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Abstract Many state-of-the-art wireless sensor net-
works have been equipped with reprogramming mod-
ules, e.g., those for software/firmware updates. System
migration tasks such as software reprogramming, how-
ever, will interrupt normal sensing and data process-
ing operations of a sensor node. Although such tasks
are occasionally invoked, the long time of such tasks
may disable the network from detecting critical events,
posing a severe threat to many sensitive applications.
In this paper, we present the first formal study on
the problem of downtime-free migration. We demon-
strate that the downtime can be effectively eliminated,
by partitioning the sensors into subsets, and let them
perform migration tasks successively with the rest still
performing normal services. We then present a series
of effective algorithms, and further extend our solution
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to a practical distributed and localized implementation.
The performance of these algorithms have been eval-
uated through extensive simulations, and the results
demonstrate that our algorithms achieve good balance
between the sensing quality and system migration time.
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1 Introduction

Wireless sensor networks (WSNs) are usually em-
ployed to sense the physical-phenomenon data of in-
terest and accordingly perform environmental event
detection tasks [1]. There are many potential applica-
tions of WSNs. Examples include forest fire detection
where a number of nodes equipped with thermoelectric
and hygrometric sensors work collaboratively in raising
a fire alarm, and borderline surveillance where many
nodes equipped with infrared and acoustic sensors are
deployed to conduct intruder detection.

It is usually expensive, if not impractical, for human-
attended operations on a sensor node (especially for
the WSNs applied in battle-field or habitat monitoring
[12]). As a result, in most application scenarios, WSNs
are expected to work in an unattended manner for a
long period of time (usually several months) once the
sensor nodes have been deployed.

Although sensing/processing environmental data is
the major task of a WSN, during its month-long life-
time, it is inevitable for the WSN to perform cer-
tain system tasks in addition to the sensing/processing
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task, e.g., system maintenance [2], diagnosis [5], and
upgrading [16]. However, typical sensor platforms are
simple and low-cost in nature. Multi-thread is usually
not supported due to the capacity limitation of a sensor
node [9]. As a result, these system tasks are exclusive
to the data sensing/processing operations, i.e., a sensor
node has to cease data sensing/processing operations
in performing these tasks. The most critical example
of such system tasks is the WSN reprogramming task,
which typically takes a network with one hundred sen-
sor nodes a few hundred seconds to complete [16].
We use the term system migration tasks to include
these long-term exclusive system processes for recon-
figuring, upgrading, or re-initializing existing network
components or software/firmware, e.g., reprogramming
a sensing software-unit or re-initializing a communica-
tion protocol.

Although there have been significant research ef-
forts on implementing efficient online migration tasks
for WSNs [16], they largely ignored the interruption
of the major sensing/repoting task caused by such a
system migration task. This can be a critical threat in
many application scenarios. For example, if a WSN
for fire or intruder detection is being reprogrammed,
it may fail to detect and alarm a fire/intrusion event
which happens during the process. A reprogramming
interval of hundreds of seconds is long enough to cause
severe problems. Regular system migration tasks that
occur periodically would further open this back-door
for intruders to explore. Hence, it is very important to
develop a seamless scheme for performing the exclusive
system tasks, which avoids the downtime of normal
network operations so as to maintain the uninterrupted
event detection functionality of the network.

A natural way for downtime-free system migration
is to divide the network into several subsets and let the
subsets perform the exclusive system migration task in
turn, while the rest of the subsets still remain normal
operations in sensing and processing environmental
data. Obviously, the more the number of subsets is, on
one hand, the longer the time is to finish the system
migration task for the whole networks; on the other
hand, the less the performance degrades during the
system migration. The number of the subsets thus can
serve as a flexible parameter to fine-tune the system
migration process. Given this number, the critical prob-
lem then becomes how the sensor nodes are partitioned
into subsets so as to achieve the best tradeoff between
system migration time and performance degradation.

Although various sensor grouping problems have
been studied (e.g., work in [3, 15, 17, 18]), their ob-
jectives are generally to maximize the number of the
subsets while maintaining the performance of each sub-

set. This is quite different from the problem context
here, and the conventional algorithms thus cannot be
applied. In this paper, we formulate the new sensor net-
work reconfiguration problem for downtime-free sys-
tem migration. We prove that the problem is NP-hard
with a general probabilistic sensing model. We then
present a series of heuristics and further extend one
of them to a distributed and localized implementation.
The performance of these algorithms have been eval-
uated through extensive simulations, and the results
demonstrate that our algorithms achieve satisfactory
balance between the sensing quality and the system
migration time.

The rest of the paper is organized as follows.
Section 2 briefly introduces the related work. In
Section 3, we provide a formal description of this prob-
lem and justify its formulation. We then analyze this
problem and shows its NP-hardness. Section 4 provides
several algorithms in attacking this problem. The per-
formance of these algorithms is studied in Section 5. We
conclude this paper in Section 6.

2 Related work

Implementing system migrations such as reprogram-
ming is crucial to the success of WSN applications, with
which bugs can be eliminated and functionalities of a
network can be updated. See a survey paper and the
references therein [16]. However, existing work has not
notified the problem that the major sensing/repoting
task would be interrupted by a system migration task.
Our proposal is to divide sensor into subsets and
let each subset perform the migration task in turn.
This scheme is then orthogonal to a reprogramming
approach. It can be easily adopted in many existing
reprogramming protocols, especially those that sup-
port the reprogramming of a selected group of nodes
(e.g., [13]).

Much work has been done on how to divide the sen-
sor nodes in a network into disjoint subsets where each
subset can maintain the required sensing tasks. In [15],
a sensing field is divided into regions. Sensor nodes are
grouped with the most-constrained least-constraining
algorithm, in which the priority of selecting a sensor to
a subset is determined by how much uncovered area
this sensor covers and the redundancy caused by this
sensor. In [4], the problem is modeled as disjoint dom-
inating sets, which is known as NP-complete. It then
proposes a graph-coloring based approximation. A sim-
ilar problem of covering target points are studied in
[3], which is again NP-complete and mixed integer pro-
gramming (MIP) approximation has been proposed.
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Work in [17, 18] shows that maximizing the normalized
minimum distance between sensors of a subset results
in low redundancy of the subset, based on which fast
algorithms are proposed to find the low-redundancy
subsets of sensor nodes. These approaches, however,
are unapplicable to our problem, as the objectives are
generally different.

3 Models and problem formulations

3.1 Preliminaries

We consider a WSN composed of n stationary sensor
nodes {si}n

i=1 randomly deployed in a uniform manner in
a network area φ. Let the status of si be denoted by a bi-
nary variable ci. ci is 1 if si is conducting event detection
work, and 0 if si is performing a system migration task
such as being reprogrammed. For the convenience of
our discussion, we say that a sensor si is on if ci = 1, and
off if ci = 0. We call a collection of sensors a division,
which can be represented by a sequence of n binary
variables. For example, ci (i = 1, 2, ..., n) can represent
a division D, which contains si if and only if ci = 1, i.e.,
all the on-sensors.

We consider a general probabilistic sensing model
[11, 18]: The probability that an event e can be detected
by a sensor si is related to the distance between e and
si if the sensor is on; otherwise, it is zero since off-
sensors can never detect an event. As the location of
each si is fixed, the probability is determined by the
event location (x, y) when the sensor is on. Let pi(x, y)

denote this probability. Given the location of an event
(x, y), the probability that the event can be detected by
at least one sensor in D is:

pD(x, y) = 1 −
n∏

i=1

(1 − ci pi(x, y)). (1)

Note that the network is employed to detect events
and the events of interest can take place in any ran-
dom location of the network area φ. As a result, the
minimum value of pD(x, y) among all in-network loca-
tions (x, y) is a natural index to capture how badly the
network division D might perform in event detection,
which can then be considered as the network division
D’s capability on event detection. Formally, we define
that the event detection capability PD of the network
division D is the minimum value of pD(x, y) among all
locations (x, y) in the entire network area φ, i.e.,

PD = min
∀(x,y)∈φ

pD(x, y). (2)

This is a pessimistic measure, in which we pick the worst
case as the representative case.

3.2 Problem formulation

We consider that the network should be divided into
N subsets, denoted by Sk (k = 1, 2, ..., N). In order to
enforce downtime-free system migration, let each of the
subsets perform the exclusive system migration task in
turn, while the rest of the subsets still remain normal
operations in sensing/processing environmental data.

Let dik denote whether si is in subset Sk. dik is 0
if si belongs to Sk, and 1 otherwise. In other words,
when subset Sk is off (that a subset is off/on means all
the sensors in the subset are off/on), sensor si is on if
and only if dik = 1. So actually each sequence of dik

(i = 1, 2, ..., n) denotes the working division Dk during
the system migration of sensors in Sk, i.e., let:

Dk = {si}n
i=1 − Sk. (3)

In other words, Dk denotes the division of the sen-
sor nodes which are conducting normal sensing and
processing work when Sk is performing a migration
task. dik then denotes whether si is in Dk.

N is naturally a parameter of such a downtime-
free migration scheme. On one hand, a larger subset
number means the longer time it requires for the whole
network to finish the system migration task as the task
is performed by each subset in turn. On the other
hand, a larger subset number also means there are a
smaller number of nodes in each subset. Since each
time only a subset is off in performing event detection
task, fewer nodes in each subset implies that the system
performance (in terms of event detection capability)
degrades less during the system migration task.

The number of subsets N can thus serve as a flex-
ible parameter for a system maintainer to fine-tune
the system migration process. Considering the tradeoff
between the system migration time and how much a
system can tolerate the degrading of event detection
capability during a system migration task, a system
maintainer can determine how many subsets the net-
work should be divided. Given an N by the system
maintainer, the critical problem then becomes how the
sensor nodes should be partitioned into subsets so as
to achieve the best tradeoff between system migration
time and performance degradation.

Suppose during a system migration, the network
has to be reconfigured into N disjoint subsets Sk (k =
1, ..., N) and let each Dk work successively. The event
detection capability of the entire network in this mi-
gration interval is defined as the minimum among the
event detection capability values of all the N divisions
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Dk (∀k). This actually continues the pessimistic consid-
erations as how PD is defined in Eq. 2.

The sensor network reconfiguration problem is thus
how to divide the sensors so that the event detection
capability of the network in this migration interval is
maximized. Given the event detection capability mea-
sure PD in Eq. 2, the problem can be formulated as
follows.

Problem 1 The sensor network reconfiguration
problem.

Given:, {si}n
i=1 and pi(x, y)

Partition the set {si}n
i=1 into N disjoint subsets Sk

(k = 1, 2, ..., N) such that:

P = min
∀k

PDk = min
∀k

{
min

∀(x,y)∈φ

[
1 −

n∏

i=1

(1 − dik pi(x, y))

]}

is maximized.

3.3 The difficulty of the sensor network
reconfiguration problem

Given the situation that the number of the schemes to
group n into N subsets is related to the permutation
of n, while the event location is a continuous variable
taken a value in the whole network area, the network
location that results in min

∀k
PDk can be anywhere in the

network. This makes it difficult to handle the sensor
network reconfiguration problem.

Instead of dealing with all the network locations, let
us confine our considerations such that events can just
take place at a finite set of discrete points in the net-
work area. Suppose we have m such discrete points in
the network area, denoted by {t j}m

j=1. We call them the
sampling points of the network area φ. The probability
that an event taking place at t j can be detected by si is
then denoted by ci pij.

The minimum probability value among the sampling
points, denoted by P′

D, is then:

P′
D = min

∀ j

[
1 −

n∏

i=1

(1 − ci pij)

]
. (4)

This P′
D thus serves as a simplified measure of the event

detection capability PD for division D. Then the sensor
network reconfiguration problem turns to a simplified
one given the practical measure P′

D in Eq. 4, which can
be formulated as follows.

Problem 2 The simplified sensor network reconfigura-
tion problem.

Given: {si}n
i=1, {t j}m

j=1, and pij (∀i, j)
Partition the set {si}n

i=1 into N disjoint subsets Sk

(k = 1, 2, ..., N) so that:

P′ = min
∀k

P′
Dk

= min
∀k

{
min
∀ j

[
1 −

n∏

i=1

(1 − dik pij)

]}

is maximized.
Unfortunately, even this simplified problem is gen-

erally NP-Hard. To prove this, let us consider the de-
cision version of this problem in which given the same
problem settings, it asks whether the set {si}n

i=1 can be
partitioned into N disjoint subsets so that the event
detection capability of the network in the migration
interval is not smaller than a given value u. If the
decision version of this problem is NP-Complete, then
the sensor networks reconfiguration problem is NP-
Hard [7]. In fact, we have the following lemma to prove
the NP-Hardness of the simplified sensor network re-
configuration problem.

Lemma 1 The decision version of the simplified sensor
network reconfiguration problem is NP-Complete.

Proof See Appendix. ��

4 Heuristics for downtime-free system migration

Given the difficulty of the sensor network reconfigu-
ration problem, we resort to heuristics that can find
the approximation solutions efficiently. We start from
investigating this question: What should we make the
resulting subsets look like, if we want to design a good
approximation algorithm?

Let us again consider the simplified sensor network
reconfiguration problem (Problem 2) first. For each
solution to this problem, there exists one sample point
tx where the event detection capability of some division
results in the minimum value, i.e.,

x = argmin
∀ j

{
min
∀k

[
1 −

n∏

i=1

(1 − dik pij)

]}
. (5)

Suppose division Dy results in the minimum event
detection capability at tx, i.e.,

y = argmin
∀k

[
1 −

n∏

i=1

(1 − dik pix)

]
. (6)
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Let rk denote the event detection probability for
each set Sk at tx. We get:

rk = 1 −
n∏

i=1

(1 − dik pi(tx)), (7)

where pi(tx) denotes the event detection probability of
sensor i at location tx.

The event detection probability for each division Dk

at tx, denoted by p′
Dk

(tx), is then:

p′
Dk

(tx) = 1 −
N∏

l=1,l �=k

(1 − rl) = 1 −

N∏
l=1

(1 − rl)

1 − rk
. (8)

N∏
l=1

(1 − rl) is a constant based on Eq. 7 because

N∏

l=1

(1 − rl) =
N∏

l=1

n∏

i=1

(1 − dil pi(tx)) =
n∏

i=1

(1 − pi(tx)), (9)

which is irrelevant to how we group the sensor nodes.
Then based on Eq. 8, if the event detection probabil-

ity of Dy is the minimum among all Dk, 1 − ry should
be the smallest among all 1 − rk (∀k). In other words,
ry, i.e., the event detection probability of subset Sy at tx,
must be the largest among all the subsets Sk.

The larger the event detection probability of Sy at
tx, the smaller the event detection probability of Dy at
tx. To maximize the event detection probability of Dy

at tx, the event detection probability of Sy at tx should
be minimized. Therefore, a good heuristic algorithm
should let ry be as close as possible to the event detec-
tion probability of other subsets at tx.

4.1 Greedy algorithm (GA)

The above consideration can be directly applied to
an algorithm that solves the simplified sensor network
reconfiguration problem (Problem 2): After initially
grouping nodes into each Sk, we can greedily move the
nodes in subset Sy to other subsets so as to reduce ry.

Algorithm 1 demonstrates the mechanism of this
greedy algorithm (GA). It first randomly selects n

N
nodes for each subset Sk (line 2). Let pmin denote the
minimum event detection probability among the event
detection probabilities of any division Dk (∀k) at any
sampling point (line 5). GA locates the sampling point
tx at which the event detection probability of some
division (denoted by Dy) is pmin (line 6). Based on the
above discussions, the event detection probability of
Sy is the maximum among all Sk at tx. Now suppose
the event detection probability of Sz is the minimum
among all Sk at tx. GA improves pmin by moving a node

from Sy to Sz, which results in the largest improvement
of pmin (lines 7–9). pmin is thus improved iteratively
until it cannot be further improved (lines 4–10).

Algorithm 1 Greedy Algorithm (GA)
1: Input:

{si}n
i=1: the set of sensor nodes

{t j}m
j=1: the set of sampling points

P : the n by m matrix, where each element pij

denotes the event detection probability of si

at t j.
2: Randomly selects n

N nodes for each subset Sk

3: Dk ← {si}n
i=1 − Sk

4: repeat
5: pmin ← the minimum event detection probability

among the event detection probabilities of any
divisions at any sampling points

6: tx ← the sampling point at which the event detec-
tion probability of a division is pmin.

7: Dy ← the division that results in pmin at tx

8: Sz ← the subset whose event detection probabil-
ity is the minimum at tx.

9: Move a node from Sy to Sz. A node is selected
if it results in the largest improvement of pmin

comparing with selecting any other node. Ties
are broken arbitrarily.

10: until pmin cannot be further improved

Although Algorithm 1 is to solve Problem 2, with
a set of well-designed sampling points {t j}m

j=1, its out-
put can be deemed as a solution of Problem 1.
The prerequisite is that the sampling points can
well represent the event detection probability of the
whole network. Quasi-random sequences, such as
Hammersley sequence, which have asymptotically op-
timal discrepancy (a measure of uniformity for the dis-
tribution of the points) possess been widely employed
in Quasi Monte Carlo methods [8]. In this regard,
they are reasonably good sampling-point generators.
We adopt Hammersley sequence [8] to generate the
sampling points for Algorithm 1. We linearly map the
2-dimensional Hammersley sequence into the network
area to generate the locations of the sampling points
{t j}m

j=1 as the input of Algorithm 1.

4.2 Simple partitioning and picking algorithm
and minimum spanning tree-based
grouping algorithm

In the greedy algorithm, tx is found in the set of
sampling points. In fact, given the original settings of
Problem 1, i.e., the event location is a continuous vari-
able which can be anywhere in the network, actually
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Algorithm 2 Simple Partitioning and Picking Algorithm
(SPP)

1: Input:
{si}n

i=1: the set of sensor nodes
2: The whole network area is deemed as a region
3: repeat
4: for all regions do
5: draw a line parallel to the x-axis to partition

the region into two so that the difference be-
tween the node numbers in both partitions is
at most one.

6: end for
7: if there are more than 2N nodes in each region

then
8: for all regions do
9: draw a line parallel to the y-axis to partition

the region into two so that the difference be-
tween the node numbers in both partitions is
at most one.

10: end for
11: end if
12: until there are less than 2N nodes in each region
13: randomly select nodes in each region to

Sk(k = 1, ..., N)

14: repeat
15: randomly assign two neighboring regions as

A and B
16: for each randomly-picked subset Ak in region A

do
17: Couple Ak with a subset Bx in region B, such

that the couple results in the largest ι com-
paring with the other couples formed by Ak

and any other subsets in B. Ties are broken
arbitrarily.

18: end for
19: each couple is deemed as a subset, and thus A

and B are merged into a larger region.
20: until there is only one region

a possible tx can also be anywhere in the network.
To minimize ry, it would therefore be better if all the
subsets have a closer event detection probability at
any point in the network as we do not know where tx

should be.
In order to make the event detection probability of

all the subsets close to each other at any points, the
resulting subsets should look similar in a dispersive
manner. It is therefore necessary that nodes in the same
subset should be dispersedly distributed. Nodes that are
near each other should not be grouped into the same
subset so as to avoid high event detection probability

of the subset at locations around these nodes. In other
words, if we examine an arbitrary area in the network,
there should not be outstanding dominant-population
of any one of the subsets.

Based on this consideration, we design the other
two algorithms, namely, the Simple Partitioning and
Picking (SPP) algorithm and the Minimum Spanning
Tree-Based Grouping (MSTBG) algorithm.

SPP tries to maximize the ι index, i.e., the minimum
distance over the average distance between each node
pair [17, 18], of the resulting subsets. Because the ι

index can serve as a good microscope in indicating
the existing of a high redundancy area [17], by max-
imizing this fan-out index, SPP aims at avoiding high
redundancy of some subsets comparing to the others at
anywhere in the network.

Algorithm 2 shows the details of SPP. It performs
two procedures in turn: the partitioning procedure
(lines 2–13) and the merging procedure (lines 14–20). In
the partitioning procedure, first consider all nodes are
in one region. Supposing there is a Cartesian coordinate
system in the network area, SPP iteratively cuts each
region into two until there are less than 2N nodes in
every region (lines 4–12). Then nodes in each region
are randomly selected into N different subsets (line
13). In the merging procedure, neighboring regions are
merged into one till there is only one region. During the
merge procedure, one subset in a region is coupled to
anther subset in another region if the couple can result
in the largest ι comparing to the other possible couples.
Ties are broken by picking randomly. This coupling
process continues until all N couples are generated,
since each region has N subsets (lines 16–18). Then
each couple is deemed as a subset, and thus two neigh-
boring regions are merged into a larger region (line 19).

Algorithm 3 Minimum Spanning Tree-Based Grouping
Algorithm (MSTBG)

1: Input:
{si}n

i=1: the set of sensor nodes
2: T ← the tree composed by two nearest nodes.
3: group the two nodes into two arbitrary subsets.
4: repeat
5: s ← the nearest node to the tree among all the

nodes that are not in the tree.
6: calculate the distance between s and each subset

in the tree
7: S ← the farthest subset (ties are arbitrarily

broken)
8: group s to S, and add s to T
9: until all nodes are in T
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Similarly, MSTBG constructs a minimum spanning
tree (MST) of the network incrementally, and groups
each newly-joining node to its farthest subset in the
tree.1 Thus MSTBG tries to group nodes that are near
each other to different subsets so as to avoid the close-
gathering of the nodes in the same subset. The algo-
rithm is illustrated in Algorithm 3.

MSTBG first builds a tree that is composed only by
the two nearest nodes among all the in-network nodes.
These two nodes are grouped into two different subsets
(lines 2–3). Select a node which is the nearest to the
tree among all the nodes that are not in the tree (line
5). Group this node to the subset which is the farthest
to this node. Then add this node to the tree (lines 6–
8). This procedure is thus iteratively conducted until
all nodes are in the tree. Such a process of building a
tree is exactly how Prim’s algorithm works in building a
minimum spanning tree (MST) [14]. This is why we call
this algorithm an MST-based grouping algorithm.

4.3 SNRP: a distributed and localized sensor network
reconfiguration protocol

The algorithms discussed above (i.e., GA, SPP, and
MSTBG) are all centralized approaches. A global pic-
ture of the network is required to run these algorithms.
However, WSNs are usually large-scale networks which
contain hundreds of nodes. Global information is not
easy, if not impossible, to be obtained. According to
the features of WSNs, a distributed and localized so-
lution for the sensor reconfiguration problem is surely
of practical interests.

Although some well-investigated mechanism can
help implement the above algorithms in a distributed
way, for example, a distributed MST algorithm (e.g.,
[6]) can be applied to decentralize MSTBG, global
information is still inevitably required in constructing
an MST [10]. We therefore design a new distributed and
localized algorithm called the Sensor Network Recon-
figuration Protocol (SNRP). It is based on a mechanism
similar to that in MSTBG. But instead of constructing
an MST of the whole network, in SNRP, each node
builds its local MST of its neighborhood graph (i.e.,
the graph consisting of the node and its one-hop neigh-
bors). The node then groups neighboring nodes to the
subsets based on the local MST.

SNRP is an event (packet) driven algorithm. There
are four types of packets involved in this algorithm,
i.e., ASK, CANCEL, ANSWER, and RESULT pack-

1The distance between a node and a subset is defined the distance
between the node and its nearest node in the subset.

ets. Figure 1 demonstrates SNRP with a finite state
machine. Details on the protocol are as follows.

Initially, a node does not belong to any subset (S0).
The base station (i.e., the network control center) will
firstly send a RESULT packet to a randomly selected
node, telling it that it belongs to subset 1 and let it begin
to perform the subset discovery procedure.

When a node (suppose it is node s) receives a
RESULT packet (S0→S3), it starts its subset discovery
procedure by firstly sending ASK packets to enquire
its neighbors which subset they belong to (S4→S5).
It waits until every neighbor has replied with an
ANSWER packet (S6→S8). Then node s constructs a
local MST of its neighborhood graph. Based on the
same mechanism as that in MSTBG, it groups each
of the nodes which do not belong to any subset into
a subset (S8→S7). Then node s notifies these nodes
the grouping results by sending them RESULT pack-
ets (S7→S12). Thus the subset discovery procedure is
handed over to the neighboring nodes of node s and
node s comes to the final state (S12).

If a node receives an ASK packet from a neighbor
(suppose the neighbor is node s′), the node will behave
differently according to whether or not it is currently
conducting the subset discovery procedure. If this is
true, i.e., when the node is waiting for collecting all
ANSWER packets in the subset discovery procedure
(S5 or S6), in order to avoid deadlocks it will send

The subset discovery procedure

Fig. 1 The finite state machine of SNRP



248 Mobile Netw Appl (2009) 14:241–252

CANCEL packets to all the neighbors to which it has
sent ASK packets (S9→S10) before it sends an AN-
SWER packet to node s′ in reporting which subset it
belongs to (S10→S2). Otherwise, (S0 or S12), it will
directly send an ANSWER packet to node s′ (S1→S2
or S11→S12).

Then after sending the ANSWER packet to node s′,
the node will return to the final state if the node has
successfully performed the subset discovery procedure
before (S12). Otherwise, it waits for a RESULT packet
or a CANCEL packet from node s′ (S2). Note that
the node will also queue the ASK packets from other
neighbors without reply during this waiting time. This
can avoid the node to be grouped into different subsets
by different neighbors. Now if a CANCEL packet is
received, the waiting is canceled (S2→S0) and the node
returns to the initial state (S0).

5 Performance study

To study the effectiveness of our algorithms in solving
the sensor network reconfiguration problem, we cus-
tomize a sensor network simulator. Detailed settings of
the simulation networks are shown in Table 1. β, δ and
ε in the table are parameters of the probabilistic sensing
model [18] in which if an event is L meters away from a
sensor, the sensor can detect the event with probability
p that satisfies:

p =
⎧
⎨

⎩

δ
(L/ε+1)β

if L ≤ Rs,

0 otherwise.
(10)

This model implies that the event detection probabil-
ity is determined by the event-signal strength received
by a sensor, while the signal fades exponentially with a
factor β in its way from the event location to the sensor
location. This is a realistic consideration.

We employ SPP, GA, MSTBG, and SNRP to re-
configure the in-network sensor nodes into N subsets.
We study the event detection capability (EDC) of the
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Fig. 2 EDC as a function of N (Node Number = 100)

network during a system migration task where each
subset has to cease to work for a given period of time
successively. For each network setting, simulations are
performed for 100 times with different random seeds
and the results are averaged.

For comparison purpose, we also draw another three
curves. The first curve (named “Original” in the figures)
shows the EDC of the entire network when no subset
is off. The second curve (named “Upper Bound” in the
figures) shows the EDC upper-bound of the network
when one subset cease to work, which is computed by:

1 − (1 − Pall)
N−1

N (11)

where Pall is the EDC of the entire network when no
subset is off. This is, however, a non-achievable upper-
bound, as it considers the non-achievable but optimum
case where each subset has equal event detection prob-
ability at any point of the network. Lastly, the third
curve (named “RP” in the figures) is the EDC of the
network when reconfigured by the Random Pick algo-
rithm (RP), in which we randomly select n/N nodes for
each subset without any performance considerations.
This serves as a baseline in our simulation study.

We first study how the value of N influences our
algorithms. Figures 2, 3, and 4 show the EDC of the

Table 1 Simulation Settings Area of sensor field 200 m × 200 m
Rode deployment scheme Randomly deployed

in a uniform manner
Sensing range Rs 40 m
Communication range Rc 40 m
β, δ and ε 2.0, 1.0 and 40.0
Number of sampling points 100
Sampling method 2-dimensional

Hammersley sequence
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Fig. 3 EDC as a function of N (Node Number = 150)

networks composed of different numbers of nodes.
We can see that the naive RP algorithm performs by
far the worst, which is what we have expected. SPP,
MSTBG, and SNRP always perform better then GA,
which verifies that it is necessary to disperse the nodes
in the same subset.

Also it can be found out that when N is large enough
(N > 4 in our simulations), improving N cannot ef-
fectively improve the EDC of the network. This is
not strange as the difference between the ratios N−1

N
and N

N+1 gets smaller as N increases. As a larger N
incurs longer time for the entire network to complete
a migration task, the price of improving the EDC of
the network during system migration becomes higher
and higher as N increases. This should be an important
consideration for a system maintainer to select a proper
value of N.

When the node-density becomes higher, the differ-
ences among the performances of these algorithms be-
come smaller. This is not surprising, either. The more
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Fig. 4 EDC as a function of N (Node Number = 200)
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Fig. 5 EDC as a function of node number

the in-network nodes, the higher the redundancy of the
network with respect to event detection. As a result,
when the node density is high, if one subset of the
nodes is off, it does not have a great impact on the
performance of the network. Figure 5 further demon-
strates this idea. We let N = 3 and change the number
of nodes from 100 to 200. We can see that the EDC of
the network gradually approaches the original curve.

To see how the neighborhood graph size influences
the results of SNRP, we change the communication
range Rc from 40 m to 80 m (i.e., from one time to
two times of the sensing range). Figure 6 demonstrates
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(b) Node Number = 150

Fig. 6 EDC as a function of communication range



250 Mobile Netw Appl (2009) 14:241–252

the experimental results of SNRP where N = 3 and the
node numbers are 125 and 150, respectively. We can
find out that SNRP performs almost the same when
Rc is larger than the sensing range. As usually the
communication range of a node is larger than its sens-
ing range, these results verify that grouping based on
the local MST is good enough comparing to grouping
based on the global MST. It shows that SNRP, as a
distributed and localized algorithm, works very well as
such a specifically-tailored design does not degrade the
resulting performance much.

6 Conclusions

Seamless system migration without downtime is neces-
sary for wireless sensor networks that perform critical
event detection tasks. Unfortunately, to our knowl-
edge, this important problem has not been addressed
in the literature. In this paper, we presented the first
formal study on this problem. We demonstrated that
the downtime can be eliminated by partitioning the
sensors into a collection of subsets, and let each subset
conduct the system migration tasks successively with
the rest still performing normal event detection ser-
vices. We proved the optimal partitioning of sensors
in this context is NP-hard and then proposed a series
of heuristics. We further extended our solution to a
distributed implementation called the Sensor Network
Reconfiguration Protocol (SNRP). Simulation results
showed that these algorithms work well in various
performance evaluations.

Appendix: Proof of Lemma 1

First, this problem is in NP: Given a partition scheme,
a nondeterministic algorithm only needs to calculate
the event detection capability (EDC) of each division
so as to get the EDC of the network during the time
interval T. And then it can verify whether this value
is smaller than u or not. So now we need to prove
that this problem is harder than a known NP-Complete
problem.

We transform the provably NP-Complete set parti-
tion problem [7] to the decision version of the simplified
sensor network reconfiguration problem. Given a set of
non-negative numbers {qi}n

i=1, the set partition problem
asks whether it is feasible to partition the set so that the
sum of numbers in each partition is equal.

As pij ∈ [0, 1), we can construct an n by m matrix Q
of which each element is defined as qij = −log2(1 − pij).

We can know qij > 0. Based on the property of dik, we
get:

1 − dik pij = 2−dikqij. (12)

Let us construct an instance of the sensor network
reconfiguration problem in which N = 2, qij is equal to
each other given the same i and equal to the qi in the set
partition problem, and u = 1 − 2−(

∑n
i=1 qi)/2. Now we can

always have di1 = 1 − di2 because a sensor should be in
either division D1 or division D2, but not in both. Also
we can write qij as qi without the subscript j. Therefore,
we get:

P′ − u = min
∀k

{
min
∀ j

[
1 −

n∏

i=1

(1 − dik pij)

]}
− u

= min
∀k

[
min
∀ j

(1 − 2− ∑n
i=1 dikqij)

]
− u

= min
∀k

(
1 − 2− ∑n

i=1 dikqi

)
− u

= 2−
∑n

i=1 qi
2 − 2

−
[

min
∀k

(
∑n

i=1 dikqi)

]

. (13)

If the answer to whether P′ ≥ u is yes, we get:

min
∀k

(
n∑

i=1

dikqi

)
≥

n∑
i=1

qi

2

⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑
i=1

di1qi ≥
∑n

i=1 qi

2

n∑
i=1

di2qi =
n∑

i=1
(1 − di1)qi ≥

∑n
i=1 qi

2

⇒

∑n
i=1 qi

2
≥

n∑

i=1

di1qi ≥
∑n

i=1 qi

2
⇒

n∑

i=1

di1qi =
∑n

i=1 qi

2
.

(14)

Therefore, the answer to the set partition problem is
also yes.

On the other hand, if the answer to the set partition
problem is yes, in the same way we can partition the
sensors in the simplified sensor network reconfigura-
tion problem so that:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n∑
i=1

di1qi =
∑n

i=1 qi

2

n∑
i=1

di2qi =
n∑

i=1
(1 − di1)qi =

∑n
i=1 qi

2

⇒ min
∀k

(
n∑

i=1

dikqi

)
=

∑n
i=1 qi

2
. (15)
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According to Eq. 13, P′ = u. Therefore, the answer to
the decision version of the simplified sensor network
reconfiguration problem is also yes.

The above reduction requires only O(n) steps to be
completed (for calculating pi and u with qi). Therefore,
the decision version of the simplified sensor network re-
configuration problem is both NP-Hard and NP. Then
it is NP-Complete. The lemma is proved.
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