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Abstract—Software-based distributed shared memory (DSM)
allows multiple processes to access shared data without the need for
specialized hardware. However, this flexibility comes at a significant
cost due to the need for data synchronization. One approach to
mitigate these costs is to relax the consistency model, which can
lead to delayed updates to the shared data. This approach typically
requires the use of explicit synchronization primitives to regulate
access to the shared memory and determine the timing of data syn-
chronization. To circumvent the need for explicit synchronization,
an alternative approach is to manage shared memory transparently
using the underlying system. While this can simplify programming,
it often imposes a fixed granularity for data sharing, which can limit
the expansion of the coherence domain and increase the synchro-
nization requirements. To overcome this limitation, we propose an
abstraction called the elastic coherence domain, which dynamically
adjusts the scope of data synchronization and is supported by the
underlying system for transparent management of shared memory.
The experimental results show that this approach can improve the
efficiency of memory sharing in distributed environments.

Index Terms—Operating system, inter-process communication,
distributed shared memory.

I. INTRODUCTION

COMPUTATION environments deployed across distinct
physical machines can be interconnected, facilitating data

exchange among processes in such isolated environments often
presents a significant challenge. Message passing [1], [2], [3],
[4] is a widely adopted approach. This method employs a set
of communication routines that utilize efficient transport mech-
anisms to improve system throughput. Despite its advantages,
this strategy introduces additional complexity in coordinating
shared data across distributed nodes.

In virtual environments, these challenges persist. Despite the
numerous advantages of virtualization technology in managing

Manuscript received 26 August 2023; revised 25 May 2024; accepted 28 May
2024. Date of publication 5 June 2024; date of current version 19 July 2024. This
work was supported by the National Natural Science Foundation of China under
Grant 62372438. Recommended for acceptance by K. Gopalan. (Corresponding
author: Yi-Wei Ci.)

Yi-Wei Ci is with the Institute of Software, Chinese Academy of Sciences,
Beijing 100045, China (e-mail: yiwei@iscas.ac.cn).

Michael R. Lyu is with the Department of Computer Sciences and En-
gineering, Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
lyu@cse.cuhk.edu.hk).

Zhan Zhang, De-Cheng Zuo, and Xiao-Zong Yang are with the
School of Computer Science and Technology, Harbin Institute of Technol-
ogy, Harbin 150001, China (e-mail: zz@ftcl.hit.edu.cn; zuodc@hit.edu.cn;
xzyang@hit.edu.cn).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPDS.2024.3409882, provided by the authors.

Digital Object Identifier 10.1109/TPDS.2024.3409882

computing environments, effective data exchange among iso-
lated processes remains a problem. To address this, approaches
like GiantVM [5] have been proposed. GiantVM introduces a
single system image (SSI) abstraction at the hypervisor level
by integrating distributed shared memory (DSM) into Kernel-
based Virtual Machine (KVM). The DSM is based on the IVY
protocol [6].

Unlike a hypervisor-level implementation, the DSM can be
natively supported by the operating system. This enables tra-
ditional inter-process communication mechanisms to be ex-
tended to operate within a distributed environment. With this
implementation at the operating system level, memory sharing
becomes possible across both physical machines and virtual
environments. SSI systems [7], [8] often facilitate distributed
inter-process communication at the operating system level, al-
lowing for the transparent management of shared memory at the
page level. The shared memory paradigm is vital in facilitating
data exchange by providing memory abstraction and enabling
access to distributed data through a uniform interface. This
uniformity greatly simplifies the task of accessing distributed
resources, even when these resources span across both physical
and virtual machines.

Contrasting with transparent approaches, explicit primitives
can be used to regulate access and maintain the consistency
of shared data [9], [10], [11]. These primitives can be utilized
to delay synchronization until it is possible to modify the up-
dater, thereby reducing the need for frequent synchronization
following each data update. However, managing these explicit
synchronization primitives can demand substantial effort. An al-
ternative approach to guide synchronization involves redirecting
computation through delegate operations [12]. This approach
allows for remote operations, but recognizing these specialized
operations necessitates a user-level runtime system.

To circumvent the need for helper primitives, the synchro-
nization of shared data can also be determined implicitly [6],
[13], thereby making the management of shared data trans-
parent. Typically, the operating system handles page-level data
management [6], [13], [14], capturing data updates at the page
granularity. As the paging mechanism provides data access
protection, the operating system can identify the readers or
writers of shared data. Sharing data through small-sized pages,
such as 4 KB, can reduce the cost of retrieving remote data
during each synchronization. However, if the required data size
significantly surpasses the page size, this approach can result
in frequent synchronizations. To address this issue, operating
system support for transparent huge pages (THPs) provides the
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capability to utilize pages of a larger size. By reducing the
number of memory pages required, frequent synchronizations of
shared data can be minimized. However, updating a large-sized
page, such as a 2 MB or 1 GB page, can incur substantial costs
when retrieving updated data from remote processes over the
network. Furthermore, the employment of large-sized pages
can lead to false sharing because of data synchronization, as
a thrashing effect occurs when different processes repeatedly
update different parts of the same page.

The Virtual Memory Area (VMA) represents a segment of
memory within the virtual address space. Given that VMAs can
be considerably larger than a page, maintaining coherence when
VMAs map to the same shared memory presents challenges. In
a distributed environment, the memory pages within a VMA
can be synchronized independently. However, traditional mech-
anisms lack the flexibility to adjust the granularity of data sharing
effectively. In this paper, we introduce a data management
approach based on virtual regions. These regions facilitate the
dynamic merging of contiguous pages, differing from the VMA
abstraction by specifically aiming to maintain coherence among
selected pages in coordination. The set of merged pages can be
adjusted, forming a flexible coherence domain that extends the
granularity of data management beyond the page boundary. This
method allows data synchronization to be transparently handled
by the underlying operating system.

Recent enhancements in network performance [15] have sig-
nificantly improved the feasibility of managing DSM through
a unified network infrastructure. Improvements in optical net-
working, RDMA (Remote Direct Memory Access), and CXL
(Compute Express Link) technologies are crucial for the efficient
operation of interconnected DSM systems. Despite these ad-
vances, challenges persist in the management of DSM, including
issues such as traffic storms arising from write-invalidation
mechanisms. Studies [16], [17] have indicated that the use of
shared memory can facilitate state sharing in distributed machine
learning applications. Unlike these studies, this paper focuses on
the construction of a general-purpose DSM system. We present
the following contributions for building a DSM system that
provides transparent management of shared memory:
� We introduce the concept of resizable coherence domains,

a strategy that enables the seamless expansion of page
boundaries in a distributed environment. This approach
facilitates the maintenance of coherence over an extended
scope, thereby reducing the need for frequent coherence
management.

� By advocating for content-based sharing within each co-
herence domain, this approach enables multiple nodes to
concurrently contribute different parts of the necessary
updates. As a result, the unit of data synchronization can
differ from the unit of coherence management.

� We have developed a DSM system at the operating system
level. This allows existing applications that use System
V IPC shared memory and run on shared-memory mul-
tiprocessors to operate in a distributed environment with
minimal or no modifications.

The remainder of this paper is organized as follows: In Section
II, we describe related work. In Section III, we introduce the

elastic coherence domain. Section IV elaborates on the content-
based memory sharing. Section V describes the implementation
of our approach. In Section VI, we present experiments, and in
the last section, we provide conclusions.

II. RELATED WORK

Sharing memory in a distributed environment can be
achieved through either hardware or software. Hardware-based
DSM [18], [19] provides a lower-level abstraction of distributed
memory than software systems, leading to improved memory
operation latency. However, hardware-based DSM can be costly
and challenging to verify. In contrast, software-based DSM
simplifies system design. Software-based approaches enable
distributed memory sharing through non-transparent, partially
transparent, and transparent schemes.

Nontransparent Schemes: In nontransparent schemes, shared
data is declared using explicit primitives, which means that
shared data can be dynamically recognized based on explicit
declarations. For instance, Midway [20] implements entry con-
sistency, where each shared datum is explicitly associated with
synchronization objects such as locks and barriers, which can be
used to label synchronization locations. During synchronization,
any modifications made to shared data can be delivered to the
process that acquires the synchronization object. To address
the problem of single ownership, the synchronization object
can be acquired in a non-exclusive mode. Non-exclusive mode
access to a synchronization object enables concurrent reading,
subject to the restriction that if a process holds a synchronization
object in exclusive mode, no other process is allowed to hold the
synchronization object in non-exclusive mode. However, it can
be challenging for programmers to convert programs to support
nontransparent schemes.

Partially Transparent Sharing Schemes: In partially transpar-
ent sharing schemes, shared data does not need to be explicitly la-
beled but can be synchronized implicitly. However, data modifi-
cation must be protected through explicit primitives. Munin [21],
[22] supports multiple consistency protocols through release
consistency [11]. To efficiently achieve consistency, Munin uses
sharing annotations that describe the access pattern of shared
data to select a suitable consistency protocol. Within the release
consistency model, shared data does not need to be bound to a
synchronization object, and potential synchronization locations
can be inferred through explicit primitives. Munin can detect
modifications to shared data through virtual memory hardware,
and the propagation of these modifications can be delayed until
a release primitive is encountered. TreadMarks [23], [24], [25]
implements a lazy release consistency model that improves
performance by delaying the synchronization of shared data
from the release time of a lock to the next acquisition time of
the lock. Each page can only be modified by a process after
a copy of the page has been created, thus enabling individual
processes to be aware of their own modifications, and different
processes to simultaneously write a page. When writers of a
page start to synchronize with each other, the modifications of
each writer can be detected by a word-by-word comparison with
the unmodified copy. Scope consistency (ScC) [26] has been
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proposed to improve the performance of the release consistency
model. The ScC model guarantees that the modifications of a
scope are visible to the process using the scope. The partially
transparent sharing schemes still require explicit primitives that
rely on the compiler.

Transparent Sharing Schemes: In transparent sharing
schemes, data sharing is not intervened by external primitives,
making programming easy. IVY [6] introduced user-transparent
DSM systems to provide sequential consistency for a loosely
coupled multiprocessor architecture. IVY is based on a write-
invalidation protocol where the latest copy of each page is
maintained by an owner, and ownership of pages is recorded
through managers. A request is sent to a manager, who can locate
the owner of the required page and request the owner to provide
the page. In the fixed distributed manager algorithm, every
processor is allocated a predetermined set of pages to manage,
and managers can be directly located. In contrast, the dynamic
distributed manager algorithm allows ownership information of
each page to be maintained by uncertain nodes, which requires
additional communication steps to find the node maintaining
ownership information of a page. Mirage [13] is another user-
transparent DSM system that implements sequential consistency
using a write-invalidation protocol at the operating system level.
A paged segmentation scheme is used for data management,
and the locations of page data are tracked through library sites.
Each request for page retrieval is dispatched to a library site that
plays the role of the manager of the associated segment, and the
page requests can be sequentially processed. The page request is
then forwarded to the current writer for providing the requested
page, allowing different pages to be synchronized separately. In
conventional transparent sharing schemes, data sharing is often
performed at a fixed granularity, such as the page-level. With an
increase in cross-page memory access, more data synchroniza-
tion times can be required. Although the data management of
shared memory is handled by the underlying system, allowing
the process of locating the latest version of the shared data to be
transparent to applications, these transparent schemes still rely
on advanced algorithms to manage shared data efficiently.

In this paper, we propose a strategy for the transparent man-
agement of shared memory that extends beyond the page-level
scale. This approach enables shared memory to be managed
without depending on specific cache coherence protocols [27],
[28]. We demonstrate how a user-transparent DSM system can
facilitate remote memory accesses [29], [30], [31], [32] via
the underlying operating system. This transparent management
approach can reduce the programming complexity of applica-
tions in a distributed environment. Essentially, existing shared
memory applications can be adopted in a distributed environ-
ment with minimal or potentially no modifications. To facilitate
the transparent management of coherence that extends beyond
page boundaries, we introduce the concept of an elastic coher-
ence domain. This concept allows for the scope of coherence
maintenance to be dynamically adjusted, enabling proactive
synchronization of shared data that is expected to be accessed in
the near future. To minimize synchronization costs, we present
a content-based memory sharing strategy. This strategy allows
the necessary data to be concurrently collected from potential
providers.

III. PAGE BOUNDARY EXPANSION

The shared segment is assumed to be attached to the address
space of each process that accesses the shared memory. These
processes can be distributed across different nodes, which are
connected through interconnection facilities. Maintaining co-
herence of the shared memory is required across nodes. To
provide flexibility in managing shared memory, the granularity
of data for coherence maintenance is not constrained to the page
scale.

A. Elastic Coherence Domain

To achieve transparent data management, it is crucial for
the underlying operating system to track the access to shared
memory at the page granularity. Accessing each protected page
triggers a page fault, ensuring the retrieval of the latest data
for the page. The process of maintaining coherence of page
data distributed among nodes is analogous to the cache coher-
ence provided by processors. The single-writer/multiple-reader
(SWMR) property is essential for tracking the latest version of
updated data, and the write-invalidate protocol can be employed
to accomplish this. Ensuring coherence involves exclusively
updating each page, which necessitates additional invalidation
alongside the synchronization of page data.

To improve page fault delays and reduce data retrieval and
invalidation, huge page techniques can be leveraged. However,
the inter-node communication bandwidth can be overwhelmed
for synchronizing page data in a distributed environment. In
addition, the efficiency of using huge pages can be harmed by
the thrashing effect. Consequently, attention is turned towards
the conventional page (4 K page), which can be seen as an atomic
coherence domain (as shown in Fig. 1(a)). To allow data sharing
granularity to vary, it is desirable to adjust the coherence domain
provided by the underlying operating system dynamically. A
coherence domain can be dynamically formed if certain pages
nearby can be accessed subsequently.

To facilitate the concatenation of shared pages, the operating
system can seamlessly group together continuous pages. This
group of concatenated pages is also identified as a coherence
domain. This coherence domain can be dynamically expanded
as required, allowing for uninterrupted simultaneous access to a
larger number of pages. Considering that the coherence domains
have K different scales, each coherence domain can form a
virtual region, which, if necessary, can be further divided into
several sub-regions. Let Di denote a coherence domain. Dk

i

represents a coherence domain at the k-th scale (k < K). These
coherence domains, which have the ability to resize and are thus
referred to as elastic coherence domains, can be constructed as
follows:
� ∀u, v : Dk−1

u ,Dk−1
v ∈ Dk

i , if the coherence domain Dk−1
u

is accessed by a visitor p after the coherence domain Dk−1
v

is accessed by p within a period of time Δ, then the
coherence domains within Dk

i can be merged.
� If the sub-regions of a coherence domain Dk

i cannot be
merged, then Dk

i is split into a set of coherence domains.
In this system, Δ represents the predetermined observation

window used to monitor the interactions of each process with
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Fig. 1. (a) Page-level coherence management. (b) Virtual region. (c) Virtual region expansion.

shared memory. Increasing Δ can accommodate more exten-
sive memory accesses, which allows these memory areas to be
merged to facilitate uninterrupted access to larger memory areas.
Δ is a threshold that can be set in advance to meet the particular
requirements of the system.

To provide different scopes of data sharing in a distributed
environment, we can adjust an elastic coherence domain denoted
by Di. To simplify the explanation, assume that there are two
sizes of coherence domains, namely K = 2. The smaller coher-
ence domain is called a child region (as shown in Fig. 1(b)), while
the larger coherence domain is referred to as a parent region (as
shown in Fig. 1(c)). By merging child regions, coherence can
be maintained in a larger memory area. On the other hand, if a
parent region is split, the coherence of its child regions can be
maintained separately.

B. Dynamic Adjustment

Prefetching is typically employed to proactively retrieve data
in anticipation of future access, effectively minimizing data
access latency. In order to optimize the associated costs of
prefetching, data is generally fetched at a fine-grained gran-
ularity. The coherence of each fine-grained block is managed
independently during the prefetching process. However, there
exists an opportunity to group prefetching requests together, in
a manner similar to the write combining technique [33] used
in modern processors. This grouping decreases the need for
frequent synchronization.

Contrary to batching prefetching requests, maintaining data
coherence in an expanded memory area allows for retrieving
required data with fewer requests. However, managing such
an enlarged area may involve gathering more data during each
synchronization if all the data in the area is retrieved, which is
unnecessary when only part of the area is updated.

To reduce sharing costs, it is possible to partition a coherence
domain into smaller domains if the visitor does not continually
access different parts of the data within the coherence domain.
Moreover, while coherence is typically carried out at a coarse-
grained granularity, data synchronization can also be performed
at a finer-grained level, as explained in the following section.

In the context of memory pages within a coherence domain,
differentiating between modified and unmodified pages is cru-
cial. This differentiation is achieved by maintaining the region
content (RC) and accessed content (AC) separately. The RC
signifies the latest copy of the content prior to incoming updates,
while the AC represents the content that a node has accessed.

Considering that data in the AC can be altered during a write
access, the AC can hold data that is more recent compared to
the corresponding RC. Upon receipt of a new remote read/write
request, the modified portions of the AC are combined with the
RC. As a result, other nodes can access the latest version of the
content.

To manage changes in the coherence states of the RC and AC
when the scope of the coherence domain changes, a tiered coher-
ence protocol is adopted. This protocol allows for asynchronous
adjustments to the coherence states of the RC and AC, which
enables a lazy alignment of these states. This implies that the
states of the AC can be altered upon actual access, reducing the
synchronization cost between the RC and AC.

In order to maintain exclusive updates to the shared data, when
the RC is downgraded to read-only permission, the associated
AC is immediately downgraded to provide read-only access. If
the RC is invalidated, the related AC must immediately switch
to the invalidated state. When the AC needs to be upgraded to
read/write permission and the corresponding RC already has that
permission, the AC can synchronize with the RC and switch to
the required read/write permission without any further remote
access. Regardless of the size of the coherence domain, the states
of the AC can be downgraded immediately and upgraded in a
lazy manner.

To ensure the coherence of shared data within a flexible
coherence domain, the coherence states of child regions need to
be adjusted when the scope of the coherence domain changes.
After child regions are merged, the RCs of the invalidated
child regions are upgraded to read-only permission during the
reading of the parent region. When write access to the parent
region is performed, all the covered RCs of child regions that
are invalidated or read-only are upgraded to write permission.
Before the parent region is modified, the remote copies of the
parent region are downgraded to an invalidated state, and the
most recent content of the parent region is collected. Further
details on the coherence protocol are elaborated in Appendix A,
available online.

IV. CONTENT-BASED MEMORY SHARING

A coherence domain is essentially a group of memory pages.
If only a small fraction of the data is updated, acquiring the entire
data from a coherence domain can be a high-cost operation.
Identifying modifications, which are the specific pieces of data
that requesters are interested in, is key to reducing synchroniza-
tion overheads. By separating the unit of data synchronization
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from the unit of coherence management, it becomes possible to
gather the needed data more efficiently. This separation allows
multiple providers to independently supply different portions of
the required data.

A. Content Detection

Versioning can be used to identify incremental updates within
a coherence domain. This approach involves creating a new
version of the coherence domain each time an update is initiated
by a writer. The version of the coherence domain remains
unchanged until another writer modifies it. When the version
changes, all copies of the previous version must be marked as
invisible for invalidation, as discussed in Section III-B. However,
if these copies have been preserved, they can still be utilized. By
tracking updates between two versions of a coherence domain,
we can incorporate the necessary changes, also referred to as the
content, into a previously saved version. This content represents
the portions of data that have been altered since the last access
by the requesting node.

For efficient content delivery, the content can be divided into
distinct parts. These parts can then be transmitted simultane-
ously by different nodes, each responsible for maintaining the
most up-to-date data. The initial step in this process is to identify
the necessary content. To achieve this, every coherence domain
Di is further divided into a series of blocks. The desired content
is then defined at the block level.

Let δi(v) represent the difference between versions v and v +
1 of Di (v > 0). In this case, δi(v) is a difference vector where
each element, δi(v)[j], is assigned a value of 1 if the j-th block in
Di has been altered in version v, and 0 if it remains unchanged.
Furthermore, let δi(u, v) denote the difference between versions
u and v (u < v) of Di. δi(u, v) details the content needed after
the version of Di is updated from u to v. The expression for
δi(u, v) is as follows:

δi(u, v) = δi(u) | δi(u+ 1) | · · · | δi(v − 1)

where | is an element-wise OR operation. Given that a coherence
domain may experience significant alterations over time, it is
unnecessary to monitor every single update. When the difference
between versions u and v surpasses a certain threshold N , it is
appropriate to assign a value of 1 to each element of δi(u, v).
Only the blocks validated by δi(u, v) are needed for transmission
if there is a need to update the coherence domainDi from version
u to version v.

B. Redundant Hashing

Within a coherence domain, certain nodes, referred to as
holders, keep the most recent data. These holders participate in
the process of supplying content to a requester. To alleviate the
content burden on each holder, the total content is divided among
them. Each holder is responsible for providing a part of the total
content, which results in more efficient content provision and a
reduced workload for each individual holder.

To determine the content that each holder is responsible for,
they need to be aware of each other. There is no need for
them to have identical perceptions of the other holders. The

Fig. 2. Missed content (For Ci = {blki,k|1 ≤ k ≤ 6} in Di, the blocks
provided by nodes p, q, and r are h1(Ci, 2) = {blki,1, blki,2}, h2(Ci, 3) =
{blki,4, blki,5, blki,6}, and h3(Ci, 2) = {blki,5, blki,6}, respectively).

only necessity is that they all observe each other in the same
order, which provides a consistent view of the content providers.
To ensure this consistency, every data retrieval request from a
requester is passed along in sequence by a unique owner. As a
result, the requester becomes a new holder and can be added
to the holder list of each content provider upon receiving this
notification from the owner. Note that if data retrieval requests
can be speculatively sent from the requester to potential holders
in parallel, it is possible that some of these holders have not
received prior notifications from the owner. As a result, when
these speculative data retrieval requests are received, the number
of perceived holders can be different among nodes.

Before we introduce the specific hashing approach used to de-
termine the content each holder is responsible for, it is important
to address a potential issue. Merely dividing the content evenly
among holders can be inadequate if the perception of the holders
is not identical across all content providers. Let Holdi,p denote
the set of holders observed by a holder p ofDi. For any two nodes
p and q of Di, it is possible that Holdi,p is a subset of Holdi,q
when receiving requests for providing the modified blocks of
Di. If the modified blocks are hashed according to the number
of observed holders, nodesp and q are possible to obtain different
hashes of required content. Let hn denote the blocks required
to be provided by the n-th holder of a coherence domain, where
n > 0. The k-th block of Di is denoted by blki,k, where k > 0.
Let Ci denote the set of required blocks of Di. Assume that the
version of Di that was last accessed by the requesting node is u,
and the current version of Di is v. The set Ci can be obtained
from δi(u, v), which represents the changes between these two
versions of Di. Suppose p is the n-th holder of Di. A method to
obtain hn is as follows:

hn(Ci, sizep) =

{blki,k | �(n− 1)sizep� < k ≤ �n · sizep�, blki,k ∈ Ci}
where sizep = |Ci|/|Holdi,p|. This hashing method can po-
tentially lead to scenarios where the provided content does not
encompass all updates within a coherence domain, as depicted
in Fig. 2. In such a situation, the required block blki,3 is not
included.

In order to ensure the provision of content even when the
view of the holders is incomplete, we adopt a redundant hashing
(R-Hash) scheme. This scheme allows for the intersection of
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Fig. 3. Compensation (Using R-Hash, the blocks provided by holders p,
q, and r can be identified as h1(Ci, 3) = {blki,1, blki,5}, h2(Ci, 2) =
{blki,2, blki,4, blki,6}, and h3(Ci, 3) = {blki,3, blki,6}, respectively).

content provided by different holders. The set of partitioned
blocks assigned to the n-th holder is denoted as partn (n > 0).
This can be expressed as follows:

partn(Ci) = {blki,k | kmodn = 0, blki,k ∈ Ci}
R-Hash aims to ensure that the content provided by the n-th

holder can compensate for the content that the potential holders
do not provide. In R-Hash, the content to be provided can be
calculated as follows:

hn(Ci, sizep) = partn(Ci)−
sizep⋃

m=n+1

partm(Ci)

where sizep = |Holdi,p|. Using this approach, the requested
content can be assembled by combining the blocks sourced
from different holders (as shown in Fig. 3). It can be shown that
the content generated using R-Hash encompasses the modified
blocks. The proof is provided in Appendix B, available online.

C. Multiple Providers Giving Content Together

In the management of coherence domains, each domain is
assigned an owner. This owner is responsible for coordinating
memory access and tracking the holders of the content within the
domain. To ensure SWMR property for data updates, the owner
issues write-invalidations. Given the dynamic nature of the list of
content holders, the owner sequentially dispatches data retrieval
requests to the current holders, ensuring consistent views of
holder lists. The owner is initially determined by hashing the
accessing addresses. To circumvent memory access bottlenecks,
ownership can be dynamically adjusted at runtime. However,
broadcasting changes of ownership to all nodes can be costly,
so these details are made available only to nodes explicitly re-
questing access to the coherence domain. The precise ownership
of each coherence domain is maintained by dedicated shared
memory managers.

The content owner is empowered to dispatch a data retrieval
request to the current holders. This prompts the holders to supply
different portions of the content. Each requester can specula-
tively send the data retrieval request to potential owners, under
the constraint that the content owner must be among the previous
content providers. In a situation where a node is unaware of the
current owner, the shared memory manager of the corresponding
coherence domain can also be considered a potential owner.

Fig. 4. Routing requests.

TABLE I
SUMMARY OF SYMBOLS IN DATA COLLECTION

We can distinguish a set of scenarios for the collection of
shared data (as shown in Fig. 4). The roles of nodes are listed
in Table I. Note that if the known owner knowni,p does not
correspond to the current owner owneri of Di, it indicates that
the owner of Di has been updated without immediate awareness
by node p. This results in a temporary mismatch, but the request
of node p is still forwarded to the updated owner owneri. Once
owneri receives the request, it forwards it to the relevant holders.
Upon receiving the requests, the holders look up the updated
blocks and provide different parts of the required content to node
p. After node p collects all the required content of a coherence
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Fig. 5. Architecture of KLNK.

domain, it delivers the data and updates knowni,p if necessary.
The content provided by each holder is calculated using the
R-Hash scheme mentioned in Section IV-B.

V. IMPLEMENTATION

KLNK is a DSM system that operates at the operating system
level and enables the creation of elastic coherence domains
through transparent management of distributed shared memory.
This feature allows traditional shared memory programs to be
reused in a distributed environment. Additionally, the program-
ming interfaces of the DSM are compatible with System V IPC,
which is supported by modern operating systems.

An isolated space is provided to maintain virtual regions and
enable coherence domains to be managed separately. The KLNK
system has a layered architecture that involves three layers
(shown in Fig. 5): a translation layer (TL), a link layer (LL),
and a resource layer (RL). The resource layer, implemented at
the user level, provides abstractions of shared memory resources
and other shared resources. Within this layer, shared memory is
organized using virtual regions that describe coherence domains.
The translation layer converts kernel requests and sends them to
the resource layer through the link layer. The link layer passes
requests from the kernel level to the user level and also delivers
the results generated by the resource layer to the kernel.

To decouple the management of distributed resources from
the operating system kernel and enhance security, our goal
is to establish a dedicated user-space service for distributed
resource management that ensures isolation. To achieve this,
we utilize the user-level file system (FUSE) [34] to implement a
daemon that is extendable for managing shared memory across
distributed nodes. Leveraging FUSE allows for the execution
of kernel requests through file operations. Each shared memory
request is translated into a corresponding file write operation,
with the necessary arguments encapsulated within. The RL is
implemented as a file system based on FUSE.

When the kernel handles a page fault of a shared memory page
(as shown in Fig. 6), the TL forwards the page fault request (❶)
to the RL through the LL (❷), which allows kernel requests to be
sent through file accesses. The RL captures these file accesses,
enabling the handling of page faults of each shared memory
page in user space. Within the RL, the coherence domain of the
target page can be determined (❸). If the user-space daemon
of the RL maintains the latest copy of the requested page in

the relative virtual region, the page data can be delivered to the
kernel through the LL. Otherwise, the RL sends a virtual region
request (❹) that is routed to the holders of the virtual region
as described in Section IV-C. Each holder provides necessary
content (❺) through the R-Hash scheme upon receiving the
request, as discussed in Section IV-B.

The recent update history is maintained within a matrix con-
sisting of a series of difference vectors δi(v). This difference
matrix is used to monitor the changes for the latest N versions
of the specified memory region Di. Data outside the range of
these N versions is treated as completely revised. When making
a request, the requester notes the last known version of Di,
enabling content providers to identify the necessary changes
using the difference matrix. This matrix is also supplied to the
requester by one of the providers.

Furthermore, each writer accessing the target region must
update the most recent difference vector to reflect the latest
changes. Upon receiving a request for a specific memory re-
gion under the control of a writer node, the system performs a
comparison between the data in kernel space and its user-space
counterpart. This comparison generates a difference vector, cap-
turing the changes between the two data versions. This vector
is then used to update the difference matrix, which records the
changes across the most recent versions of the memory region.
Consequently, it is possible to calculate the cumulative updates
that have occurred from a previous version to the most current
version of the memory region, as detailed in Section IV-A.

If the requester intends to update the virtual region, the holder
must invalidate each page of the virtual region. The kernel
of the holder can be informed of the invalidation through the
notification sent via the LL (❻). With the helper handlers added
to the kernel, shared memory pages can also be invalidated in
kernel space (❼). Once the requester retrieves the data of the
corresponding coherence domain, the data of the shared memory
page can be delivered to the kernel through the LL.

The user-space service in RL monitors the time interval of
page fault requests. When accessing a child region that has its
own coherence domain, and the time interval for accessing the
memory area within the scope of its parent region falls below
a given threshold Δ, child region requests (CRRs) transition to
parent region requests (PRRs). This transition helps maintain an
expanded coherence domain, allowing the entire content of the
parent region to be retrieved using PRRs. Both CRRs and PRRs
are classified as coherence domain requests (CDRs), with CRRs
specifically used to retrieve the content of child regions.

If the time interval for accessing the memory area within the
scope of its parent region exceeds Δ and the requesting child
region has already been merged into its parent region, the RL
sends a CRR to obtain only the content of the child region, which
results in a reduction of the coherence domain. In each CDR, the
target read/write permission of the requesting coherence domain
is assigned. The owner node can then forward the request to all
the holders that maintain the content of the coherence domain.

Upon receipt of the request, the holder adjusts the coherence
states of the corresponding RC in user space and, if necessary,
simultaneously adjusts the states of the associated AC in kernel
space. Each CDR includes a piggybacked version number of the
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Fig. 6. Procedure for data retrieval.

content perceived by the requesting node. This allows the holders
to detect any modifications in a coherence domain from that
specific version. If modifications are detected, the holders can
provide the distinct parts of the modification to the requesting
node concurrently. Once all the required content is collected, the
RC of the requesting node is updated, and the most recent data
related to the page fault request can be committed to the kernel,
resulting in an update to the AC of the requesting node.

When multiple nodes focus on updating particular memory
areas, they may frequently request access to the same data items.
If a node cannot hold these items while another node requests
to update them, the computation can be interrupted frequently
for data synchronization. This thrashing, caused by data con-
tention instead of actual computation, can consume significant
bandwidth for exchanging data. To mitigate this issue, nodes
may need to take more time to update shared data. A thrashing
control method [35] is employed to ensure that memory areas
are fairly utilized by all nodes.

In the implementation of KLNK, minor modifications have
been made to the Linux kernel1, amounting to approximately
1790 lines of code. The primary functionalities are implemented
within the user-level resource layer. This layer establishes an
isolated environment2, using a user-space file system, which
facilitates the connection between distributed nodes and the
management of distributed resources.

VI. EVALUATION

This section assesses the performance of the DSM system
under various memory access patterns. We aim to evaluate the
following questions:
� What are the effects of merging conventional pages into a

coherence domain?
� How does changing the maximum size of the coherence

domain (also referred to as the parent region) impact the
system?

1A modified Linux kernel for KLNK is available at https://github.com/
virthub/kern-vhub.

2A userspace daemon of KLNK is available at https://github.com/virthub/
virthub/tree/main/modules/klnk.

� What are the implications of adjusting the granularity of
data sharing (block size) within each coherence domain?

A. Experiments

For the evaluation, we utilized 8 cloud servers which provided
memory resources for the DSM system. Each cloud server had
8 GB of RAM and 4 vCPUs, and was equipped with Intel Xeon
Platinum 8369B processors. These cloud servers were connected
through a 12.5 Gbps network. We deployed a modified 64-bit
Linux kernel with version 5.4.161 on each cloud server. We
explore the performance of the DSM system under various
access patterns through a set of micro-benchmarks3.

To provide the baseline performance, we implement page-
based shared memory management through the IVY protocol [6]
using a fixed distributed manager algorithm. IVY detects shared
memory updates at the page level, whereas KLNK detects up-
dates at the block level and collects them incrementally. We
evaluate the speedup of KLNK compared to the experimental
time of the baseline.

In KLNK, we explore parent regions (PRs) with sizes of
16 KB, 32 KB, 64 KB, and 128 KB. Each PR is composed of
four child regions, with each child region covering several 4 KB
memory pages. We set the time interval Δ for merging child
regions to be 50ms. We also examine different block sizes as
the block size of coherence domain affects the fragments of the
modified data. We refer to the data sharing granularity of an
n-byte block as DSG-n.

1) Dynamic Access Pattern: With the dynamic access pat-
tern, each process can randomly select shared pages to read or
write. Each test round can be a read round or a write round.
During the read round, a process continuously reads a randomly
selected area of a page. During the write round, a process updates
a randomly selected area of a page.

In the evaluation, we set the size of the shared memory to
be 1 MB, and we perform 1× 104 rounds of testing. DAP-2
and DAP-4 provide tests with read/write ratios of 2 and 4,
respectively. For DAP-2 (as shown in Fig. 7), the updates of
writers are only visible to limited readers, and the data can be

3A micro-benchmark for the shared memory system is available at https:
//github.com/virthub/shm-bench.
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Fig. 7. Dynamic access. Read/write ratio is 2:1 (DAP-2).

Fig. 8. Dynamic access. Read/write ratio is 4:1 (DAP-4).

TABLE II
CONTENT DETECTION OVERHEAD (128 KB PR)

frequently modified by processes located at different nodes. For
DAP-4 (as shown in Fig. 8), the data can be shared on a larger
scale.

In DAP-2 and DAP-4, capturing the locality of data access
can be challenging due to the random access pattern. Sustaining
continuous access within a small-sized coherence domain (e.g.,
16 KB PR) is less likely, which can hinder the merging of child
regions and reduce opportunities for pre-synchronization of the
required data. However, for large-sized coherence domains, it
is more probable that their child regions are accessed within a
given time window. The retrieved data of a coherence domain can
be accessed by the visitor without interruption caused by write
invalidation. Moreover, during synchronization, only the up-
dated portion of each coherence domain is collected. This allows
the utilization of large-sized coherence domains (e.g., 128 KB
PR) to enhance performance (as illustrated in Fig. 7). KLNK
can achieve up to 3× speedup compared to page-based data
sharing across different updating intensities. Table II presents
the ratio between content detection duration and total time for
data synchronization in the dynamic access patterns.

2) Exclusive Access Pattern: To ensure atomicity during
shared data updates, mutual exclusion operations are utilized

Fig. 9. Exclusive access to 2 KB sized SGs (EAP-2K).

Fig. 10. Exclusive access to 4 KB sized SGs (EAP-4K).

for access control, providing exclusive access to the shared data.
The shared memory is divided into groups, enabling seamless
switching between different access areas. To manage exclusive
memory accesses, each sharing group (SG) is equipped with an
SG lock. The operations of the SG lock can introduce variations
in global states. To synchronize these states across distributed
processes, a mutual exclusion mechanism based on shared mem-
ory [36] is employed.

During each testing round, the data within an SG can only be
accessed once the corresponding SG lock is acquired. The lock is
released after the data access is complete. Each process can act as
either a writer, responsible for updating a randomly selected SG,
or a reader, obtaining data from an SG. To consider data locality,
each process has a probability of Pnext to continue accessing
the SG adjacent to the previously accessed SG. Additionally,
in each testing round, a randomly selected area within the SG
is accessed. We conduct 1× 104 testing rounds with 256 SGs,
where Pnext is set to 0.5, and the read/write ratio is 4. The tests
are performed on two different SG sizes: EAP-2K, representing
a size of 2 KB, and EAP-4K, representing a size of 4 KB. The
shared memory utilized to store SG locks has a capacity of 1 MB.

In EAP-2K and EAP-4K (as shown in Figs. 9 and 10),
processes have exclusive access to neighboring SGs. However,
in EAP-2K, processes are less likely to remain within a suf-
ficiently large coherence domain. By merging child regions, it
becomes possible to increase the number of SGs accessed within
a given time period, particularly for larger coherence domains
like 128 KB PR. KLNK outperforms page-based data sharing,
achieving up to 12× speedup.
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Fig. 11. Contention access. Read/write ratio is 2:1 (CAP-2).

3) Contention Access Pattern: To evaluate the contention
that arises from multiple processes accessing shared memory,
it is likely that the data required by different processes overlaps.
While frequent access to the same area can increase data con-
tention, the required data size can be varied to facilitate access to
different data items. This can be achieved by altering the shapes
of the areas being accessed so that the accessing area of each
process overlaps with that of another.

The access area can be subdivided into smaller regions, grant-
ing each process the flexibility to access a specific subregion.
During each testing phase, every process selects M areas for
access. Let Ai denote the i-th area selected in a testing round,
starti the starting offset of area Ai within the shared memory,
and Totalpg the total count of memory pages in the shared
memory. The value of M is determined as log2(Totalpg). The
size of area Ai is calculated using sizei = 2M−i · pgsz for
i = 1, 2, . . . ,M , where pgsz signifies the size of each memory
page. The offset for starti is computed as starti = starti−1 +
ri · sizei, with ri being a randomly generated Boolean value.
The initial offset, start0, is set to 0.

Each area Ai functions as a circular buffer, permitting contin-
uous access to k bytes of the buffer at any given time, where k is
a value randomly selected between 1 and sizei. When accessing
area Ai, a process may either read from or write to the area, with
the starting point for the k bytes randomly determined withinAi.
As the testing progresses and the access area diminishes in size,
it enables processes to repeatedly access overlapping memory
areas.

In the evaluation, we set Totalpg = 64 and pgsz = 4KB,
and perform 1× 104 rounds of testing. CAP-2 and CAP-4
provide tests with read/write ratios of 2 and 4, respectively.
In contention access patterns, shared data items are frequently
updated by processes within a certain period. Therefore, a
coherence domain can cover the data required by different
processes. It is possible that several concatenated pages within a
coherence domain get modified before a process accesses them.
For large-sized coherence domains (e.g., 32 KB, 64 KB, and
128 KB PRs), the synchronization cost may increase due to the
frequent modification of shared data. In contrast, small-sized
coherence domains (e.g., 16 KB PR) have the advantage of
reducing the amount of data that needs to be collected for
memory contention use (as depicted in Figs. 11 and 12). Since

Fig. 12. Contention access. Read/write ratio is 4:1 (CAP-4).

Fig. 13. Regular access (RAP-FFT).

content-based memory sharing can be performed at the block
granularity, the synchronization cost can be saved. In memory
contention access, KLNK can achieve up to 3× speedup.

4) Regular Access Pattern: We employed the Stanford Par-
allel Application for Shared Memory (SPLASH) benchmark
suite [37] to assess the shared memory performance of common
workloads. We extended the PARMAC macros, which are com-
ponents of SPLASH designed to adapt to different inter-process
communication interfaces.

KLNK provides a distributed implementation of the System
V IPC, facilitating the attachment of shared memory to the
individual address spaces of separate processes. However, a
limitation in the current implementation prevents the exposure
of these individual address spaces across distributed processes.
A potential solution, involving the attachment of shared memory
to the virtual memory area using a uniform starting virtual
address across nodes, is presently not supported. This constraint
prompted us to evaluate the performance of shared memory in
certain scenarios, employing the FFT and LU kernels, desig-
nated as RAP-FFT and RAP-LU, respectively. The RAP-FFT
executes a 65536-point Fast Fourier Transform, necessitating
comprehensive inter-process communications during the matrix
transpose phases. The RAP-LU decomposes a dense matrix into
a lower triangular matrix and an upper triangular matrix. To
maintain workload equilibrium, the dense matrix is partitioned
into blocks, typically of size 16× 16, which can be distributed
among different processes. For our assessment, we employed a
matrix of dimensions 512× 512.

As depicted in Fig. 13, the RAP-FFT workload significantly
benefits from large coherence domains such as 32 KB, 64 KB,
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Fig. 14. Regular access (RAP-LU).

TABLE III
TOTAL COST OF SYNCHRONIZATION (128 KB PR)

and 128 KB PRs, which improve the locality of memory access.
This effectiveness diminishes in the RAP-LU workload, as
shown in Fig. 14. On the other hand, smaller coherence domains
like a 16 KB PR manifest a superior ability to manage synchro-
nization costs. Upon configuring KLNK to utilize 16 KB PRs,
we observed a speedup of up to 3× in the RAP-LU workload.

B. Discussion

A coherence domain allows for the grouping of memory
pages, which in turn facilitates efficient retrieval of updated
pages by a requester in a batched manner. As a result, when
a miss occurs for the required data, the process allows for the
retrieval of not only the target data but also the surrounding
data, functioning similarly to data prefetching. This strategy
effectively reduces the number of remote requests triggered by
data synchronization, compared to traditional page-level man-
agement of shared data. Although data prefetching can enhance
performance, executing fine-grained prefetching in distributed
environments can be costly due to the high synchronization
demands. To address this issue, KLNK offers the flexibility
to decouple the unit of data synchronization from the unit of
coherence management. As shown in Table III, the data syn-
chronization method is capable of achieving efficiency across a
variety of workloads.

To minimize data-sharing costs, it is crucial to synchronize
only the modified parts of shared data, avoiding the collec-
tion of unchanged, redundant information. By identifying these
changes at the block level, redundancy is controlled. Using
larger blocks reduces the number of blocks needed for data
retrieval but leads to transmitting more redundant data during
synchronization. The size of the coherence domain, along with
data synchronization granularity, also contributes to data sharing
efficiency.

When concurrent data collection is implemented, a larger
data sharing scope can significantly impact performance. By

adjusting coherence domains based on memory access patterns,
data likely to be accessed in the future can be synchronized in
advance, further improving efficiency.

Currently, changes in the sizes of coherence domains can be
initiated after a fixed monitoring window Δ. The limitation
of this approach is that the fluctuations in size are largely
influenced by the memory access behaviors observed within the
monitoring interval. A fixed time window may not be sufficient
to capture relevant memory accesses. An alternative strategy
involves predicting the locations of memory access, which are
then utilized to determine the sizes of coherence domains. We
leave this predictive method for future work.

VII. CONCLUSION

Incorporating distributed shared memory into the underlying
system can simplify the management of shared data and facilitate
the programming of distributed shared memory applications.
This can be achieved through a software-based approach that
introduces an operating system-level DSM system. This system
utilizes elastic coherence domains to enhance the flexibility
of data management. The abstraction of coherence domains
enables the dynamic concatenation of a continuous series of
pages, thereby reducing the need for frequent synchronization.
To accelerate data synchronization in a distributed environment,
the required content within each coherence domain can be
partitioned and collected concurrently. Our experimental results
demonstrate that this approach to transparent management can
effectively improve the efficiency of memory sharing in a dis-
tributed environment.
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