
rate under Gaussianity and is also monotonic with an increase of
the feature size (Waller & Jain, 1978). In Kimura et al. (1987), a
Modified Quadratic Discriminant Function (MQDF) less sensitive
to the estimation error, is proposed. Friedman (1989) improves the
performance of QDF by the covariance matrix interpolation.
Fig. 3. Example images from the FERET data set, cropped and normalized to the
size of 128× 128.

Fig. 4. Example images from the FRGC data set, cropped and normalized to the size
of 128× 128.

first row from FA, and the second one from FB; while the bottom
two rows are the examples from DupI.
FRGC Data Set. The FRGC data set (Phillips et al., 2005)1 is the

current benchmark for performance evaluation of face recognition
techniques.We adopt the FRGC version-1 data set (Spring 2003) for
the evaluation of our face recognition method. The data set used
in our experiment consists of 1920 images, corresponding to 80
individuals selected from the original collection. Each individual
has 24 controlled or uncontrolled color images. The faces are
automatically detected and normalized through a face detection
method and an extraction method. Fig. 4 shows geometrically
normalized face images cropped from the original FRGC images,
with the cropped regions resized to a size of 128× 128.
Yahoo! News Face Data Set. The Yahoo! News Face data set

was constructed by Berg et al. (2004) from about half a million
captioned news images collected from the Yahoo! News Web
site. It consists of a large number of photographs taken in real
life conditions, rather than in the controlled environments widely
used in face recognition evaluation. As a result, there are a large
variety of poses, illuminations, expressions, and environmental
conditions. There are 1940 images, corresponding to 97 largest face
clusters selected to form our experimental data set, in which each
individual cluster has 20 images. As with the other data sets, faces
are cropped from the selected images using the face detection and
extraction methods. Only relevant face images are retained when
there are multiple faces in one image. Fig. 5 presents examples
selected from the Yahoo! News images and the extracted faces. All
these face images are geometrically normalized.

Facial Feature Extraction. To enable an automatic face
recognition scheme, we cascade a face detector (Viola & Jones,
2004) with the Active Appearance Models (AAMs) (Cootes,
Edwards, & Taylor, 2001) to locate faces and facial features in the
input images. The performance in terms of the correct registration
is greatly dependent on the image conditions. In fact, only about
30 images failed for the FRGC data set (5660 images). Similarly,
the correct registration rate for the Yahoo! News face data set was
around 80%. Many effective feature extraction methods have been

1 Accessible from http://www.frvt.org/FRGC.












