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Abstract

Extracting karyocytes and their components from microscopic bone marrow images is prerequisite for computer-aided early
diagnosis of hemopathy. Most existing methods assume all pixels belonging to a karyon region or a cytoplasm region have
similar colors. Practically, the color of neither a karyon nor a cytoplasm in a microscopic image is homogeneous in the pixel
level. Therefore, the regional color features of a region are emphasized in this paper. Based on this observation, we propose
a novel method to karyocyte extraction that 9rst identi9es a karyon by 4-connected block growing from a karyon feature
block, then identi9es feature blocks of its cytoplasm based on the extracted karyon, and 9nally extracts all cytoplasm regions
by growing the cytoplasm feature blocks. Combining the karyon region and the corresponding cytoplasm regions can attain a
complete karyocyte. Experimental results show that the proposed method is e:ective and robust.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Hemopathy is a frequent yet dangerous disease that en-
dangers human health. The identi9cation and enumeration
of karyocytes in stained bone marrow smears can provide
very important information for early diagnosing and treating
these diseases [1]. In order to identify a hemopathy type that
determines the choice of drugs and therapy schemes, each
karyocyte in smears should be classi9ed according to its
cell series, growing stage, pathological properties and
normal properties [2]. Bone marrow smears contain all
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kinds of leukocytes and erythrocytes, the analysis of which
needs to consider a lot of karyocyte features to classify
karyocytes. Manually locating, classifying and enumer-
ating karyocytes in bone marrow smears is tedious and
time-consuming. Moreover, due to the limitation of human
energy, manual process can only examine a small fraction
of the smear, and cannot ensure keeping high accuracy con-
stantly. Computer-aided automatic analysis of microscopic
bone marrow images is a promising way to overcome the
weakness of manual operations.

Generally, automatic microscopic image analysis to aid
the diagnosis of hemopathy consists of four steps: (1) extract
each karyocyte and its components from the microscopic
image. (2) Extract normal and abnormal features from the
extracted karyocytes. (3) Classify the karyocytes according
to their normal features and abnormal ones. (4) Diagnose the
case according to the classi9cation results. Among these four
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steps, the 9rst step is prerequisite to the succeeding analyses.
However, it is diJcult due to the complexity of karyocyte
color features (texture), the variation of karyocyte shape and
the interference of non-interesting objects. Therefore, the
automatic extraction of karyocytes and their components is
not performed ideally so far [1]. This paper is to address this
problem.

Most existing methods are based on the assumption that
all pixels belonging to a karyon region or a cytoplasm region
have similar colors, so they use pixel-level operators, e.g.,
thresholding approaches [3], edge-based approaches [4–6],
region-based approaches [7–10], model-based approaches
[4–6,11,12]. Unfortunately, in a microscopic bone marrow
image, the color of neither a karyon region nor a cytoplasm
region is homogeneous in the pixel level. Therefore, these
methods are not enough to extract karyocytes e:ectively
and accurately in such images. However, humans can eas-
ily identify karyons or cytoplasms since each karyon re-
gion or each cytoplasm region is of a homogeneous texture
regarding the color and its distribution in a region. Based
on this observation, the regional color features are empha-
sized in this paper. If a karyon region or a cytoplasm region
is divided into equal-sized blocks and each block is repre-
sented by its color distribution, the di:erences among these
blocks are much smaller. The colors and the color distribu-
tions of blocks within the same karyon region or the same
cytoplasm region are similar. This observation will help to
extract karyon regions and cytoplasm regions fast and accu-
rately. Consequently, this paper proposes a novel approach
to extract karyocytes and their components based on the re-
gional color features.

The rest of this paper is organized as follows. Section 2
reviews the previous work related to karyocyte extraction.
Section 3 describes the de9nition of a feature block of an
interesting region and the block-growing algorithm. Section
4 applies the approach proposed in Section 3 to the extraction
of karyons, cytoplasms and their karyocytes. In Section 5,
detailed experimental results and performance analyses are
reported, and some comparisons with other approaches are
also given. Section 6 draws our conclusions.

2. Related work and our analyses

Existing karyocyte extraction approaches can be roughly
classi9ed into four classes according to their underlying
techniques.

(1) Thresholding-based approaches: Heijden [3]
proposed an image segmentation approach for complete
leukocytes based upon multiple gray-level thresholding.
Unfortunately, its performance falls down in the presence of
erythrocytes that may often have similar gray-level values
to the cytoplasm of leukocytes.

Although the thresholding method is computationally
cheap and fast, the threshold is only derived from the sta-
tistical distributions of local or global pixel properties, and

the spatial information is neglected. Thus, a post-processing
is needed to label connected regions, 9ll small holes in
regions, and remove small regions. It is possible to perform
those tasks using morphological operations. However, it is
often diJcult to choose appropriate structuring elements
that will achieve satisfactory results [13].

(2) Region-based approaches: Region-based approaches
[14] is to group pixels of the same or similar brightness or
color into regions according to given criteria of homogene-
ity. The neighboring pixels of a given pixel (or region) are
merged into the given region if they satisfy the homogene-
ity criteria. Region-based approaches include region split-
ting and merging approaches [7,8], seeded region growing
approaches [9,10].

In order to incorporate a priori knowledge during region
extraction, Adams and Bischof [9] introduced a seeded re-
gion growing algorithm. A priori knowledge is represented
by the placement of a seed in the interesting region. These
seeds then grow by absorbing single pixels based on a sim-
ilarity criterion. For the correct seed placement, they pro-
posed the option of semi-interactive operation where seeds
are manually placed. Due to the pixel-by-pixel growing
[7–10], the results are sensitive to noise.

(3) Edge-based approaches: Cong and Parvin [4] ex-
tracted karyon regions based on partial boundary informa-
tion. The approach uses local feature activities in the form of
step-edge segments, roof-edge segments, and concave cor-
ners to construct a set of initial hypotheses. They converted
the segmentation problem into a constrained optimization
problem. Yang and Jiang [5] proposed a segmentation ap-
proach to extract karyocytes from images under noisy con-
ditions by combining kernel-based dynamic clustering and
a genetic algorithm. It is based on cell boundaries. Garrido
and Blanca [6] proposed a cell image segmentation method
based on edges under severe noisy conditions.

An edge detector usually produces borders almost, but not
completely, closed. The subsequent edge linking is to close
the borders of regions based upon an edge detected image.
This is a very diJcult task as it is often not clear which
edges are of interest and which are not [13].

(4) Model-based approaches: The edge-based ap-
proaches [4,5] model each karyocyte boundary as an elliptic
shape to extract karyocyte regions after detecting edges.
Garrido and Blanca [6] proposed a deformable template
approach for cell image segmentation based on edges. Aus
et al. [11] proposed a karyocyte segmentation algorithm
driven by the model of karyocyte structure, which assumes
that a karyocyte consists of one karyon surrounded by an
area of cytoplasm, and that any area of a karyon cannot be
shared by two or more karyocytes. Park and Keller [12]
proposed an approach combining the watershed approach
and the snake model to extract the boundaries of karyocytes.
But this approach does not further extract karyon regions
and cytoplasm regions.

Previous related work on karyocyte extraction has not
provided complete information of karyocytes. They either
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extract karyons without extracting cytoplasms, or extract
karyocytes without extracting their components. In fact,
karyocyte classi9cation cannot be performed correctly with-
out complete information of karyocytes. Current methods
need much post-processing to extract complete karyons
or cytoplasms. We think that a priori knowledge in color
textures of karyons and cytoplasms should be incorporated
into the extraction process. Obviously, this can improve
the entirety of extraction results and furthermore greatly
reduce post-processing. Our new approach is designed in
the following principles.

(a) Karyon regions and cytoplasm regions are extracted in
their entirety.

(b) The extracted regions are complete (with fewer holes),
accurate (with acceptable boundary location errors),
and correct (without mis-connecting karyons and cyto-
plasms of di:erent karyocytes).

(c) The colors of karyons (or cytoplasms) in di:erent
images, even in the same image, are di:erent. The
extraction method should be able to adapt to this color
variance.

(d) The criteria of homogeneity should be non-sensitive to
the color di:erence of pixels in an interesting region.

(e) A priori knowledge of karyons and cytoplasms should
be incorporated e:ectively to improve reliability of the
extraction and reduce the burden of post-processing.

3. Feature block and its growing

In a microscopic bone marrow image, neither the color of
a karyon region nor that of a cytoplasm region is homoge-
neous in the pixel level, as shown in Fig. 1. Fig. 1b is the
maximum karyon region cropped from the original image
shown in Fig. 1a. Its 3D surface in the green channel is il-
lustrated in Fig. 1c. The karyon region in the green channel
is more homogeneous than the other two channels. But, the
surface is not even and uniform, thus its corresponding re-
gion is not homogeneous in the pixel level. Current methods
of karyon or karyocyte extraction based on pixel-level op-
erations are prone to oversegmenting karyons or karyocytes
due to the inhomogeneity in pixel colors.

However, humans recognize a karyon region or a cyto-
plasm region mainly depending on its regional color homo-
geneity, that is to say, the regional color features, including
the principal color in the region and its density and distri-
bution, impress human vision most. Following this obser-
vation, we propose to use a feature block to identify the re-
gional color features and extract the interesting region based
on the feature block growing.

3.1. De:nition of a feature block

A feature block is a square sub-image of the original bone
marrow image, which identi9es the global color features of

(a)

(b)

(c)

Fig. 1. Original microscopic bone marrow image. (a) Orginal im-
age. (b) The maximum karyon region cropped from the original
image. (c) 3D surface of the maximum karyon region image in the
green channel.

an interesting region such as a karyon region or a cytoplasm
region. To de9ne the feature block of an interesting region,
three color-related de9nitions for a block are given 9rst.

(1) Principal color (PC): PC is the color with the most
pixels in the block, which can represent the color of this
block.

(2) Density of principal color (PCD): PCD is the ratio of
the number of pixels with PC over that of all pixels in
the block, which reNects the saturation of the principal
color in a block.
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(3) Homogeneity of principal color (PCH): After dividing
a block into nine equal-sized square sub-blocks, PCH
is the ratio of the minimal PCD of nine sub-blocks over
the PCD of the block, which reNects the extent of ho-
mogeneous distribution of PC.

De�nition 1. A feature block of an interesting region is a
square sub-image that can represent the global color features
of the region. It must satisfy the following three constraints
simultaneously:

(1) PC is within a prede9ned color range, i.e., min PC
6 PC6 max PC.

(2) PCD is larger than a prede9ned threshold, i.e., PCD¿
min PCD.

(3) PCH is larger than a prede9ned threshold, i.e., PCH¿
min PCH.

The thresholds min PC, max PC, min PCD and
min PCH, are prede9ned according to interesting regions.
To determine these prede9ned thresholds, we 9rst manu-
ally collect a large number of interesting regions that are
sub-images cropped from original images. Then PC, PCD
and PCH of each sub-image are automatically calculated
using the above de9nitions. Finally, min PC and max PC
are set to be the minimum and the maximum of all PCs,
respectively. Min PCD is set to be the minimum of all
PCDs, and min PCH is set to be the minimum of all PCHs.
Therefore, for each type of interesting region, there is a set
of prede9ned thresholds. We provide two sets of thresholds
for karyon regions and cytoplasm regions in microscopic
bone marrow images, respectively, in Section 4.

According to the positional relationship between a block
and an interesting region, a block can be classi9ed into three
categories according to the following three de9nitions: the
internal block, the boundary block, and the external block.

De�nition 2. An internal block is entirely inside the inter-
esting region, which means all its sub-blocks are inside the
interesting region as well. A feature block must be an inter-
nal block.

De�nition 3. A boundary block is partially inside the in-
teresting region. There are at least one and at most eight
sub-blocks locating entirely inside the interesting region.

De�nition 4. An external block is entirely outside the in-
teresting region, which means all its sub-blocks are outside
the interesting region.

Since the principal colors of di:erent karyocytes vary,
after identifying a feature block of an interesting region,
the classi9cation thresholds of three categories of blocks
are calculated based on the parameters of the feature block.
Considering the impact from noisy pixels, the conditions of
these blocks are not so strict as that of the feature block. The

thresholds are relaxed as min PC′=PC−�C, max PC′=PC+
�C, min PCD′=PCD−�D, min PCH′=PCH−�H, where �C,
�D and �H are small o:sets from PC, PCD and PCH of the fea-
ture block, respectively. Thus, a block (or sub-block) is in-
side the interesting region on conditions that: (1) PC ranges
between min PC′ and max PC′, (2) PCD¿min PCD′, and
(3) PCH¿min PCH′.

3.2. Feature block growing

To extract an interesting region, we 9rst detect a fea-
ture block of the interesting region from the image. Then,
the feature block grows by merging successive connected
internal blocks and boundary blocks until no more satis-
factory blocks can be found. After the growing terminates,
the feature block, the internal blocks and all the internal
sub-blocks of the boundary blocks recorded during the grow-
ing form the interesting region. The detailed algorithm of the
feature-block growing is described by the following C++
pseudo-code:

//Initialization
ActiveBlock = the feature block;
Label the pixels within the ActiveBlock as processed.
GrowingList = Empty;
BOOL Stop = False;
//Block growing
WHILE (NOT Stop) {
Check which directions (leftward/rightward/

upward/downward) of the ActiveBlock
can be grown;

FOR (each direction that can be grown) {
ThisBlock = the connected block of the

ActiveBlock in current direction;
IF (ThisBlock is not external AND the

pixels within ThisBlock are unprocessed) {
Add ThisBlock to the tail of the

GrowingList;
Set the pixels within

ThisBlock as processed;
}

}
IF (GrowingList is empty)
Stop = True;

ELSE {
ActiveBlock = the 9rst block of

the GrowingList;
Remove the 9rst block from

the GrowingList;
}

}

In the above algorithm, one direction of the active block
can be grown on condition that there is at least one internal
sub-block on the corresponding side of the active block.
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4. Extraction of karyocytes and their components

In our application, we do not consider the karyocytes with
more than one karyons. Theoretically, there are two avail-
able orders for extracting karyon regions and cytoplasm re-
gions, i.e., karyon regions 9rst or cytoplasm regions 9rst.
A karyocyte contains only one karyon. However, there may
be more than one cytoplasm regions belonging to one kary-
ocyte since the karyon often o:sets from the center of the
karyocyte and its shape is irregular. If a cytoplasm region is
9rst extracted, we have to detect its own karyon and then 9nd
other cytoplasm regions belonging to this karyon to form the
complete karyocyte. This is, however, not a straightforward
and eJcient way. Since cytoplasm regions always surround
their own karyon region, it is reasonable to 9rst extract a
karyon region and then to extract the surrounding cytoplasm
regions based upon the extracted karyon region.

4.1. Karyon extraction

According to the medical statistic result about karyocytes
in bone marrows [2], the minimum of karyon diameters ex-
ceeds 5 �m, and the maximum exceeds 20 �m. If the mag-
ni9cation of microscope to acquire the bone marrow images
is 1000× and the image capturing resolution is 5 pixels
per �m, a karyon region in an image contains at least 400
pixels, whereas a nucleolus region or a perforation region
contains at most 80 pixels. Thus, the widths of blocks
cannot be larger than 20 pixels. We set the heuristic rules
of the karyon extraction based on these facts.

Block size is critical to the overall performance since it
directly a:ects the accuracy of the resulting regions, the
processing time and the boundary approximation precision.
According to the analysis of the relationship between the
block size and the karyon extraction performance (provided
in Section 5), we set the width of a block to be 9 pixels,
which can achieve the best performance result.

Furthermore, the thresholds for feature block growing are
determined. Considering the complete chromatic informa-
tion of an interesting region, we use three color channels
of the chromatic image for karyon extraction. The thresh-
olds min PC, max PC, min PCD and min PCH in red, green
and blue channels are calculated, respectively, after analyz-
ing many karyon regions. The thresholds for karyon extrac-
tion are set as follows: for the red channel, min PC = 44,
max PC=165, min PCD=0:30, min PCH=0:85, �C =10,
�D = 0:10, �H = 0:05; for the green channel, min PC = 13,
max PC= 99, min PCD= 0:30, min PCH= 0:85, �C = 10,
�D=0:10, �H =0:05; and for the blue channel, min PC=29,
max PC=120, min PCD=0:30, min PCH=0:85, �C =10,
�D = 0:10, �H = 0:05.

We 9rst identify a feature block of a karyon region by
coarse-to-9ne detection in the original image. The image is
scanned coarsely using a block row-by-row stepping 6 pix-
els. If attaining a candidate block that satis9es three condi-
tions of the feature block for karyons, we perform a 9ne scan

around the candidate block stepping 3 pixels to detect the
best feature block, which is the one with the maximum sum
of PCDs in three color channels and the maximum sum of
PCHs in three color channels. After identifying the karyon
feature block, its PC, PCD, and PCH in each color channel
can be attained. Thus, we can set the thresholds in each color
channel for extracting the karyon region: min PC′=PC−�C,
max PC′ = PC + �C, min PCD′ = PCD− �D, min PCH′ =
PCH− �H, which makes the thresholds adaptive to the cur-
rent karyon. Then, we extract the karyon region by growing
the feature block using the algorithm stated in Section 3.2. A
group of connected internal blocks and boundary blocks is
attained after the growing terminates. Therefore, the karyon
region is 9nally extracted as a group of connected homoge-
neous blocks.

4.2. Cytoplasm extraction

The cytoplasm extraction is also performed in the three
color channels of the chromatic image. Same as the karyon
extraction, we set the width of a block to be 9 pixels. After
analyzing many cytoplasm regions as stated in Section 3.1,
the thresholds for extracting cytoplasm regions are set as
follows: for the red channel, min PC = 58, max PC = 152,
min PCD = 0:30, min PCH = 0:85, �C = 15, �D = 0:10,
�H=0:15; for the green channel, min PC=83, max PC=172,
min PCD = 0:30, min PCH = 0:85, �C = 15, �D = 0:10,
�H=0:15; and for the blue channel, min PC=99, max PC=
158, min PCD=0:30, min PCH=0:85, �C =15, �D =0:10,
�H = 0:15.

Although one karyocyte perhaps contains more than one
cytoplasm regions, they all surround the karyon of the kary-
ocyte. So, we do not need to visit every pixels of the image
to detect the cytoplasm regions. Instead, we start from the
outmost blocks of the detected karyon region. It is possible
that there are more than one cytoplasm feature blocks for a
karyon.

The cytoplasm feature blocks are identi9ed as the con-
nected unprocessed blocks of the outmost block of the
karyon region, which are with the regional color features
that are prede9ned for the extraction of cytoplasm feature
blocks. Then, a set of thresholds in each color channel for
extracting a cytoplasm region are calculated based on a
cytoplasm feature block, which is adaptive to the current
cytoplasm region. The cytoplasm regions are extracted by
growing from the cytoplasm feature blocks with the algo-
rithm stated in Section 3.2. Therefore, the cytoplasm, which
may contain more than one region, is 9nally extracted as at
least one group of connected homogeneous blocks.

4.3. Karyocyte extraction

After extracting a karyon region and its corresponding
cytoplasm region (or regions), the boundary of the kary-
ocyte is either one of cytoplasm if the karyon is totally sur-
rounded by the cytoplasm, or the combination of one of the
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(a)

(b)

(c)

Fig. 2. Karyocytes and their components extracted using the pro-
posed approach. (a) Internal blocks and sub-blocks of the karyon
regions overlapping the image. (b) Internal blocks and sub-blocks
of the cytoplasm regions overlapping the image. (c) Boundaries of
the karyocyte regions overlapping the image.

cytoplasm and one of the karyon. Thus, we can attain a com-
plete karyocyte by combining the karyon and the cytoplasm.

After attaining a karyocyte, we go on to scan the image
for the next karyocyte by the above karyon extraction and
cytoplasm extraction processes until no karyon feature block
is detected from the image. The karyon regions, cytoplasm
regions, and karyocyte regions detected from the image of
Fig. 1 are shown in Fig. 2. Fig. 2a and Fig. 2b show the
detected karyon regions and cytoplasm regions, respectively,
where the bigger squares are the internal blocks, and smaller
ones are the internal sub-blocks of the boundary blocks.
Although the two smaller karyon regions and the two larger

ones have obvious di:erent colors, they are all detected since
the extraction thresholds are adaptive to each region. Fig.
2c shows the boundary of the extracted karyocyte regions
overlapping the original image.

5. Performance analyses

Based on the approach introduced above, a software pro-
totype has been developed in Visual C++ R6.0 by authors.
This section presents performance evaluation in terms of ex-
perimental results with real images and quantitative analyses
using the third party protocols.

5.1. Experimental results

Many microscopic bone marrow images have been tested
on this software prototype. More experimental results are
shown in Fig. 3. The colors and shapes of karyon regions
are various, so are those of cytoplasm regions. The extracted
karyon regions are shown in Fig. 3a, where the boundary
are precise and the nucleoli and perforations are handled
well. Fig. 3b is the result of extracted cytoplasm regions,
which demonstrates that the proposed approach can handle
various positional relationships between karyons and their
cytoplasms. With the correct extraction results of both the
karyon regions and the cytoplasm regions, the karyocyte
regions are also extracted correctly and easily, as shown in
Fig. 3c.

To make a quantitative evaluation on the extracted re-
sults, we must obtain the ground-truth data at 9rst. As the
ground-truth data cannot be obtained by some automatic pro-
cessing, we manually detected the karyon regions (Fig. 4a),
cytoplasm regions (Fig. 4b) and karyocyte regions (Fig. 4c)
aided by a professional hematologist. The region boundaries
are displayed using white pixels overlapping on the original
image.

We employ two well-known image segmentation evalua-
tion protocols that ranked high in Zhang’s survey [15]: Rel-
ative Ultimate Measurement Accuracy for Area (RUMAA)
[16] and Probability of Error (PE) [17], to evaluate our ex-
traction results. RUMAA is de9ned as

RUMAA =
|RA − SA|
RA

× 100%;

where RA is the area of the ground-truth object and SA is
the area of the extracted object. Thus, RUMAA indicates
the relative percents of the area discrepancy. The smaller
the RUMAA is, the higher the extraction accuracy is. PE is
de9ned as

PE = P(O)× P(B|O) + P(B)× P(O|B);
where P(B|O) is the probability of error in classifying
objects as background, P(O|B) is the probability of error
in classifying background as objects, and P(O) and P(B)
are a priori probabilities of objects and background in
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(a)

(b)

(c)

Fig. 3. Experimental results on the microscopic bone marrow
image. (a) Internal blocks and sub-blocks of the karyon regions
overlapping the image. (b) Internal blocks and sub-blocks of the
cyoplasm regions overlapping the image. (c) Boundaries of the
karyocyte regions overlapping the original image.

images. Also, the smaller the PE is, the higher the extraction
accuracy is.

The evaluation results of the pixel discrepancy of ex-
tracted karyocyte regions, karyon regions, and cytoplasm
regions (Fig. 3) comparing with the ground-truth data
(Fig. 4) are given in Table 1. The order of labeling the
karyocytes is row-by-row and top down.

Table 1 demonstrates that the extraction accuracy (i.e.,
1−extraction discrepancy) of the proposed approach is high.
Actually, the average extraction discrepancies in PE and in
RUMAA on 100 testing images are below 5% and below
10%, respectively.

The processing time is another important performance
index. Table 2 lists the processing time (tested on a PC with

(a)

(b)

(c)

Fig. 4. Manually detected ground-truth results. (a) Ground-truth
boundaries of the karyon regions. (b) Ground-truth boundaries of
the cytoplasm regions. (c) Ground-truth boundaries of the kary-
ocyte regions.

PIII 800 MHz CPU and 256M RAM) of extracting karyon
regions and cytoplasm regions, respectively, in several im-
ages. We 9nd that the processing time is proportional to the
number and area of karyocytes, but not the size of image.
This is because we use the coarse-to-9ne scanning scheme
to detect the feature blocks, which passes the non-interesting
regions quickly. The processing time for cytoplasm regions
is less than that for karyon regions since detecting the feature
blocks of cytoplasm regions does not need to scan the image.

5.2. Block size selection

Block size is the major parameter in the proposed ap-
proach. It impacts the performance in three aspects: the pixel
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Table 1
Evaluation of extraction discrepancy of our approach

Item Karyocyte region Karyon region Cytoplasm region
Label

RUMAA(%) PE (%) RUMAA(%) PE (%) RUMAA(%) PE (%)

1 1.0 2.7 8.7 0.5 12.3 3.7
2 0.3 2.9 6.4 0.6 3.4 4.7
3 1.3 3.3 6.9 0.7 4.2 5.8
4 0.9 1.7 8.7 0.5 1.9 3.3
5 3.5 5.8 14.4 0.3 11.8 9.8
6 4.6 5.1 14.7 0.2 11.1 7.5
7 1.0 2.9 11.1 0.3 3.2 4.6
8 0.7 1.9 8.2 0.4 2.1 3.4

Table 2
Processing time for experimental images

Item Image size Number of Time for Time for Total time for Time per
Image (pixel2) karyocytes karyons (s) cytoplasms (s) karyocytes (s) karyocyte (s)

1 (Fig. 1) 335× 207 4 2.35 1.26 3.61 0.90
2 (Fig. 3) 517× 294 8 4.79 3.16 7.95 0.99
3 698× 686 21 13.95 4.21 18.61 0.87
4 912× 681 26 19.47 6.33 25.80 0.99
5 930× 625 23 16.93 5.25 22.18 0.96
6 930× 649 28 19.05 6.67 25.72 0.92

discrepancy or accuracy of resultant regions, the process-
ing time, and the approximate boundary scale. Generally, a
smaller block (as long as it is) will increase accuracy of de-
tected regions but take much more processing time and be
more sensitive to noisy pixels. Since the boundaries of de-
tected regions are approximated by the sides of blocks and
sub-blocks, smaller blocks are sure to produce more precise
boundaries. To determine which block size is the best, we
design a Block Size Priority (BSP) computation as follows:

BSP = 1− (	× Discrepancy + 
 × Time

+ �× BoundaryScale);

where 	, 
 and � are the performance weights of the region
discrepancy, the processing time, and the boundary approxi-
mation scale, respectively. The higher the BSP is, the higher
the extraction accuracy is. Since the aim of our application
is to identify the karyocytes and to analyze their components
and shapes, the region accuracy is important. The processing
time is also important to meet the requirement of real-time
application. However, the boundary approximation scale is
less important because small approximation errors do not
a:ect the shape analysis. Therefore, we set 	=0:4, 
=0:4,
and � = 0:2 in our block size selection. When calculating
BSP, each performance value is divided by the maximum
of its column to be normalized into [0,1].

Table 3
Performance pro9les over di:erent block sizes

Block RUMAA(%) Processing Boundary BSP
size time (s) scale
(pixels) (pixels)

6 9.2 10 2 0.316
9 9.3 5 3 0.332
12 10.7 3 4 0.244
15 11.4 2 5 0.160

Table 3 shows the performance pro9les for Fig. 3 when
the block size varies from 6 to 15, where block size must
be a multiple of 3. The boundary approximation scale is the
width of a sub-block. The result is the BSP of 9 pixels is
the highest; therefore, we set the block size to be 9 pixels
in our approach.

5.3. Comparisons

Fig. 5 shows segmentation results using three other
methods. Fig. 5a shows the segmentation result from the
grayscale image of Fig. 1a using Ostu’s thresholding ap-
proach [18]. In order to extract the karyon regions correctly,
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(a)

(b)

(c)

Fig. 5. Segmentation results using three other methods. (a) Thresh-
olding result with Ostu’s approach. (b) Extracting edges with
Canny’s detector. (c) Regions extracted from the original image
using the improved seeded region growing algorithm.

there is still a post-processing to delete black noisy regions
and to 9ll holes. For example, Park and Keller [12] com-
bine the watershed approach and the snake model to extract
the boundaries of karyocytes based on thresholding images.
Heavy computation is needed to extract accurate bound-
aries by searching many candidate points. Moreover, it is
diJcult to further extract the cytoplasm regions. Fig. 5b
shows the edges extracted from the grayscale image using
Canny’s edge detector [19]. Obviously, it is hard to extract
the boundaries of the karyocyte, those of karyon regions,
and those of cytoplasm regions from such noisy edges.
Based on extracted edges, the approaches proposed in [4,5]
utilize an elliptic model to guide region extraction, and the

approach proposed in Ref. [6] uses a deformable template
to do so. These approaches also need large search. Fig. 5c
shows the karyon regions extracted from the original image
using the seeded region growing algorithm [9,10]. Due to
the pixel-level operation, the two bigger karyon regions
contain some holes and have less accurate boundaries. Com-
paring with the boundaries shown in Fig. 2, we 9nd that
our proposed approach produces more satisfactory results.

The proposed approach and four other approaches
are further compared in nine aspects, including process-
ing level, utilization of a priori knowledge, result type,
post-processing burden, noise sensitivity, computational
cost, region accuracy, shape adaptability, and texture adapt-
ability. The other approaches are the thresholding-based
approach [18], the edge-extraction-based approach [19], the
model-based approach [12], and the seeded region growing
approach [9,10]. The comparison results among these ap-
proaches and our proposed approach are listed in Table 4,
which shows that our proposed approach has more advan-
tages than other approaches, especially, in region accuracy,
shape adaptability and texture adaptability. Therefore, the
proposed approach can achieve satisfactory results for
extracting arbitrary-shaped textured karyon regions and
cytoplasm regions in microscopic bone marrow images.

5.4. Discussions

With the above experimental results and performance
analyses, we conclude that the proposed approach has three
major advantages:

(1) Using regional color features instead of using the color
of each pixel, this approach is not sensitive to the
inhomogeneous colors in the pixel level and to the
local noises.

(2) The feature block growing is able to get the entire inter-
esting region; therefore, no post-processing is needed.

(3) The extraction thresholds are adaptive to each interest-
ing region; therefore, the proposed approach can extract
regions of di:erent principal colors in the same image.

The current limitation of the proposed approach is that
the extraction speed (about 1 s per karyocyte) is not fast
enough to perform real-time analyses. This requires the fur-
ther optimization in the algorithm implementation.

6. Conclusions

This paper introduces the regional color features, includ-
ing the principal color, the principal color density, and the
principal color homogeneity, to improve the adaptability to
the regional color inhomogeneity in the pixel level. This
paper further proposes a feature-block growing algorithm
based on the regional color homogeneity constraints. With
this algorithm, one can successfully detect a region in its
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Table 4
Comparison among 9ve karyocyte-extraction approaches

Approach Thresholding-based Edge-detection-based Model-based Seeded region growing The proposed
Characteristic approach [18] approach [19] approach [12] approach [9,10] approach

Processing level Pixel Pixel and its Pixels Pixel and its Block
neighbors neighbors (A group of pixels)

Utilization of a No No Much Little Much
priori knowledge
Result type Pixel Edge pixel Regional boundaries Region Region
Post-processing Connected-region Edge-pixel linking No Region splitting & No
burden labeling & screening & screening merging
Noise sensitivity High High High Low Very low
Computational cost Low Moderate High Moderate Moderate
Region accuracy Low Low High Moderate High
Shape adaptability High High Low High High
Texture adaptability Low Low Low Low High

entirety no matter it is of uniform color or of homogeneous
principal color. In this paper, we apply the proposed ap-
proach to the extraction of karyocytes and their components
in microscopic bone marrow images. Detecting karyon re-
gions in the block level rather than in the pixel level im-
proves the extraction accuracy and eJciency. The accurate
karyon regions act as the starting points of extracting the
surrounding cytoplasm regions, which further improves the
extraction speed. Complete information of a karyocyte is 9-
nally attained with combining the karyon and its correspond-
ing cytoplasm. We have tested the proposed approach us-
ing many microscopic bone marrow images on the software
prototype developed by authors. The performance analyses
are reported in detail, including the experimental results,
the performance evaluation and the comparison with other
methods. The analyses con9rm that the proposed approach
is e:ective and robust.

7. Summary

Counting of di:erent classes of karyocytes in bone mar-
row smears plays an important role in the diagnosis of
hemopathy. An automatic di:erential counter based on com-
puter vision makes it possible to perform the medical test
rapidly, accurately and economically. Although the classi9-
cation of karyocytes is a classical 9eld of pattern recogni-
tion, the success of classi9cation mainly depends on the cor-
rect and accurate extraction of karyocyte regions. Extract-
ing karyocytes and their components from microscopic bone
marrow images is prerequisite to provide original data for
subsequent classi9cation of karyocytes. Most existing meth-
ods assume that all pixels belonging to a karyon region or a
cytoplasm region have similar colors, so they use pixel-level
operators, e.g., thresholding, edge detection, seeded region
growing, and model-based approaches. Practically, the color
of neither a karyon nor a cytoplasm in a microscopic bone

marrow image is homogeneous in the pixel level. This paper
presents a novel method to extract karyocyte regions based
on the regional color features. The regional color features
of a region are its homogeneous textures, i.e., the color and
its distribution in a region. The proposed method 9rst iden-
ti9es a karyon by 4-connected block growing from a karyon
feature block, then identi9es feature blocks of its cytoplasm
based on the extracted karyon, and 9nally extracts all cy-
toplasm regions by growing the cytoplasm feature blocks.
Combining the karyon region and the corresponding cyto-
plasm regions can attain a complete karyocyte. Experimental
results show that the proposed method is e:ective and ro-
bust for detecting arbitrary-shaped textured karyon regions
and cytoplasm regions in microscopic bone marrow images.
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