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Abstract—The exponential growth of Web service makes
building high-quality service-oriented systems an urgent and
crucial research problem. Performance of the service-oriented
systems highly depends on the remote Web services as well
as the unpredictability of the Internet. Performance prediction
of service-oriented systems is critical for automatically selecting
the optimal Web service composition. Since the performance of
Web services is highly related to the service status and network
environments which are variable over time, it is an important
task to predict the performance of service-oriented systems at
run-time. To address this critical challenge, this paper proposes
an online performance prediction framework, called OPred,
to provide personalized service-oriented system performance
prediction efficiently. Based on the past usage experience from
different users, OPred builds feature models and employs time
series analysis techniques on feature trends to make performance
prediction. The results of large-scale real-world experiments show
the effectiveness and efficiency of OPred.

Index Terms—Performance prediction, time series analysis,
Web service.

I. Introduction

WEB SERVICES are software systems designed to
support interoperable machine-to-machine interaction

over a network. With the exponential growth of Web ser-
vice as a method of communications between heterogeneous
systems, service-oriented architecture (SOA) is becoming a
major framework for building Web systems in the era of
Web 2.0 [1]. In service computing, Web services offered
by different providers are discovered and integrated to im-
plement complicated functions. Typically, a service-oriented
system consists of multiple Web services interacting with each
other over the Internet in an arbitrary way. How to build
high-quality service-oriented systems becomes an urgent and
crucial research problem.
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Good response time performance is one of the most impor-
tant requirements of the service-oriented systems, which are
widely employed in e-business and e-government. Typically,
the response time performance of service-oriented systems
involves two parts: local execution time at the system side and
the response time of invoking remote Web services. While the
local execution time is relatively short, the response time of
invoking Web services is usually much longer, which greatly
influences the system performance. The reason is that Web ser-
vices are usually deployed in different geographical locations
and invoked via Internet connections. Moreover, the remote
Web services may be running on cheap and poor performing
servers, leading to a decrease of service performance. In order
to build service-oriented systems with good performance, it
is important to identify Web services with low response time
for composition. Moreover, by identifying the Web services
with long response time at runtime, system designers can
replace them with better ones to enhance the overall system
performance.

Typically, Web services are considered as black boxes to
service users. The user-side observed performance is employed
to evaluate the qualities of Web services [2]. Since the service
status (e.g., workload, CPU allocations, and so on) and the
network environment (e.g., congestions, bandwidth, and so on)
may change over time, response time of Web services varies
a lot during different time intervals. In order to identify low
response time Web services timely, real-time performance of
Web services needs to be continuously monitored.

Based on the above analysis, providing real-time perfor-
mance information of Web services is becoming more and
more essential for service-oriented system designers to build
high-quality systems and to maintain the performance of the
systems at runtime. However, evaluating the performance of
service-orientated systems at runtime is not an easy task, due
to the following reasons.

1) Since users (SOA systems) and services are typically
distributed in different geographical locations, the user-
observed performance of Web services is greatly influ-
enced by the Internet connections between users and
Web services. Different users may observe quite differ-
ent performance when invoking the same Web service.

2) Real-time performance evaluation may introduce extra
transaction workload, which may impact the user expe-
rience of using the systems.

3) The purpose of performance evaluation is to monitor the
current system performance status and allow designers
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to make adjustments in order to guarantee the perfor-
mance in the future. This requires frequent performance
evaluation, since infrequent evaluation cannot provide
useful information to designers for choosing appropriate
services in the following time.

It becomes an urgent task to explore an online personal-
ized prediction approach for efficiently estimating the per-
formance of Web services for different service users. Based
on the performance information of Web services, the overall
performance of a service-oriented system can be estimated
by aggregating the performance of services invoked by the
system. In this paper, we propose a service performance
estimation framework for providing personalized performance
information to the users. The performance of services is pre-
dicted by collaborative work of users. We collect time-aware
performance information from geographically distributed ser-
vice users. Due to the fact that a service user usually only
invokes a small number of Web services in the past and thus
only observes performance of these invoked Web services,
the collected performance information is usually sparse. In
order to precisely predict the performance of Web service
when invoked by users, we employ a set of latent features to
characterize the status of Web services and users. Examples of
physical feature are network distance between the user and the
service server, the workload of the server, and so on. Latent
features are orthogonal representation of the decomposed
results of physical factors. We extract the latent features of
users and services in the past time slice from the collected
service performance information. By analyzing the trend of the
feature changes, we estimate the features of users and services
in the current time. Then the personalized performance of Web
service is predicted by evaluating how the features of users
apply to features of services. In summary, this paper makes
the following contributions.

1) We propose an online performance prediction frame-
work for estimating the user observed performance of
service-oriented systems by employing the past usage
experiences of different users to efficiently predict the
performance of service-oriented systems online.

2) We collect a large-scale real-world Web service perfor-
mance dataset and conduct extensive experiments for
evaluating the performance of our proposed approach
OPred. Totally, 4532 Web services are monitored by
142 service users and 30 287 611 invocation results are
collected. Moreover, we publicly release our large-scale
real-world Web service performance dataset for future
research.

The rest of this paper is organized as follows. Section II de-
scribes the service-oriented system architecture and introduces
the online performance prediction procedures. Sections III and
IV present our online service performance prediction approach
OPred in detail. Section V presents the experimental results.
Section VI discusses related work and Section VII concludes
the paper.

II. Preliminaries

Fig. 1 shows the architecture of a typical service-oriented
system. Within a service-oriented system, several abstract tasks

Fig. 1. Service-oriented system architecture.

Fig. 2. Online performance prediction procedures.

are combined to implement complicated functions. For each
abstract task, an optimal Web service is selected from a set
of functionally equivalent service candidates. By composing
the selected services, a service-oriented system instance is
implemented for task execution. The problem of finding func-
tionally equivalent Web service candidates has been discussed
by a lot of previous work [3], [4], which is outside the
scope of this paper. Typically the Web service candidates
are provided by different organizations and distributed in
different geographical locations and time zones. When invoked
through communication links, the user-side usage experiences
are influenced by the network environments and the server-side
status at invocation time. Since service-oriented systems are
increasingly running on large numbers of dynamic services,
users often encounter highly dynamic and uncertain perfor-
mance of service-oriented systems.

As shown in Fig. 2, the online performance prediction
mechanism proposed in this paper contains four phases. In
phase 1, each service user keeps local performance records
of the Web services. In phase 2, local Web service usage
experiences are uploaded to the performance center. Each
user is encouraged to contribute its local records to obtain
performance prediction service from the performance center.
By contributing more individually observed Web service per-
formance records, a service user can obtain more accurate
performance prediction results from the performance center.
By combining performance records of several users, the per-
formance center can obtain global performance information
for all services. In phase 3, by performing time series anal-
ysis on the extracted time-specific user features and service
features, a performance model is built in the performance
center for personalized service performance prediction. The
premise behind the performance model is that there is a small
number of latent factors influencing the user observed service
performance, and that a user’s observed service performance
is determined by how each factor applies to that user and the
corresponding service at the current time slice. In phase 4,
given the service level performance information, the overall
performance of a service-oriented system is predicted based
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Fig. 3. Toy example of performance prediction. (a) Performance prediction. (b) Matrices of different time slices.

on the analysis of service compositional structures. When the
most recent service performance information is available, an
online prediction algorithm is applied for quickly updating the
performance model, which requires no effort of recalculation
for catching the performance trend. The detailed online service
performance prediction approach is presented in Section III.

In Fig. 1, we can observe that the overall execution
time of a service-oriented system mainly contains two parts:
1) local computation time at the system side and 2) response
time of invoking remote services. The highly dynamic per-
formance of service-oriented systems is mainly due to the
highly dynamic response time of the composed services, while
the local execution time is relatively stable. To improve the
performance of systems at runtime, optimal Web service of
each abstract task should be identified timely to replace the bad
ones for composition. The overall performance of systems with
different compositional options can be compared by estimating
the total response time required for invoking all the composed
services. The detailed system level performance prediction
approach will be presented in Section IV.

Since most of the service users are not experts in service
testing, to reduce the efforts of service users spent on testing
the service performance, we design a light-weight middleware
for service users to automatically record invocation results,
contribute the local records to the performance center, and
receive performance prediction results from the performance
center. Within the middleware, there are three management
components: 1) WSMonitor; 2) Collector; and 3) Predictor.
WSMonitor is deployed on the user side. Collector and Pre-
dictor are deployed on the performance center. WSMonitor is
responsible for monitoring the performance of Web services
and sending local records to the performance center. Collector
is responsible for collecting shared performance records from
users. Predictor is responsible for providing time-aware per-
sonalized performance prediction based on users’ performance
information collected by Collector.

III. Online Service Level Performance Prediction

In this section, we propose a collaborative method to
predict the performance of services. Previous Web service
related techniques such as selection [5]–[8], composition
[9]–[11], and orchestration [12] typically only employ average
performance of service candidates at design-time. In the recent

Web service literature, most of the state-of-the-art techniques
can automatically update corresponding Web services with
better ones at runtime. Therefore, making personalized
time-specific performance prediction of Web services for
different users becomes a critical task. We first formally
describe the online performance prediction problem of Web
services in Section III-A. Then we propose a latent feature
learning algorithm to learn the time-aware user-specific and
service-specific features in Section III-B. The performance
of services is predicted by applying the proposed online
algorithm in Section III-C. Finally, the complexity analysis is
conducted in Section III-D.

A. Problem Description

Fig. 3(a) illustrates a toy example of the performance
prediction problem we study in this paper. In this figure,
service user u1 has used three Web services s1, s2, and s4 in the
past. u1 recorded the observed performance of Web services
s1, s2, and s4 with time stamp in the local site. By integrating
all the performance information from different users, we can
form a set of matrices as shown in Fig. 3(b) with each matrix
representing a time slice. In this example, there are totally five
users (from u1 to u5) and five services (from s1 to s5). Within a
matrix, each entry denotes the observed performance (e.g., re-
sponse time) of a Web service by a user during a specific time
slice. A missing entry denotes that the corresponding user did
not invoke the service in the time slice. The problem we study
in this paper is how to efficiently and precisely predict perfor-
mance of services observed by a user in the next time slice
based on the previously collected performance information.

Let U be the set of m users and S be the set of n Web
services. In each time slice t, the observed response time from
all users is represented as a matrix R(t) ∈ Rm×n with each
existing entry rui(t) representing the response time of service
i observed by user u in time slice t. Given the set of matrices
� = {R(k)|k < tc}, matrix R(tc) should be predicted represent-
ing the expected response time of services in time slice tc.

Without loss of generality, we can map the response time
values to the interval [0, 1] using the following function:

f (x) =

⎧⎨
⎩

0, if x < rmin

1, if x > rmax
x−rmin

rmax−rmin
, otherwise
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where rmax and rmin are the upper bound and lower bound of
the response time values, respectively, which can be defined
by users.

B. Time-Aware Latent Feature Model

In order to learn the latent features of users and services,
we employ a matrix factorization technique to fit a feature
model to user-service matrix in each time slice. The factorized
user-specific and service-specific features are utilized to make
further performance prediction. The idea behind the feature
model is to derive a high-quality low-dimensional feature
representation of users and services by analyzing the user-
service matrices. It is noted that there is only a small number
of features influencing performance experiences, and that a
user’s performance experience vector is determined by how
each feature is applied to that user and the corresponding
service. Examples of physical features are network distance
between the user and the server, the workload of the server,
and so on. Latent features are orthogonal representation of
the decomposed results of physical features. Consider the
matrix R(t) ∈ Rm×n consisting of m users and n services.
Let p(t) ∈ Rl×m and q(t) ∈ Rl×n be the latent user and
service feature matrices in time slice t. Each column in p(t)
represents the l-dimensional user-specific latent feature vector
of a user and each column in q(t) represents the l-dimensional
service-specific latent feature vector of a service. We employ
an approximating matrix to fit the user-service matrix R(t), in
which each entry is approximated as

r̂ui(t) = pT
u (t)qi(t) (1)

where l is the rank of the factorization which is generally
chosen so that (m + n)l < mn, since p(t) and q(t) are low-
rank feature representations [13]. This matrix factorization
procedure [i.e., decompose the user-service matrix R(t) into
two matrices p(t) and q(t)] has clear physical meanings: Each
column of q(t) is a factor vector including the values of the
l factors for a Web service, while each column of p(t) is the
user-specific coefficients for a user. In (1), the user-observed
performance on service i at time t [i.e., r̂ui(t)] corresponds to
the linear combination of the user-specific coefficients and the
service factor vector.

In order to optimize the matrix factorization in each time
slice, we first construct a cost function to evaluate the quality
of approximation. The distance between two non-negative
matrices is usually employed to define the cost function. In
this paper, due to the reason that there are a large number of
missing values in practice, we only factorize the observed en-
tries in matrix R(t). Hence, we have the following optimization
problem:

minL(pu(t), qi(t))

=
1

2

m∑
u=1

n∑
i=1

Iui(rui(t) − g(r̂ui(t)))
2

+
λ1

2
||p(t)||2 +

λ2

2
||q(t)||2 (2)

where λ1, λ2 > 0, Iui is the indicator function that is equal
to 1 if user u invoked service i during the time slice t

Algorithm 1: Time-Aware Latent Features Learning
Input: R(t), l, λ1, λ2

Output: p(t), q(t)
Initialize p(t) ∈ Rl×m and q(t) ∈ Rl×n with small random1
numbers;
Load the performance records from matrix R(t);2
Calculate the objective function value L(pu(t), qi(t)) by Eq. (1)3
and Eq. (2);
repeat4

Calculate the gradient of feature vectors ∂L

pu(t) and ∂L

qi(t)5
according Eq. (3) and Eq. (4), respectively;
Update the latent user and service feature matrices p(t) and6
q(t);
pu(t) ← pu(t) − ∂L

pu(t) ;7

qi(t) ← qi(t) − ∂L

qi(t)
;8

Update the objective function value L(pu(t), pi(t)) by9
Eq. (1) and Eq. (2);

until Converge ;10

and equal to 0 otherwise. (rui(t) − g(r̂ui(t)))2 evaluates the
error between predicted value and groundtruth value collect
from real-world. To avoid the overfitting problem, we add
two regularization terms to (2) to constrain the norms of
p(t) and q(t) where || · ||2 denotes the Frobenius norm. The
optimization problem in (2) minimizes the sum-of-squared-
errors objective function with quadratic regularization terms.
g(x) = 1/(1+exp(−x)), which maps r̂ui(t) to the interval [0, 1].
By solving the optimization problem, we can find the most
appropriate latent feature matrices p(t) and q(t) to characterize
the users and services, respectively.

A local minimum of the objective function given by (2)
can be found by performing incremental gradient descent in
feature vectors p(t) and q(t)

∂L

pu(t)
= Iui(g(r̂ui(t)) − rui(t))g

′(r̂ui(t))qi(t) + λ1pu(t) (3)

∂L

qi(t)
= Iui(g(r̂ui(t)) − rui(t))g

′(r̂ui(t))pu(t) + λ2qi(t). (4)

Algorithm 1 shows the iterative process for time-aware latent
feature learning. We first initialize matrices p(t) and q(t) with
small random non-negative values. Iterations of the update
rules derived from (3) and (4) allow the objective function
given in (2) converge to a local minimum.

C. Service Performance Prediction

After the user-specific and service-specific latent feature
spaces p(t) and q(t) are learned in each time slice t, we can
predict the performance of a given service observed by a user
during the next time slice. The service performance prediction
is conducted in two phases: offline phase and online phase. In
the offline phase, the performance information collected from
all the service users is used for statically modeling the trends
of user features and service features. By employing a time
series analysis, the features of users and services in the next
time slice are calculated based on the evolutionary algorithm.
The predicted features are further applied for calculating the
predicted performance of services in the next time slice. In the
online phase, the newly observed service performance infor-
mation by users at runtime is integrated into the feature model
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builded in the offline phase. By employing the incremental
calculation algorithm, the feature model is updated efficiently
to catch the latest trend for ensuring the prediction accuracy.

Phase 1: Offline Evolutionary Algorithm: Given the latent
feature vectors of users and services in time slices before tc,
the latent feature vectors in time slice tc can be predicted by
precisely modeling the trends of features. Intuitively, older
features are less correlated with a service’s current status
or a user’s current characteristics. To characterize the latent
features at time slice tc, the prediction calculation should rely
more on the information collected in the latest time slices than
that collected in older time slices. In order to integrate the
information from different time slices, we therefore employ
the following temporal relevance function [14]:

f (k) = e−αk (5)

where k is the amount of time that has passed since the
corresponding information was collected. f (k) measures the
relevance of information collect from different time slices for
making prediction on latent features at time tc. Note that f (k)
decreases with k. By employing the temporal relevance func-
tion f (k), we can assign a weight for each latent feature vector
depending on the collecting time when making prediction. In
the temporal relevance function, α controls the decaying rate.
By setting α to 0, the evolutionary nature of the information is
ignored. A constant temporal relevance value of 1 is assigned
to latent feature vectors in all the time slices, which means
latent feature vectors in time slice tc are predicted simply
by averaging the vectors before time slice tc. Since e−α is
a constant value, the value of temporal relevance function can
be recursively computed: f (k + 1) = e−αf (k), in which e−α

denotes the constant decay rate.
By analyzing the collected performance data, we obtain two

important observations: 1) within a relatively long time period
such as one day or one week, the service performance observed
by a user may vary significantly due to the highly dynamic
service side status (e.g., workloads of weather forecasting
service may increase sharply when weekends are coming) and
user side environment (e.g., network latency would increase
during the office hours) and 2) within a relatively short time
period such as one minute or one hour, a service performance
observed by a user is relatively stable. The above two obser-
vations indicate that the feature information of latent feature
vectors in time slice tc can be predicted by utilizing the feature
information collected before tc. Moreover, the performance
curve in terms of time should be smooth, which means more
recent information is placed with more emphasis for predicting
the performance in time slice tc. Therefore, we estimate the
feature vectors in time slice tc by computing the weighted
average of feature vectors in the past time slice

p̂u(tc) =

∑w
k=1 pu(tc−k)f (k)∑w

k=1 f (k)
(6)

q̂i(tc) =

∑w
k=1 qi(tc−k)f (k)∑w

k=1 f (k)
(7)

where p̂u(tc) and q̂i(tc) are the predicted user feature vector and
service feature vector in time slice tc, respectively. w controls

the information of how many past time slices are used for
making prediction. In (6) and (7), large weight values are
assigned to the feature vectors in recent slices while small
weight values are assigned to the feature vectors in old slices.

Given the predicted latent feature vectors p̂u(tc) and q̂i(tc),
we can predict the service performance value observed by a
user in time slice tc. For the user u and the service i, the
predicted performance value r̂ui(tc) is defined as

r̂ui(tc) = p̂T
u (tc)q̂i(tc). (8)

Phase 2: Online Incremental Algorithm: In this phase, we
propose an incremental algorithm for efficiently updating the
feature model built in phase 1 at runtime as new performance
data are collected in each time slice. In time slice tc−1, p̂u(tc−1)
and q̂i(tc−1) are predicted based on the data collected during
the time slice tc−2−w and tc−2. During the time slice tc−1,
there would be some services invoked by several different
users. Therefore, newly observed service performance values
are available and collected from users. The new performance
data are stored in a user-service matrix R(tc−1) representing
information in time slice tc−1. By performing matrix factor-
ization on R(tc−1), latent feature vectors pu(tc−1) and qi(tc−1)
in time slice tc−1 are learned from the real performance
data. According to (6) and (7), the feature vector prediction
needs to be recomputed repeatedly at each time slice using
all the vectors in previous w time slices, which is highly
computationally expensive. In order to predict the feature
vectors in time slice tc more efficiently, we rewrite (6) and
(7) as follows:

p̂u(tc) = e−α(
pu(tc−1)∑w

k=1 f (k)
+ p̂u(tc−1)

−pu(tc−1−w)f (w)∑w
k=1 f (k)

) (9)

q̂i(tc) = e−α(
qi(tc−1)∑w
k=1 f (k)

+ q̂i(tc−1)

−qi(tc−1−w)f (w)∑w
k=1 f (k)

) (10)

where e−α, f (w), and
∑w

k=1 f (k) are constant values.
pu(tc−1−w) and qi(tc−1−w) are feature vectors calculated in time
slice tc−1−w and can be stored with only constant memory
space. pu(tc−1) and qi(tc−1) can be quickly calculated in
time slice tc−1 since the computation complexity of matrix
factorization is very low. Note that in (9) and (10), we obtain
a recursive relation between [pu(tc−1), qi(tc−1)] and [pu(tc),
qi(tc)], which means the feature model in time slice tc−1 can
be efficiently updated for predicting the feature vectors in new
time slice tc.

In the online phase, it could be possible that a new user or
service is found. Since there is no prior information about the
user or the service in the previous time slices, it is difficult
to precisely predict the corresponding features by employing
the online Incremental Algorithm. To address the cold start
problem, we employ average performance for prediction. More
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precisely, the prediction for a new user or a new service is set
as follows:

r̂ui(t) =

⎧⎨
⎩

r̄i(t), if new user and old service
r̄u(t), if old user and new service
r̄(t), if new user and new service

where r̄i(t) is the average predicted performance of service
i observed by all users in time slice t, r̄u(t) is the average
predicted performance of all services observed by user u in
time slice t, r̄(t) is the average predicted performance of all
user-service pairs in time slice t.

D. Computation Complexity Analysis

The offline phase includes learning latent features in w

time slices and running an evolutionary algorithm. The main
computation is evaluating the objective function L and its
gradients against the variables. Since the matrix R(t) is
typically sparse, the computational complexity for evaluating
the objective function L in each time slice is O(ρrl), where
ρr is the number of nonzero entries in the matrix R(t), l

is the dimension of the latent features. The computational
complexities for the gradients ∂L

∂pu(t) and ∂L
∂qi(t)

in (3) and (4)
are O(ρrl). Therefore, the total computational complexity in
one iteration is O(ρrlw), where w is the number of time slices.
In the online phase, the main computation is factorizing the
new performance matrix in time slice t. The computational
complexity of online incremental algorithm is O(ρrl).

The analysis indicates that theoretically, the computational
time of offline algorithm is linear with respect to the number
of observed performance entries in one time slice and the total
number of time slices whose information is used for predic-
tion. Note that because of the sparsity of R(t), ρr << mn,
which indicates that the computation time grows slowly with
respect to the size of matrix R(t). The computational time
of the online algorithm is linear with the amount of newly
observed performance information, which indicates that our
proposed approach can efficiently integrate the performance
model with new information and make online prediction
timely. This complexity analysis shows that our proposed
approach is very efficient and can be applied to large-scale
systems.

IV. System Level Performance Prediction

In this section, we first present the aggregated response time
calculation methods for basic compositional structures. Then,
by analyzing the service flow, the system level response time
can be predicted in a hierarchical way. The overall perfor-
mance of a system consists of service response time and local
execution time. Local execution time refers to the computation
time between service invocations in local system. Since the
variance of system performance at runtime is mainly due to
the highly varying service response time, local execution time,
which is relatively constant at runtime, is not included in
the defined system level performance. Typically, as shown in
Fig. 4, there are four types of basic compositional structures,
i.e., sequence, branch, loop, and parallel. The response time of

Fig. 4. Basic compositional structures. (a) Sequence. (b) Branch. (c) Loop.
(d) Parallel.

Fig. 5. Performance composition example.

TABLE I

Calculation of Aggregated Response Time

each structure can be calculated by aggregating the response
time of its sub-tasks as shown in Table I.

For predicting the overall execution time of a service flow,
we first decompose the system structure to a set of basic
compositional structures in a hierarchical way. Then the end-
to-end system execution time is calculated in a bottom up way.
Take Fig. 5 as an example. First the execution time of basic
compositional structures T1 and T2 is calculated by employing
the aggregation methods of sequence and loop, respectively.
Then the execution time of T3 is calculated by employing ag-
gregation method for branch compositional structure. Finally,
the overall system execution time is calculated by employing
aggregation method for sequence on t1, t2, T3, and t6.

With the aggregation approach discussed above, designers
of service-oriented systems can estimate the performance of
systems at design-time. At runtime, the user observed system
level performance can be efficiently predicted automatically.
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Once the system performance is decreased at runtime, by
analyzing the system structure in a top down way, bad perfor-
mance services can be quickly identified. With the predicted
service performance information, dynamical service compo-
sition techniques can be employed to improve the system
performance by replacing the long response time services with
better ones.

V. Experiment

In this section, we conduct two experiments to evaluate our
online performance prediction approach. First, by comparing
with several state-of-the-art service performance prediction
methods, we present the effectiveness and efficiency of our
approach. Secondly, we study the service flow of a real-
world service-oriented system. We also study the perfor-
mance improvement by integrating the predicted performance
information of our approach into the dynamic composition
mechanism.

A. Service Level Evaluation

In the following, Section V-A1 introduces the experi-
mental setup and gives the description of the experimen-
tal dataset. Section V-A2 defines the evaluation metrics.
Section V-A3 compares the prediction quality of our approach
with other competing approaches. Sections V-A4, V-A5, and
V-A6 study the impact of data density, dimensionality, and
parameter α and w, respectively. Section V-A7 compares the
computational time of different approaches.

1) Experimental Setup and Dataset Collection: To eval-
uate the service level performance prediction quality of our
proposed approach in the real world, we implement a tool
WSMonitor for collecting the performance information of Web
services. WSMonitor is deployed as a middleware on the user-
side, which can continuously monitor the user experienced
performance of invoked services. By sharing the user side
observed performance to performance center, it can obtain
performance prediction service from performance center at
runtime.

WSMonitor is implemented and deployed with JDK 6.0,
Eclipse 3.3, Axis 2, and Apache 2.2.17. Within WSMonitor
there are several modules including WSDL Crawler, Code
Generator, and Performance Monitor. WSDL Crawler first
crawls a set of WSDL files from the Internet and generates a
list of openly-accessible Web services. For each Web service,
Code Generator automatically generates a java class for service
invocation by employing the WSDL2Java tool from the Axis
package [15]. Totally, 5871 classes are generated for 5871 Web
services. By calling the functions generated by Code Gener-
ator, Performance Monitor is able to send operation requests
to Web services and record the corresponding response time
with time stamps.

We deploy the WSMonitor on 142 distributed computers
located in 22 countries from PlanetLab,1 which is a distributed
test-bed consisting of hundreds of computers all over the
world. Each computer acts as a service user by invoking

1http://www.planet-lab.org

TABLE II

Statistics of Web Service Response Time Dataset

Fig. 6. Response time value distribution.

the listed Web services from time to time. Totally, 4532
publicly available real-world Web services from 57 countries
are monitored by each computer continuously. Of the initially
selected Web services, 1339 are excluded in this experiment
due to: 1) authentication required and 2) permanent invocation
failure (e.g., the Web service is shutdown). In our experiment,
each of the 142 computers sends operation requests to all the
4532 Web services in every time slice. The experiment lasts
for 16 h with one time slice lasting for 15 m.

By collecting performance records from all the computers,
finally 30 287 611 performance results are included into the
Web service response time dataset. The response time of all
the 4532 Web services observed by all the 142 service users
during 64 time slices can be presented as a set of 142 × 4532
user-service matrices, each of which stands for a particular
time slice.

The statistics of Web service response time dataset are
summarized in Table II. Response-time is within the range
of 0–20 s, whose mean is 3.165 s. The distribution of the
response-time values of all the matrices is shown in Fig. 6.
From Fig. 6 we can observe that most of the response-time
values are between 0.1–0.8 s.

2) Metrics: We assess the prediction quality of our pro-
posed approach in comparison with other methods by comput-
ing mean absolute error (MAE) and root mean squared error
(RMSE). The metric MAE is defined as

MAE =

∑
uit |r̂ui(t) − rui(t)|

N
(11)

and RMSE is defined as

RMSE =

√∑
uit(r̂ui(t) − rui(t))2

N
(12)

where rui(t) is the response time value of Web service i

observed by user u in time slice t, r̂ui(t) denotes the predicted
response time value of Web service i would be observed by
user u in time slice t, and N is the number of predicted
response time values in the experiments.
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TABLE III

Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

3) Comparison: In this section, in order to show the ef-
fectiveness and efficiency of our proposed online Web service
performance prediction approach, we compare the service level
prediction accuracy of the following methods.

1) UPCC: This is a neighborhood-based method which
employs Pearson correlation coefficient to calculate
similarities between users. It predicts response time
of services based on the observed performance from
similar users [16], [17]. Since UPCC cannot perform
online prediction for the next time slice, we extend
the traditional UPCC by using the average performance
from similar users for prediction.

2) IPCC: This is a neighborhood-based method which em-
ploys Pearson correlation coefficient to calculate similar-
ities between services. It predicts response time of ser-
vices based on the performance of similar services [18].
Similar to UPCC, we make an extension to IPCC in
order to compare the online prediction quality with other
methods.

3) MF: This method first compresses the set of user-service
matrices into an average user-service matrix. For each
entry in the matrix, the value is the average of the
specific user-service pair during all the time slices.
After obtaining the compressed user-service matrix, it
applies the non-negative matrix factorization technique
proposed by Lee and Seung [13] on user-service matrix
for missing value prediction. The predicted values are
used as the response time of the corresponding user-
service pair in the next time slice.

4) TF: This is a tensor factorization based prediction
method. It combines the set of user-service matri-
ces as a tensor with a third dimension representing
the time. Then it applies tensor factorization on the
user-service-time tensor to extract user-specific, service-
specific and time-specific characteristics. The missing

value is then predicted based on how these characteris-
tics apply to each other.

5) WSPred: This is a tensor factorization-based prediction
method [19]. Different from method TF, it adds average
performance value constraints when extracting the latent
characteristics.

6) OPred: This method is proposed in this paper. First, the
user features and service features are extracted in each
time slice by employing matrix factorization. Then, the
user features and service features in the new time slice
are predicted by performing time analysis on the feature
trends. Finally, the response time of user-service pairs
is predicted by evaluating how the predicted features of
users and services are applied to each other.

In order to evaluate the performance of different approaches
in reality, we randomly remove some entries from the perfor-
mance matrices to obtain observation matrices and compare
the values predicted by a method with the original ones.
The observation matrices with missing values are in different
densities. For example, 10% means that we randomly remove
90% entries from the original matrices and use the remaining
10% entries for prediction. Note that under a certain density,
we employ different approaches to predict the values by
using the same observation matrix. The prediction accuracy
is evaluated using (11) and (12) by comparing the original
values and the predicted values in the corresponding matrices.
The values of λ1 and λ2 are tuned by performing cross-
validation [20] on the observed performance data. Without lost
of generality, the parameter settings of all the approaches are
l = 20, w = 8, α = 0.2, and λ1 = λ2 = 0.001 in the experiments
conducted in this paper. Detailed impacts of parameters are
studied in Sections V-A4, V-A5, and V-A6, respectively.

The service performance prediction accuracies evaluated by
MAE and RMSE are shown in Table III. A smaller MAE or
RMSE value means a better performance. From Table III, we
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TABLE IV

Performance Improvement of OPred

Fig. 7. Impact of data density. (a) MAE performance. (b) RMSE
performance.

can observe that the time-aware prediction methods (i.e., TF
and OPred) outperform the non time-aware prediction methods
(i.e., UPCC, IPCC, and MF), since the time-aware methods
employ the time-specific features as additional information for
performance prediction. We also observe that our approach
OPred constantly performs better than TF under both dense
data and sparse data. This is because OPred assigns different
weights on the performance information collected in different
time slices. The prediction results rely more on recent user
and service features than older ones. By setting f (x) in (5)
to a constant value (e.g., f (x) = 1), OPred is reduced to TF.
WSPred further improves TF by employing a regularization
term to prevent the predicted values from varying a lot against
the average performance value. WSPred catches the periodic
features of service performance. OPred proposed in this paper
captures not only the periodic features but also the non-
periodic features of service performance. Therefore, OPred can
predict the performance trend more precisely than WSPred.
Moreover, WSPred is not an online approach and requires
more computational time than OPred. The computational time
is compared in Section V-A7. In Table III, the MAE and
RMSE values of dense data (e.g., data density is 45% or 50%)
are smaller than those of sparse data (e.g., data density is
5% or 10%), since denser data provide more information for
prediction. Performance improvement of OPred is shown in
Table IV. Our online approach OPred improves the prediction
accuracy by 22–36%, 16–25%, 15–28%, 9–17%, and 1–6%
relative to UPCC, IPCC, MF, TF, and WSPred, respectively.
The improvements are significant, which indicates the predic-
tion effectiveness of OPred.

4) Impact of Data Density: In Fig. 7, we compare the
prediction accuracy of all the methods under different data
densities. We change the data density from 5% to 50% with
a step value of 5%. The parameter settings in this experiment
are l = 20, w = 8, α = 0.2 and λ1 = λ2 = 0.001.

Fig. 8. Impact of dimensionality. (a) MAE performance. (b) RMSE
performance.

In Fig. 7(a) and (b), the experimental results show that our
approach OPred achieves higher prediction accuracy (smaller
MAE and RMSE values) than other competing methods under
different data density. In general, when the data density is
increased from 5% to 20%, the prediction accuracy of our
approach OPred is significantly enhanced. When the data
density is further increased from 20% to 50%, the enhance-
ment of prediction accuracy will decrease. This observation
indicates that when the data are very sparse, collecting more
performance information will greatly enhance the prediction
accuracy.

5) Impact of Dimensionality: The parameter dimension-
ality l determines the number of latent features applied to
characterize users and services. In Fig. 8, we study the impact
of parameter dimensionality by varying the values of l from
5 to 50 with a step value of five. Other parameter settings are
w = 8, α = 0.2, and λ1 = λ2 = 0.001.

In Fig. 8, we observe that as l increases, the MAE and
RMSE decrease (prediction accuracy increases), but when l

surpasses a certain threshold like 20, the MAE and RMSE
increase (prediction accuracy decreases) with further increase
of the value of l. This observation indicates that too few latent
factors are not enough to characterize the features of user and
service, while too many latent factors will cause an overfitting
problem. There exists an optimal value of l for characterizing
the latent features. When the data density is 50%, we observe
that our approach OPred achieves the best performance when
the value of dimensionality is 25, while smaller values like 5
or larger values like 50 can potentially reduce the prediction
accuracy. When the data density is 5%, we observe that the
prediction accuracy of our approach OPred achieves the best
performance when the value of dimensionality is 20, while
smaller values like 5 or larger values like 50 can potentially
reduce the prediction accuracy. This observation indicates that
when the service performance data are sparse, 20 latent factors
are already good enough to characterize the features of user
and service, which are mined from the limited performance
information. On the other hand, when the data are dense, more
latent factors, like 25, are needed to characterize the latent
features since more performance data are available.

6) Impact of α and w: The parameter α controls the
decaying rates of weights assigned to different time slices. A
larger value of α gives more weights to the recent time slices.
w controls the information of how many past time slices are
used for making prediction. In Fig. 9, we vary the values of w
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Fig. 9. Impact of α and w. (a) MAE performance. (b) RMSE performance.

from 1 to 20 with a step value of 1. Other parameter settings
are λ1 = λ2 = 0.001.

Fig. 9 shows the impacts of α and w on MAE and RMSE.
We observe that as w increases, the values of MAE and RMSE
decrease (prediction accuracy increase) at first, but when w

pass a certain threshold, the MAE and RMSE converge. This
phenomenon coincides with the intuition that employing past
performance information from more time slices can increase
prediction accuracy. When w surpasses a certain threshold,
the MAE and RMSE decrease little with further increase of
the value of w. The reason is that when w is large enough,
small weight values are assigned to the information of older
time slices, which contribute little to the prediction accuracy.
This observation indicates that too large w is unnecessary. The
thresholds are different under different values of α. Since a
larger value of α gives more weights to the recent time slices,
the threshold is smaller than those under smaller values of α.
In Fig. 9, OPred achieves the best performance when α = 0.2.
The observation confirms with the intuition that with a large
value of α useful information from older time slice will be
lost, and with a small value of α noisy data will cause the
decrease of prediction accuracy.

7) Computational Time Comparisons: In Section III-D, we
theoretically analyze the computation time of OPred. In this
section, we compare the computation efficiencies of different
approaches. In our experiments, one time slice lasts for 15 min.
We compare the average computational time of a prediction
approach with the length of a time slice. The data used
for performance prediction are the same for all approaches.
From Table V, we observe that the computational time of
OPred takes less than 2% of a time slice. This observation is
consistent with the time complexity analysis in Section III-D,
and shows that our proposed approach OPred is efficient
and can be applied to large-scale systems in real-world. TF
and WSPred use more than 10% of a slice time to conduct
prediction, since they are not online approaches and need
to rebuild the model whenever new data are available. TF
performs better than WSPred because WSPred contains an
extra term in the objective function representing the average
performance constraints. MF performs better than TF and
WSPred because time factor is not considered when pre-
dicting the performance values. UPCC and IPCC perform
worst since they are neighborhood-based approaches and
take a lot of time to find the relationship between users
and services.

TABLE V

Average Computational Time Comparisons

B. System Level Performance Case Study

In this section, we evaluate our approach OPred by using a
sample service-oriented system. Fig. 10 shows a typical online
shopping system. It allows customers to browse and order
products from the shopping website. In this shopping system,
the designer integrates three Web services for providing users
access to various product suppliers, banks and shippers. This
example is taken from the online services provided by a gift
website [21].

The service flow is illustrated in Fig. 10. By sending product
queries to suppliers, the shopping system can obtain plenty
of product information, which allows customers to browse
various products on the website. Once a customer decides to
buy a product, the shopping system sends an order request with
product information to the corresponding supplier. The sup-
plier then reserves a product for the customer and replies the
shopping system with an order confirmation request. At this
point, the shopping system needs to send an order confirmation
to the supplier and an order request to a shipper service. Once
the shopping system receives payment requests from both the
product supplier and a shipper service, it proceeds to launch
a payment transaction via a credit card payment service (e.g.,
PayPal). In the task of paying bills, customer’s credit card
information is transferred to the bank, and an invoice is sent
back by the bank. Finally, the product supplier is notified of
an bank invoice to complete the purchase. At the same time,
a request is sent to the shipper to arrange the shipment of the
product. Once the product is aboard, the shipper notifies the
shopping system with estimated arrival date of the shipment.

We find a set of functional identical Web services from
the performance dataset in Section V-A for each abstract task
in the shopping system. The predicted service performance
results from Section V-A are used to predicting the end-to-end
performance of shopping system by employing the composi-
tional methods in Section IV. As discussed before, by calcu-
lating system performance, poor services can be identified in a
hierarchical way. Then the identified services can be replaced
with better ones to maintain the overall system performance
at runtime. In Fig. 11, we compare the system performance
of static composition and dynamical composition. In static
composition, for each abstract task we randomly choose a
service from the set of functional identical candidates. The set
of selected services is fixed in all time slices. In dynamical
composition, the predicted service performance of OPred is
employed to select the optimal services for task executions in
each time slice. The comparison begins from time slice 11
since the performance information of the first 10 time slices
is used as training data for OPred. The system performance
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Fig. 10. Online shopping system.

Fig. 11. System performance improvement of dynamically service
composition.

of static composition method in time slice 11 is chosen as
baseline. Other performance is compared with baseline in
percentage (a smaller number means better performance).
From Fig. 11, we can observe that the system performance
of static composition is unstable at runtime. This is because
the performance of some selected services is unstable, which
impacts the system overall performance. For dynamic compo-
sition, since OPred can precisely predict service performance,
the service-oriented system can be updated by integrating po-
tentially optimal services at runtime. The system performance
of dynamical composition maintains stable in a good level,
which indicates the effectiveness of OPred.

VI. Related Work

Service-oriented systems have been in spotlight recently.
SOA has become a popular framework for building service-
oriented systems. A number of research investigations are
focusing on different kinds of issues such as Web service
selection [5]–[8], Web service composition [9]–[11], failure
prediction [22], reliability prediction [23], [24], and so on.
Traditionally, reliability of a system [25] is analyzed without
considering the system performance, which is not accurate
when applied to modern systems. Service performance can

be measured either from the service provider’s perspective or
from the user-side. However, performance observed by differ-
ent users may vary significantly due to the unpredictable com-
munication links and heterogeneous network environments.
Based on the performance of Web services, several approaches
have been proposed for Web service selection [7], [8], which
enable service users to identify optimal Web service from a
set of functionally similar or identical Web service candidates
for improving the whole quality of service-oriented systems.

The above approaches usually assume that the user-
dependent performance is already known. To obtain the per-
formance information, user-side Web service evaluations are
required [26]. However, in reality a user typically has engaged
a limited number of Web services in the past and cannot
exhaustively invoke all the available Web service candidates.
In this paper, we focus on predicting service performance in
the future time slices by collaborative filtering approaches to
enable the optimal Web service selection.

Collaborative filtering approaches are widely adopted in
commercial recommender systems [27]. Generally, traditional
recommendation approaches can be categorized into two
classes: memory-based and model-based. Memory-based ap-
proaches, also known as neighborhood-based approaches, are
one of the most popular prediction methods in collaborative
filtering systems. Memory-based methods employ similarity
computation with past usage experiences to find similar users
and services for making the performance prediction. The
most analyzed examples of memory-based collaborative fil-
tering include user-based approaches [28], [29], item-based
approaches [30], [31], and their fusion [23]. In [23], the
reliability of an active user is predicted based on the relia-
bility of similar users found. However, the method proposed
in [23] only considers two dimensions (i.e., user and Web
service) while time factor is not included. Moreover, the
high computational complexity makes it difficult to extend
memory-based approaches to handle large amounts of time-
aware performance data for timely prediction.

Model-based approaches employ machine learning tech-
niques to fit a predefined model based on the training datasets.
Model-based approaches include several types: the cluster-
ing models [32]; the latent factor models [33]; the aspect
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models [34]; and so on. Lee and Seung [13] presented an
algorithm for non-negative matrix factorization that is able to
learn the parts of facial images and semantic features of text. It
is noted that there is only a small number of factors influencing
the service performance in the user-service matrices, and that
a user’s factor vector is determined by how much each factor
applies to that user. For a set of user-service matrices data,
3-D tensor factorization techniques are employed for item
recommendation [35].

The memory-based approaches employ the information
from similar users and services for predicting missing values.
When the number of users or services is too small, similar-
ity computation for finding similar users or services is not
accurate. When the number of users or services is too large,
calculating similarity values for each pair of users or services
is time-consuming. In contrast, model-based approaches are
very efficient for missing value prediction, since they assume
that only a small number of factors influence the service
performance. In this paper, we take advantage of a model-
based method and extend it to set of user-service matrices
data. The proposed method is efficient in predicting the
service performance in the future time slices as analyzed in
Section III-D.

VII. Conclusion and Future Work

Based on the intuition that a user’s current Web service
performance usage experience can be predicted by using the
past usage experience from different users, we propose a
novel online service performance prediction approach, called
OPred, for personalized performance prediction at runtime.
Using the past Web service usage experience from different
users, OPred builds feature models and employs time series
analysis techniques on feature trends to make personalized per-
formance prediction for different service users. The predicted
service performance is critical for identifying poor services
and maintaining the system performance timely. The extensive
experimental results show that our proposed OPred outper-
forms the state-of-the-art performance prediction approaches
in terms of prediction accuracy. The case study on a typical
shopping system shows the effectiveness of OPred.

For future work, we will investigate more techniques for
improving the prediction accuracy (e.g., data smoothing, uti-
lizing content-aware information, and so on). We will conduct
experiments on more real-world service-oriented systems to
evaluate the effectiveness and efficiency of OPred when ap-
plied to different domains.
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