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Web Service Recommendation

XINYU WANG and JIANKE ZHU, Zhejiang University
ZIBIN ZHENG, Sun Yat-sen University
WENJIE SONG and YUANHONG SHEN, Zhejiang University
MICHAEL R. LYU, The Chinese University of Hong Kong

Due to the popularity of service-oriented architectures for various distributed systems, an increasing num-
ber of Web services have been deployed all over the world. Recently, Web service recommendation became
a hot research topic, one that aims to accurately predict the quality of functional satisfactory services for
each end user. Generally, the performance of Web service changes over time due to variations of service
status and network conditions. Instead of employing the conventional temporal models, we propose a novel
spatial-temporal QoS prediction approach for time-aware Web service recommendation, where a sparse
representation is employed to model QoS variations. Specifically, we make a zero-mean Laplace prior distri-
bution assumption on the residuals of the QoS prediction, which corresponds to a Lasso regression problem.
To effectively select the nearest neighbor for the sparse representation of temporal QoS values, the geo-
location of web service is employed to reduce searching range while improving prediction accuracy. The
extensive experimental results demonstrate that the proposed approach outperforms state-of-art methods
with more than 10% improvement on the accuracy of temporal QoS prediction for time-aware Web service
recommendation.
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1. INTRODUCTION

Web service is a software component encapsulating a well-defined business function-
ality [Klein et al. 2012]. With the rapid development of cloud computing, more and
more services are deployed across continents for users worldwide. In general, users
extract a list of candidate Web services from different service brokers to compose com-
plicated Service Oriented Applications (SOA), where one or more optimal services are
selected to build the applications. Obviously, it is quite ineffective to evaluate all the
real-world candidate services with equivalent function in order to find the optimal
one [Zheng et al. 2009]. Therefore, it is important to study personalized Web service
recommendation [Zhang et al. 2007].

The key to service selection and recommendation [Zhang et al. 2007; Zeng et al. 2004;
Yu et al. 2007] is Quality of Services (QoS), which is designed to distinguish among
different functionally equivalent services. Specifically, QoS is defined as a set of user-
experienced properties for a specific Web service including response time, throughput,
reputation, and the like. QoS prediction is essential to effective personalized service
recommendation [Zheng et al. 2009].

Practically, the end users are from various geographical locations whose QoS values
are greatly dependent on network conditions and network geographical locations. Dif-
ferent users may have quite different QoS even using the same service, and the QoS
values evaluated by one user cannot be used directly by others. This makes QoS predic-
tion a challenging task [Chen et al. 2013]. To tackle this issue, collaborative filtering is
widely employed to predict the QoS values of all candidate services for the personalized
Web service recommendation [Zheng et al. 2009; Chen et al. 2013; Rong et al. 2009;
Shao et al. 2007].

In a highly dynamic Internet environment, QoS values for Web services usually
change with time [Zheng et al. 2012], and service status, such as the number of clients
and network conditions, always varies with time [Zhang et al. 2011]. Therefore, Web
services with optimal QoS values also change over time, sometimes drastically. For a
better illustration, we employ the following function to evaluate the changing rate of
QoS values between two adjacent time slots [Zheng et al. 2012]:

ri = |qi − qi−1|/qi−1, (1)

where qi and qi−1 represent the QoS values of the time slots i and i − 1 respectively. ri
denotes the changing rate between these two time slots. If ri is greater than a threshold
α, we define qi as a sudden change in QoS value. We select a set of temporal response
time data from a QoS repository [Zhang et al. 2011] that includes the QoS values
from a user of two different services. As shown in Figure 1, there are lots of sudden
changes in the temporal QoS sequence of Web service when α is below 1.0. Although
temporal models such as ARIMA [Godse et al. 2010] can be employed to capture the
dynamic behaviors of QoS values like response time, it is still challenging to predict
sudden changes in QoS values due to its stationary stochastic characteristics. This
may lead to recommending an inappropriate service to the user, which will degrade the
performance of SOA systems.

Generally, data-driven methods can be employed for temporal QoS prediction, and
these are usually formulated as missing value problems. Specifically, a large number of
user-service-time-aware QoS values are collected offline and are further used to build
a tensor representation. Assuming that the QoS values lie in few latent subspaces, the
missing item is predicted by taking advantage of tensor decomposition [Zhang et al.
2011]. However, this low rank assumption may not be valid for those temporal QoS
values with a large amount of sudden changes. In the time-aware service recommenda-
tion, a number of QoS values for candidate services should be predicted for the current
time. To account for the dynamic environment of Web service recommendation, the QoS
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Fig. 1. Time-aware response-times of two Web service.

prediction should be invoked continuously to take advantage of currently and recently
collected QoS values from other users. Factorization-based methods require rebuilding
the model in order to make use of the newly accumulated QoS information. This will
incur heavy computational cost.

To address these limitations, we propose a spatial-temporal QoS prediction ap-
proach for time-aware Web service recommendation in which sparse representation
is employed to model QoS variations. Specifically, we make a zero-mean Laplace prior
distribution assumption on the residuals of QoS prediction, which corresponds to
a Least Absolute Shrinkage and Selection Operator (Lasso) problem. To effectively
select the nearest neighbor for building the sparse representation, the geo-locations of
Web services and users are employed to reduce the searching range while improving
prediction accuracy. We conduct extensive experiments on a large-scale real-world
dataset to study the efficacy of our proposed method compared with other state-of-art
approaches. The promising experimental results demonstrate that our approach
outperforms the state-of-art methods with more than 10% improvement on the
accuracy of temporal QoS prediction for Web service recommendation. In addition,
our method performs especially well on the task of predicting QoS values with
sudden changes. We also show the effective results of providing QoS prediction and
reprediction continuously with the newly accumulated QoS data.

The rest of this article is organized as follows. Section 2 reviews some existing
approaches for Web service recommendation. Section 3 presents our proposed spatial-
temporal approach to time-aware Web service recommendation. Section 4 describes a
QoS reprediction method for the accumulated data. Section 5 provides our experimental
results and the details of our experimental implementation. Section 6 sets out our
conclusion and addresses future work.

2. RELATED WORK

Extensive research efforts have been devoted to Web service recommendation [Liu
et al. 2010]. The key to QoS-aware Web service recommendation is to accurately pre-
dict QoS values [Zhang et al. 2007; Zeng et al. 2004; Yu et al. 2007; Menasce 2002;
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Jaeger et al. 2004], which are employed to help the user distinguish among a huge
number of functionally equivalent Web services and improve the overall quality of Web
applications.

In general, QoS performance for Web services is typically measured from the user
side, including response time, reliability, and throughput. Therefore, different users
may have quite different QoS values for the same service. In this article, we focus on the
time-aware Web service recommendation. The related work can be roughly categorized
into two groups: temporal model-based methods and data-driven approaches.

For temporal model-based methods, the collected QoS values are typically treated
as a time series, in which lots of techniques on modeling the dynamic behaviors of
QoS characteristics can be employed to predict the temporal QoS values. Godse et al.
[2010] monitor the QoS data continuously while forecasting the QoS values based on
an ARIMA model, which involves a single time expert without human intervention
during the execution. Li et al. [2009] take advantage of the structural equation time
series model to fit the QoS values of Web services and to predict the change of QoS
values dynamically. However, this approach mainly concerns global QoS containing
multiple QoS attributes, which does not focus on real-world QoS values (i.e., response
time and throughput). Cavallo et al. [2010] conducted an empirical study on QoS
prediction including average values, linear models, and time series that demonstrated
that the time series-based method can achieve promising prediction accuracy. Zeng
et al. [2008] argue that the performance metrics and Key Performance Indicators
(KPI) can be predicted using the ARIMA time series model in QoS management. They
present the design and implementation of a novel event-driven QoS prediction system
that can process operational service events in a real-time fashion to predict or refine
the prediction of metrics and KPIs. Amin et al. [2012] integrate both ARIMA and
GARCH models to capture QoS attributes’ volatility. Hooman and Kennedy [2009]
propose a Historical Symbolic Delay Approximation (HDAX) model to predict network
delays. Experimental results demonstrate that their method shows better prediction
accuracy in forecasting the delay-time series as well as in reducing the time cost of
the forecasting method. The main show-stopper is that these methods require a large
amount of historical QoS values and use some special assumptions.

For the data-driven approaches, QoS value prediction is usually formulated as a
missing item problem, which is typically solved by Collaborative Filtering (CF) and
factor analysis methods. CF [Zheng et al. 2010; Cai et al. 2010] was introduced to
personalized QoS prediction and Web service recommendation [Chen et al. 2013; Shao
et al. 2007; Zheng et al. 2009, 2011; Sun et al. 2012; Luo et al. 2012], which can be
categorized into two groups: memory-based methods and model-based approaches. The
memory-based CF methods employ user-rating data to compute the similarity between
users or items and predict QoS values accordingly [McLaughlin and Herlocker 2004;
Miller et al. 2003]. They include user-based approaches [Chen et al. 2009], item-based
approaches [Deshpande and Karypis 2004], and hybrid approaches [Gong 2010; Zheng
et al. 2011]. Tang et al. [2012] propose the location-aware DF method that incorporates
the locations of both users and services, which reduces the search space for similar users
and services and improves Web service recommendation performance. Sun et al. [2012]
propose a normal recovery CF approach with improved Web service similarity. Yao et al.
[2013] combine CF and content-based recommendation by taking into consideration
both rating data and the content of Web services.

All these approaches, however, neglect QoS variations across different times. The
model-based CF approaches, such as Bayesian model [Chen and George 2002] and
K-means clustering [Ungar and Foster 1998], learn the statistical model from a
training dataset, including clustering models [Ungar and Foster 1998], latent factor
models [Salakhutdinov and Mnih 2008], and an aspect model [Singla and Richardson
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Fig. 2. Time-aware Web service recommendation framework based on spatial-temporal QoS prediction.

2008]. Chen et al. [2013] consider the users’ physical locations and combine the
model-based and memory-based CF algorithms, which improves personalized QoS
prediction accuracy with reduced time complexity. To improve prediction accuracy, Luo
et al. [2012] propose a collaborative QoS prediction framework with Location-Based
Regularization (LBR), which incorporates geographical information to identify the
neighborhood using the local connections between Web services users. Yu et al.
[2013] propose an effective iterative algorithm to obtain the optimal completion of an
arbitrary QoS matrix through factor analysis. Zhang et al. [2011] propose a WSPred
method to provide a temporal personalized QoS value prediction service for different
service users by tensor factorization. However, it is not easy to directly employ WSPred
for a time-aware personalized service recommendation.

3. TIME-AWARE SERVICE RECOMMENDATION

In this section, we first present our proposed framework for time-aware Web service
recommendation based on continuous temporal QoS prediction, which is formulated
as a generic regression problem. Then, we propose a spatial-temporal QoS prediction
approach using Lasso, which can take advantage of the geo-locations of both the end
users and their associated Web services.

3.1. Overview

The objective of the time-aware service recommendation is to provide functionally op-
timal services to each user for the current time slot (i.e., an hour or a month). To
improve recommendation accuracy, service users usually require an evaluation of the
performance of all the functionally satisfied services for the current time slot, which
incurs heavy computational cost and network traffic. To solve this problem, we present
an effective spatial-temporal QoS prediction for time-aware service recommendation.
As shown in Figure 2, the overall procedures of the time-aware Web service recommen-
dation are summarized in the following:

(1) An end user requests a service in the current time slot;
(2) A set of satisfactory functional services are retrieved by the service search module;
(3) The temporal QoS prediction/reprediction module predicts the QoS values of the

set of retrieved service for the current time slot;
(4) The service recommendation module selects the top m services with the optimal

predicted QoS values for the current time slot and recommends these services to
the end user.
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As described in Zheng et al. [2011], the QoS data are collected through a user-
collaborative QoS collection mechanism that archives the current or most recent QoS
values from different services continuously contributed by different service users over
time. Based on the newly collected QoS values, the temporal QoS prediction can be
performed continuously. Additionally, repredicted QoS can be conducted using the
newly collected temporal QoS values to further improve the prediction accuracy of the
recommended services for the current time slot since more and more temporal QoS
values are accumulated in the current time slot. Therefore, the services with optimal
predicted QoS values for the current time slot can be adapted, and the recommended
services can also be updated continuously to the service user.

3.2. Temporal QoS Prediction by Generic Regression

The key to time-aware Web service recommendation is to predict QoS values from a
set of collected temporal QoS data. As with other prediction problem, QoS prediction
can be solved using data driven methods, such as linear regression. The fundamental
idea of the data-driven approach is to represent the QoS value by a linear combination
of a set of similar examples. The popular matrix factorization-based CF methods also
assume that the QoS data lies on the subspace spanned by the historical training
data, which also resorts to representing the data point using the linear combination
of similar examples. To this end, we formulate QoS prediction as a generic regression
problem.

Given a set of collected temporal QoS data X with respect to users and services,
we aim to predict the QoS value yn at time slot n for the user u and service v. Let
y = (y1, . . . , yn−1)T denote the collected temporal QoS data for the user u and service
v, where yk (1 ≤ k ≤ n − 1) is the collected QoS value at time slot tk. If the QoS
value at tk is not collected, then yk is set to null (invalid). The fundamental idea of
linear regression for QoS prediction is that the current QoS value can be represented
by the linear combination of K most similar QoS sequences X = (x1, . . . , xK)� in the
dataset. Therefore, we try to find a latent mapping function f (x) between the previously
collected historical data and the observation of QoS value for the user u and service
v. Typically, we can assume that the QoS value y differs from the prediction by some
additive Gaussian noise ε with zero mean and variance σ 2. Therefore, the target QoS
value y can be represented as follows:

y = f (x) + ε.

Let w ∈ RK×1 denote a vector of linear combination coefficients; then, the mapping
function f (x) can be formulated as:

f (x) =
K∑

i=1

wixi = w�x. (2)

Least squares regression minimizes the sum of squared distances between the ob-
served QoS values for the user u and service v and the one predicted by the linear
mapping function by minimizing the squared residual error:

min
w

‖y − w�X‖2
2 + λ1‖w‖2

2, (3)

where ‖w‖2 is the regularization term and λ1 is the regularization coefficient to avoid
the overfitting issue. Equation (3) has the following closed-form solution:

w = (X�X + λ1 I)−1 X�y.

Here, I ∈ RK×K denotes the identity matrix. Therefore, the current QoS value for
the user u and service v can be simply computed by the mapping function f (x) in
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Equation (2). The computational complexity for least squares regression is dominated
by solving a linear system with the size K × K system matrix.

As mentioned in Section 1, QoS values vary drastically over time. However, the
normal distribution assumption on prediction errors in least squares regression cannot
effectively handle a large amount of abrupt changes.

3.3. QoS Prediction Using Lasso

In this article, we consider the zero mean Laplace distribution with probability density
functions that have abrupt changes in gradient, which corresponds to a Lasso prob-
lem [Tibshirani 1994]. Lasso shrinks some coefficients and sets others to zero, and
hence tries to retain the good features of both subset selection and regularized least
square regression. This further leads to an effective sparse representation for temporal
QoS data.

Instead of L2 norm regularization in least square regression, Lasso imposes an L1
penalty on the linear combination coefficients, which leads to the following optimization
problem:

min
w

‖y − w�X‖2
2 + λ‖w‖1, (4)

where λ ≥ 0 is the regularization coefficient that controls the amount of shrinkage
on the predictions. Therefore, some coefficients shrink and may be exactly equal to
zero. Obviously, this Lasso minimization problem uses a quadratic programming with
linear inequality constraints, which can be efficiently solved by either a Least Angle
Regression (LARS) algorithm [Efron et al. 2004; Mairal et al. 2010] or an L1-regularized
least squares method [Kim et al. 2007].

Once the optimal linear combination coefficients w is obtained through Lasso, the
QoS value for the current time slot can be directly predicted by Equation (2). Note
that the computational cost for Lasso is closely related to the size of selected example
QoS sequences K. Because there are usually many user-service pairs, it is very time-
consuming to use all the related information to predict the QoS value from a temporal
sequence. Practically, we only select a very small portion of examples from the collected
QoS dataset in order to facilitate the online applications. In the following, we discuss
how to effectively choose the most similar sequences in the time-aware Web service
recommendation task.

3.4. Spatial-Temporal QoS Prediction

To capture the dynamic characteristics of the input sequence y, we employ the normal-
ized cross-correlation between each sample x in the collected QoS dataset with y as
the similarity measure:

S(x, y) = (x − x̄)�(y − ȳ)
‖x − x̄‖ · ‖y − ȳ‖ . (5)

Moreover, we select the top K sequences with the highest cross-correlation scores.
Because the size of the collected QoS dataset is usually very large, it is very inefficient
to perform a linear scan across the whole dataset.

On the other hand, the geo-location of both users and services can be easily ob-
tained by mapping the IP addresses to the geographical points using the precollected
database [Heath 2011]. Because geographically closed user-service pairs have more
chances to share the same IT infrastructures, such as routers and network workloads,
they may have quite similar QoS values or trends [Shen et al. 2013], especially in
terms of the sudden changes occurring over the time domain. Thus, the temporal QoS
values of spatially close user-service pairs are very likely correlated. In this article, we
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Table I. Spatial Similarity: The Discovered Maximal
Correlation Coefficient in Temporal QoS Sequences

Mean discovered maximal correlation
Spatial similarity (km) coefficient in response time sequences

(0, 500] 0.837
(500, 1000] 0.818

(1000, 1500] 0.784
(1500, 2000] 0.743
(2000, 2500] 0.598

Fig. 3. Temporal response time sequences: ya (corresponding to Pa) and xb (corresponding to Pb), S(ya, xb) =
0.955, simS(Pa, Pb) = 83.121km.

employ the spatial information from user-service pairs to effectively reduce the search-
ing range while improving prediction performance.

We first testify our assumption that the temporal QoS values of spatially close user-
service pairs are very likely correlated. We collected a large number of test cases
from a QoS repository [Zhang et al. 2011]. In each test case, we randomly choose
a temporal QoS sequence ya corresponding to a user-service pair Pa and search for
its most correlated temporal QoS sequence xb corresponding to user-service pair Pb
within the different spatial similarities between Pa and Pb in all the other sequences.
Each validation result is the average of over 1,000 different test cases. We employ
the spatial similarity simS to represent the spatial distance between two user-service
pairs. Let Pa = (ua, va) and Pb = (ub, vb), where u and v denote the corresponding user
and service. Spatial similarity simS between two user-service pairs means the average
value of two geodesic distances between the two users and two services: simS(Pa, Pb) =
1
2 (dist(ua, ub)+dist(va, vb)), where dist() denotes a geodesic distance function. As shown
in Table I, we can find that the most correlated QoS sequences of ya are more likely to be
discovered in the spatially similar user-service pairs for Pa. Therefore, we can conclude
that the spatial information of users and services can be utilized for discovering the
most correlated temporal QoS sequences. Figure 3 presents an example of a discovered
xb corresponding to the user-service pair Pb with a very high correlation coefficient
compared to ya corresponding to the user-service pair Pa.

Based on this analysis, we take advantage of the spatial information of user u and
service v to predict the current temporal QoS sequence y, as well as the spatial infor-
mation of each user ui and service vi of the collected reference temporal QoS sequences
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Fig. 4. Discover GS(P) for P.

zi (1 ≤ i ≤ M, where M is the number of other collected temporal QoS sequences). This
reduces the search space for discovering the most correlated temporal QoS sequences
for y.

Let P, which contains user u and service v, have a temporal sequence y. To find the
most correlated temporal QoS sequences for y, we first retrieve a set of spatially similar
user-service pairs GS(P). In order to efficiently obtain GS(P), we build a grid repre-
sentation based on the geographical map and divide the map into multiple buckets, as
shown in Figure 4. The length and width of each bucket are represented by differences
in longitude and latitude, respectively. As in Wang et al. [2014], we empirically set
the bucket length to 0.1156 km and bucket width to 0.1491 km. Then, we map u, v,
and each user ui and service vi of other temporal QoS sequences to a bucket, which
are represented by u.bucket, v.bucket, ui.bucket, and vi.bucket, respectively. Note that
we randomly select a set of user-service pairs from the repository when there is no
user/service found in the same bucket. For each ui and vi, if u.bucket equals ui.bucket
or v.bucket equals vi.bucket, we calculate the spatial similarity between each selected
Pi and P and select the top K′ user-service pair Pi as the discovered elements in
GS(P). Furthermore, we calculate the correlation coefficient between y and each zi
corresponding to the user-service pair Pi in GS(P) and select the top K most correlated
user-service pairs Pjs with the highest correlation coefficients as well as their corre-
sponding temporal QoS sequence x j (1 ≤ j ≤ K). Note that the correlation coefficients
should be greater than zero.

It is also interesting to compare the prediction accuracy using the exact top K user-
service pairs using the approximate method. To this end, we conduct experiments on
the QoS repository [Zhang et al. 2011] with λ while keeping the remaining parameters
fixed. In the experiment, our proposed method for the exact top 20 user-service pairs
obtains the MAE result 0.8786, 0.8837, 0.8965, and 0.9135, when λ is set to 0.2, 0.4, 0.6,
and 0.8, respectively. On the other hand, our proposed method using the approximate
top pairs by bucket achieves the MAE result 0.8829, 0.8908, 0.9040, and 0.9203. It can
be clearly seen that the performance drop of the approximation method is negligible,
usually less than 1%. However, the approximate method is essentially faster than exact
search. Therefore, spatial information is very effective in reducing the searching range
for a temporal QoS sequence.
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Fig. 5. Spatial-temporal QoS prediction model development.

3.5. Implementation Details

From the preceding, we present a practical development approach to the spatial-
temporal QoS prediction model for time-aware Web service recommendation, as shown
in Figure 5. The whole scheme consists of the following three steps:

(P1) Data preparation: Before retrieving the most correlated temporal QoS se-
quences for y = (y1, . . . , yn−1)T from zi = (zi1, . . . , zin)T (1 ≤ i ≤ M), we need to calculate
the correlation coefficients between y and each zi. Note that the dataset may contain
some invalid values with zeros in y and zi, which are dealt with as follows:

(1) If zin is invalid, then zi cannot be retrieved as the most correlated temporal QoS
sequence for y;

(2) If yk (1 ≤ k ≤ n − 1) is invalid, we search for yl in y such that yl is valid, k − l > 0,
l ≥ 1, and k− l is the minimum. Then, we use yl to replace yk. Note that we assume
y1 is valid in our proposed approach;

(3) If zik (1 ≤ k ≤ n−1) is invalid, we search for zil in zik such that zil is valid, k−l > 0, l ≥
1, and k−l is the minimum. Then, we use zil to replace zik. If such zil cannot be discov-
ered, zi cannot be discovered as the most correlated temporal QoS sequence for y.

After dealing with invalid QoS values, the most correlated temporal QoS sequences
for y can be obtained in zi (1 ≤ i ≤ M) according to the method described in Section 3.4.

(P2) Model Construction: If the K most correlated temporal QoS sequences for
y can be retrieved, we choose them as the examples to train the regression models
for y. The next step is to estimate the unknown parameters in the models. Since we
apply the least squares or Lasso method to estimate the unknown parameters w in
the regression models, we name our approaches “LS” or “Lasso.” We apply either least
squares or Lasso to estimate w as discussed in Section 3.2. Note that ε can also be
modeled by the ARMA(p,q) model [Amin et al. 2012] if the sequence of residuals is not
a white noise series. In this article, we simply employ the Gaussian noise assumption.

(P3) Model Selection: Practically, although we can construct several regression
models between y and x j (1 ≤ j ≤ K) using the different algorithms, we often need to
select one best model. We apply the standard error of estimation and Schwartz’s Bayes
Criterion (SBC) [Box and Jenkins 1976] as our criterion for best model selection. We
use SBC = −2ln(l) + ln(k), where l is the maximized value of the likelihood function for
the estimated model, and k is the total number of parameters in the regression model.
The best model is the one with minimum standard error and minimum SBC value.

Once the best model is selected, we can predict the QoS at current time slot tn: yn
based on y, xj (1 ≤ j ≤ K, containing xjn), and the estimated w.
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Fig. 6. The spatial-temporal QoS prediction framework: Geotime.

4. SPATIAL-TEMPORAL QOS PREDICTION AND RE-PREDICTION FRAMEWORK

Based on the proposed spatial-temporal QoS prediction model development approach,
we present a spatial-temporal QoS prediction and reprediction framework, Geotime,
for time-aware Web service recommendation, as illustrated in Figure 6.

Geotime can perform QoS prediction and reprediction continuously for the current
time slot tn. After the predicted QoS value for tn: yn in y is calculated (P4) based on
the regression model, the new temporal QoS values in x j (1 ≤ j ≤ K) can be collected
during the current time slot. Therefore, the new characteristics of y for prediction may
be demonstrated. This requires us to evaluate whether it is necessary to reconstruct a
new regression model for updating the predicted QoS values. Once a regression model
is constructed between x j (1 ≤ j ≤ K) and y, the framework stores x j (1 ≤ j ≤ K)
as well as max S(y, x j)|K

j=1 for x j and y. Then, the following rules are defined and
considered for rebuilding the model:

Rule 1: If new QoS values are collected in x j corresponding to Pj , or new values are
collected in y corresponding to P, we calculate the correlation coefficient between x∗

j
and y∗ S(y∗, x∗

j), where x∗
j is the updated x j and y∗ is the updated y. If S(y∗, x∗

j) >

max S(y,x j )|Kj=1

τ
(0 < τ ≤ 1) and S(y∗, x∗

j) > rmin (0 < rmin < 1), a new LRM will be
constructed between y∗ and x∗

j (1 ≤ j ≤ K) to replace the current model. τ and rmin are
parameters to adjust the frequency for rebuilding the regression model.

Rule 2: If a new temporal QoS sequence xk corresponding to Pk is collected

(simS(P, Pk) < L km), such that S(y∗, x∗
k) >

max S(y,xk)|Kj=1

τ
and S(y∗, x∗

k) > rmin, a new
LSM will be constructed between y∗ and a set of new temporal QoS sequences contain-
ing x∗

k to replace the current model.
Rule 3: If the model rebuilding process is unnecessary and the most recent QoS

values are in x j (1 ≤ j ≤ K), then we first reselect the best models for prediction based
on these newly collected values. After that, we recompute yn based on the current
regression model and the newly collected values in x j in P4.

The model rebuilding process is based on monitoring the newly collected QoS values
as time passes. Therefore, Geotime can be used to predict and repredict QoS values
for the current time slot continuously for a user-service pair. By taking advantage of
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Table II. Statistics of Valid Web Service QoS Values

Statistics Response time
Scale (0-20] s
Mean all values 3.1773 s
Num. of users 142
Num. of Web services 64
Num. all values 30,170,567
Num. of temporal sequences 483,235
Mean SD of values in each sequence 2.0115 s
Mean changing rate of all values 4.7051

the repredicted QoS values for the current time slot, the recommended services with
optimal predicted QoS values can be updated continuously.

5. EXPERIMENTS

In this section, we conduct comprehensive studies on the performance of our proposed
spatial-temporal QoS prediction approach to time-aware Web service recommendation.

5.1. Experimental Setup

In our experiments, we employ a real-world Web service QoS performance reposi-
tory [Zhang et al. 2011] to evaluate the proposed approach. The repository contains a
large number of temporal response time sequences collected from 142 distributed com-
puters located in 57 countries from PlanetLab1 to 4,532 distributed services all around
the world. Each sequence contains a set of temporal QoS values collected from a com-
puter (user) for a service with at most 64 QoS values collected once after a time interval
in a time slot. Each time slot lasts for 15 minutes, and the time interval between two
adjacent time slots is 15 minutes. All the sequences are collected concurrently, lasting
for 16 hours. Therefore, a 142 × 4,532 × 64 user-service-time matrix is constructed
containing a particular response time value from the QoS invocation records in each of
its positions. Some QoS values in the matrix are invalid; these are marked as zero. If
the response time is larger than 20s, it is recorded as 20s in the datasets.

Table II summarizes the statistics of all the valid Web service QoS values in the
matrix. We treat the temporal sequence as an invalid record if there are no less than
12 collected QoS values at different time slots for a user-service pair. Also, Figure 7
shows the distribution of the response time and changing rate of all valid QoS values.
We can observe that most response time values are between 0.2s and 0.8s, and most of
the changing rates are below 0.1.

The ARIMA method is employed as the baseline method for evaluating the perfor-
mance of the proposed spatial-temporal QoS prediction approach. Note that the ARIMA
model should satisfy several assumptions including serial dependency, stationary, nor-
mality, and invertibility [Box and Jenkins 1976]. To this end, we use some statistical
tests to check for these assumptions. Specifically, the QLB test [Box and Jenkins 1976]
is employed to check y’s serial dependency, the ADF test to check its stationarity, and
the KPSS test [Kwiatkowski et al. 1992] to check its normality. If these assumptions
are not satisfied, we simply average the last three observed values in the QoS sequence
as the unknown values to be predicted.

We implemented the UPCC [Breese et al. 1998], IPCC [Sarwar et al. 2001], and WS-
Rec [Zheng et al. 2009] methods for comparison, which are promising for conventional
QoS prediction. UPCC is a user-based prediction algorithm using PCC [Breese et al.
1998]. When employing UPCC to predict a QoS value y for the current time slot, it uses

1http://www.planet-lab.org.
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Fig. 7. QoS value distributions.

all other collected QoS values at the current time slot for prediction. On the other hand,
IPCC is an item-based prediction algorithm using PCC. WSRec [Zheng et al. 2009] is
a hybrid CF algorithm that combine UPCC with IPCC.

For the temporal QoS prediction, we also include the simple solution of average
method (AVG), which simply averages the three valid QoS values at the most recent
time slots in y to predict the QoS value for the temporal QoS sequence.

Furthermore, conventional CF techniques are mainly effective for the stationary
estimation, which may have poor performance in a dynamic environment. We can
improve them by fusing their prediction results with the temporal average. Specifically,
UPCC* combines UPCC with AVG through linear interpolation. If we employ yUPPC to
represent the predicted value using UPCC, yAVG to represent the predicted value using
AVG, and yUPCC∗ to represent the predicted value using UPCC*, then,

yUPPC∗(yn) = w · yUPPC + (1 − w) · yAVG.

In all our experiments, w is set to 0.5. Similarly, we denote IPCC* and WSRec* as the
improved version for IPCC and WSRec, respectively.

To evaluate the performance of our proposed QoS prediction approach, we employ
Mean Absolute Error (MAE) [Zheng et al. 2011] and Root Mean Square Error (RMSE)
[Zheng et al. 2011] as the evaluation metrics. The metric MAE is defined as:

MAE =
∑

i |ŷn − yn|
N

, (6)

and RMSE is defined as:

RMSE =
√∑

i(ŷn − yn)2

N
, (7)
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Fig. 8. MAE. K with different response time value densities.

where yn is the predicted QoS value of a QoS sequence y for the current time slot tn, ŷn
denotes the actual QoS value of y for tn, and N is the number of predicted QoS values.

5.2. Parameters Settings

First, we study the important parameters for the proposed spatial-temporal QoS pre-
dictions using Lasso, including the number of most correlated neighbors K and the
regularization parameter λ.

5.2.1. Number of Most Correlated Neighbors K. For the proposed spatial-temporal QoS
prediction approach, we need to select the K most correlated temporal QoS sequences
as the representative examples. To this end, we randomly select 10,000 test cases
and perform QoS prediction using Lasso with various values of K. We calculate the
prediction accuracy using MAE within different response value densities with each
value of K, where the regularization coefficient λ is fixed to 0.2. Therefore, we can to
some extent determine the best value of K for our approach with different densities.

As shown in Figure 8, the proposed Lasso method achieves a better prediction accu-
racy with the best value of K. For data with 100% temporal response time density, the
best number of neighborhoods should be about 10 to 20 for optimizing the prediction
accuracy of our proposed QoS prediction approach using Lasso by varying the density
of response time values. Note that the proposed method is degenerated to 1-Nearest
Neighbor search when K is set to 1. Therefore, the prediction performance is poor. The
representation capability of Lasso increases with more exemplar data so that the pre-
diction error decreases with the growing number of the selected nearest neighbors K.
However, such a model may have overfitting issues when the total number of selected
examples becomes larger because the learned regression model aims to minimize the
fitting error on the training data rather than on the testing data. Overfitting on the
training data may lead to poor generalization capability on the new test data.
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Fig. 9. MAE. λ with different response time value densities.

5.2.2. Regularization Coefficient λ for Lasso. In this experiment, we intend to find the
proper value for the regularization coefficient λ for the proposed method using Lasso.
We fix the number of the most correlated neighbors K to 20. Moreover, we randomly
select 10,000 test cases and conduct temporal QoS predictions with various λ. The
Lasso optimization is solved by the method described in Mairal et al. [2010].

As shown in Figure 9, the best value of λ is in the range of [0.1,0.3] for the Lasso
regression with various density of response time values when the temporal response
time density remains 100%.

5.3. Performance Comparisons on QoS Prediction

To conduct comprehensive experiments on the QoS prediction for time-aware Web ser-
vice recommendation, we first randomly remove a number of temporal QoS sequences
in the user-service-time dataset. If T % temporal QoS sequences have been removed,
we denote the temporal QoS density as (100 − T )%, represented by Dt = (100 − T )%.
Then, we randomly remove 20% QoS values in all temporal QoS sequences. We vary the
temporal QoS density ranges from 10% to 60% and randomly create more than 50,000
different test cases for each density. In each test case, we randomly select a removed
QoS value. In addition, there are at least 12 QoS values left before tn in the matrix
in order to facilitate ARIMA model construction. For each test case, we perform ex-
perimental evaluations comparing prediction algorithms and compute their predicted
values. Then we evaluate their prediction accuracies using the two metrics. For our
presented spatial-temporal approaches, we set the bucket length to 0.1156 and bucket
width to 0.1491, as shown in Figure 4. K′ is set to 400. For our presented Lasso method
(K = 20), the parameter λ greatly affects prediction accuracy. In our experiments, we
empirically set λ to 0.1.

Next, we randomly remove a number of QoS values in all temporal QoS sequences
in the initial user-service-time dataset. If V % QoS values have been removed in each
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Table III. Performance Comparisons of Prediction Approaches on Response
Time with Reduced Temporal QoS Sequences; � Represents the Performance

Increment Compared to Baseline ARIMA Method

Dv = 55% Dv = 60% Dv = 65%
Approaches MAE RMSE MAE RMSE MAE RMSE

AVG 1.159 3.206 1.159 3.206 1.159 3.206
UPCC 1.470 3.034 1.467 3.027 1.464 3.019
UPCC* 1.252 2.775 1.251 2.773 1.244 2.759
IPCC 1.396 2.951 1.388 2.937 1.384 2.926
IPCC* 1.221 2.742 1.216 2.736 1.209 2.724
WSRec 1.391 2.951 1.384 2.937 1.381 2.926
WSRec* 1.220 2.747 1.215 2.740 1.208 2.727
ARIMA 1.028 2.986 1.028 2.986 1.028 2.986

LS

K = 1 1.111 2.946 1.066 2.881 1.001 2.729
� −8.1% 1.3% −3.7% 3.5% 2.6% 8.6%

K = 20 1.229 3.294 1.187 3.226 1.111 3.067
� −19.6% −10.3% −15.5% −8.0% −8.1% −2.7%

Lasso

K = 1 1.097 2.907 1.055 2.844 0.991 2.689
� −6.7% 2.7% −2.6% 4.8% 3.6% 10.0%

K = 20 1.012 2.784 0.969 2.705 0.902 2.533
� 1.6% 6.8% 5.7% 9.4% 12.3% 15.2%

Dv = 70% Dv = 75% Dv = 80%
Approaches MAE RMSE MAE RMSE MAE RMSE

AVG 1.159 3.206 1.159 3.206 1.159 3.206
UPCC 1.466 3.027 1.464 3.026 1.466 3.032
UPCC* 1.244 2.759 1.242 2.763 1.242 2.753
IPCC 1.378 2.928 1.374 2.923 1.374 2.925
IPCC* 1.206 2.720 1.202 2.717 1.200 2.714
WSRec 1.376 2.928 1.372 2.923 1.372 2.925
WSRec* 1.206 2.724 1.202 2.721 1.200 2.715
ARIMA 1.028 2.986 1.028 2.986 1.028 2.986

LS

K = 1 1.020 2.793 1.006 2.774 1.010 2.789
� 0.8% 6.5% 2.1% 7.1% 1.8% 6.6%

K = 20 1.101 3.035 1.102 3.062 1.110 3.076
� −7.1% −1.6% −7.2% −2.6% −8.0% −3.0%

Lasso

K = 1 1.008 2.743 0.997 2.735 1.002 2.751
� 2.0% 8.1% 3.0% 8.4% 2.5% 7.9%

K = 20 0.900 2.550 0.890 2.538 0.902 2.567
� 12.5% 14.6% 13.4% 15.0% 12.3% 14.0%

sequence, we denote the QoS value density as (100 − V )%, represented by Dv = (100 −
V )%. We also vary the QoS value density with ranges from 55% to 80%, randomly
creating more than 100,000 different test cases for each density.

Table III presents the MAE and RMSE results of different prediction approaches on
response time when the temporal response time densities vary from 10% to 60%. More-
over, Table IV presents the prediction results when the response time value densities
vary from 55% to 80%. From these results, we have the following observations:

(1) UPCC, IPCC, and WSRec are much worse in prediction accuracies than other ap-
proaches since they do not consider the historical temporal QoS values in the sequence;

(2) The prediction accuracy of ARIMA is slightly better than the AVG method when
the density of response time value is high. The prediction accuracies of ARIMA and
AVG are better than those of UPPC*, IPPC*, and WSRec*;
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Table IV. Performance Comparisons of Prediction Approaches on Response Time with Various QoS Value
Densities; � Represents the Performance Increment Compared to Baseline ARIMA Method

Dv = 55% Dv = 60% Dv = 65%
Approaches MAE RMSE MAE RMSE MAE RMSE

AVG 1.172 3.226 1.167 3.219 1.164 3.214
UPCC 1.470 3.034 1.467 3.027 1.464 3.019
UPCC* 1.252 2.775 1.251 2.773 1.244 2.759
IPCC 1.396 2.951 1.388 2.937 1.384 2.926
IPCC* 1.221 2.742 1.216 2.736 1.210 2.724
WSRec 1.391 2.951 1.384 2.937 1.381 2.926
WSRec* 1.220 2.747 1.215 2.740 1.208 2.728
ARIMA 1.201 3.332 1.160 3.285 1.089 3.175

LS

K = 1 1.193 3.119 1.162 3.076 1.110 2.999
� 0.7% 6.4% −0.2% 6.4% −1.9% 5.5%

K = 20 1.352 3.609 1.298 3.492 1.223 3.344
� −12.6% −8.3% −11.9% −6.3% −12.3% −5.3%

Lasso

K = 1 1.184 3.112 1.153 3.053 1.101 2.960
� 1.4% 6.6% 0.6% 7.1% −1.1% 6.8%

K = 20 1.000 2.822 0.984 2.781 0.954 2.723
� 16.8% 15.3% 15.2% 15.3% 12.4% 14.2%

LS*
K = 1 1.427 3.448 1.331 3.213 1.321 3.215

� −18.8% −3.5% −14.7% 2.19% −21.3% −1.3%

Lasso*

K = 1 1.420 3.494 1.371 3.359 1.315 3.306
� −18.2% −4.9% −18.2% −2.3% −20.8% −4.1%

K = 20 1.240 3.338 1.208 3.250 1.176 3.148
� −3.3% −0.2% −4.1% 1.1% −8.0% 0.9%

Dv = 70% Dv = 75% Dv = 80%
Approaches MAE RMSE MAE RMSE MAE RMSE

AVG 1.162 3.211 1.160 3.209 1.159 3.206
UPCC 1.466 3.027 1.464 3.026 1.467 3.032
UPCC* 1.244 2.759 1.242 2.763 1.242 2.753
IPCC 1.378 2.928 1.374 2.923 1.372 2.925
IPCC* 1.206 2.720 1.202 2.717 1.200 2.714
WSRec 1.376 2.928 1.372 2.923 1.372 2.925
WSRec* 1.206 2.724 1.202 2.721 1.200 2.716
ARIMA 1.087 3.042 1.051 3.030 1.028 2.986

LS

K = 1 1.062 2.868 1.035 2.820 0.991 2.756
� 2.3% 5.7% 1.5% 6.9% 3.6% 7.7%

K = 20 1.169 3.198 1.134 3.110 1.085 3.013
� −7.5% −5.1% −7.9% −2.6% −5.5% −0.9%

Lasso

K = 1 1.055 2.847 1.027 2.800 0.982 2.729
� 3.0% 6.4% 2.3% 7.7% 4.4% 8.6%

K = 20 0.922 2.637 0.909 2.607 0.893 2.572
� 15.2% 13.3% 13.5% 14.0% 13.1% 13.9%

LS*
K = 1 1.279 3.124 1.311 3.204 1.203 3.004

� −17.7% −2.7% −24.7% −5.7% −17.0% −0.6%

Lasso*

K = 1 1.324 3.292 1.285 3.204 1.201 3.082
� −21.8% −8.2% −22.3% −5.7% −16.8% −3.2%

K = 20 1.214 3.225 1.160 3.111 1.112 3.026
� −11.7% −6.0% −10.4% −2.7% −8.2% −1.3%
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(3) Our proposed Lasso method outperforms other prediction approaches in predic-
tion accuracy in most cases. When the temporal response time density varies from 10%
to 60% and the response time value density is high (80%), Lasso (K = 1) can obtain
as high as 9% improvements in prediction accuracy compared with the traditional
ARIMA, whereas Lasso (K = 20) can achieve as high as 15% improvements. When
the response time value density varies from 55% to 80%, Lasso (K = 1) can obtain as
high as 8% improvements in prediction accuracy compared to the traditional ARIMA,
whereas Lasso (K = 20) achieves as high as 16% improvements;

(4) When the density of temporal response time value increases from 10% to 60%, the
prediction accuracy of our presented Lasso method will improve. Moreover, the advan-
tages of the Lasso method (K = 20) compared to ARIMA will be more obvious. When
the response time value density increases from 55% to 80%, the prediction accuracy
of our Lasso (K = 1) will improve, and its advantages compared to ARIMA will reach
about 8%; the prediction accuracy of our Lasso (K = 20) will also improve, and its ad-
vantages compared to ARIMA will be about 13% to 16%. When the density is high, more
correlated temporal QoS sequences are fetched, which can be employed to construct a
more precise LRM using our approaches; therefore, the dynamic characteristics of the
temporal response time sequence to be predicted is more accurately captured.

(5) To verify the effectiveness of using the geo-locations of users and services in
discovering the most correlated temporal QoS sequences compared to the QoS sequence
to be predicted y, we design two other temporal QoS prediction approaches named “LS*”
and “Lasso*.” LS* and Lasso* are very similar to LS and Lasso, except in the process
of finding the spatially similar user-service pairs GS(P), where the K′ temporal QoS
sequences are randomly selected from the whole dataset. We compared the prediction
accuracy of Lasso* to Lasso under various response time value densities, and similar
experiments were also conducted for LS* and LS. As shown in Table IV, the prediction
accuracy of our proposed Lasso method is much better than that of Lasso*, and similar
results can also be found in comparing LS* and LS. This demonstrates that it is very
important to incorporate the spatial information of users and services for boosting
prediction performance.

5.4. Performance Comparisons on QoS Prediction with Sudden Changes

This experiment intends to analyze the prediction accuracy of all competing QoS pre-
diction models in predicting sudden change QoS (response time) values, as discussed in
Section 1. We randomly remove a number of temporal QoS sequences and a number of
QoS values in the remaining sequences of our initial user-service-time dataset. More-
over, we set the temporal response time density to 50% and the density of response
time values to 70% in the dataset as our collected QoS values. Therefore, the overall
QoS data density is low. Then, we vary the proportion of sudden change values denoted
by Ds and prepare 12 different sets of test cases for each proportion. In each set, we
randomly select a number of sudden change QoS values and a number of QoS values
that are not sudden change values. Each set contains 1,000 different test cases. Then,
we conduct some competing prediction methods for the corresponding sudden change
value proportion based on each set of test cases. Table V presents the statistics of
prediction accuracy on these test cases when the proportion of sudden change values
varies from 0% to 100%.

It can be clearly seen that LS (K = 1), Lasso (K = 20), and ARIMA have similar
effects in prediction accuracy when the sudden change value proportion is very low.
If the sudden change value proportion equals the proportion in the initial collected
response time sequences (10.63%), LS (K = 1) and Lasso (K = 20) achieve about 4%
to 12% improvements in prediction accuracy compared to ARIMA. When the sudden
change value proportion increases from 10% to 100%, the improvements of LS (K = 1)
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Table V. Performance Comparisons of Prediction Approaches on Response Time with Different Proportions of
Sudden Change QoS values; � Represents the Performance Increment Compared to Baseline ARIMA Method

Ds = 0% Ds = 10% Ds = 20% Ds = 30%
Approaches MAE RMSE MAE RMSE MAE RMSE MAE RMSE

AVG 0.780 2.269 1.120 3.081 1.351 3.504 1.664 4.129
UPCC* 1.467 3.202 1.712 3.732 1.909 4.091 2.196 4.642
IPCC* 1.018 2.356 1.306 3.041 1.510 3.424 1.775 3.953

WSRec* 1.051 2.389 1.351 3.142 1.564 3.560 1.862 4.175
ARIMA 0.776 2.235 1.095 3.008 1.337 3.475 1.616 4.050

LS

K = 1 0.749 2.216 0.973 2.891 1.169 3.258 1.392 3.730
� 3.5% 0.8% 11.1% 3.9% 12.6% 6.2% 13.9% 7.9%

K = 20 1.320 3.739 1.575 4.118 1.665 4.187 1.878 4.508
� −70.1% −67.3% −43.8% −36.9% −24.5% −20.5% −16.2% −11.3%

Lasso
K = 20 0.771 2.293 1.005 2.883 1.201 3.256 1.432 3.680

� 0.7% −2.6% 8.2% 4.2% 10.2% 6.3% 11.4% 9.1%
Ds = 40% Ds = 50% Ds = 60% Ds = 70%

Approaches MAE RMSE MAE RMSE MAE RMSE MAE RMSE
AVG 1.937 4.568 2.172 4.876 2.461 5.171 2.733 5.424

UPCC* 2.455 5.018 2.614 5.233 2.852 5.481 3.039 5.709
IPCC* 2.019 4.344 2.218 4.608 2.497 4.912 2.756 5.216

WSRec* 2.126 4.595 2.330 4.875 2.603 5.176 2.835 5.442
ARIMA 1.919 4.560 2.165 4.883 2.456 5.236 2.734 5.522

LS

K = 1 1.538 3.894 1.698 4.104 1.940 4.400 2.198 4.647
� 19.9% 14.6% 21.6% 15.9% 21.0% 16.0% 19.6% 15.9%

K = 20 2.111 4.796 2.302 4.963 2.369 4.890 2.587 5.080
� −10.0% −5.2% −6.3% −1.6% 3.5% 6.6% 5.4% 8.0%

Lasso
K = 20 1.596 3.875 1.697 3.956 1.923 4.235 2.129 4.385

� 16.8% 15.0% 21.6% 19.0% 21.7% 19.1% 22.1% 20.6%
Ds = 80% Ds = 90% Ds = 100% Ds = 10.63%

Approaches MAE RMSE MAE RMSE MAE RMSE MAE RMSE
AVG 3.009 5.695 3.234 5.898 3.485 6.144 1.160 3.195

UPCC* 3.277 5.986 3.507 6.202 3.715 6.471 1.750 3.822
IPCC* 3.019 5.506 3.213 5.691 3.417 5.880 1.338 3.131

WSRec* 3.090 5.724 3.315 5.942 3.543 6.202 1.388 3.249
ARIMA 3.022 5.834 3.241 6.021 3.451 6.206 1.148 3.164

LS

K = 1 2.380 4.833 2.580 5.031 2.742 5.193 1.008 3.014
� 21.3% 17.2% 20.4% 16.5% 20.6% 16.3% 12.2% 4.7%

K = 20 2.793 5.309 2.993 5.536 3.090 5.602 1.627 4.248
� 7.6% 9.0% 7.7% 8.1% 10.5% 9.7% −41.7% −34.3%

Lasso
K = 20 2.319 4.621 2.538 4.859 2.646 4.947 1.050 3.011

� 23.3% 20.8% 21.7% 19.3% 23.3% 20.3% 8.57% 4.8%

and Lasso (K = 20) compared to ARIMA also increase from about 10% to about
20%. These results demonstrate that our approaches maintain obvious advantages
in capturing the highly volatile characteristics in temporal QoS sequence, which can
increase the overall prediction accuracy of QoS values for the current time slot.

5.5. Performance on Continuous QoS Re-prediction

To analyze the performance of the continuous QoS reprediction mechanism, we simu-
late an environment where increasing amounts of historical QoS values are collected
and accumulated. First, we randomly remove a large number of temporal response time
sequences or response time values in each sequence in the initial user-service-time
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Fig. 10. MAE. response time value density with various rmins.

matrix. Then, we randomly select 168 remaining response time values in the matrix
as the response time for the current time slot to be predicted and perform LS (K = 1).
For simplicity, we only analyze the performance of QoS reprediction conducted by LS
(K = 1). We randomly let the removed unknown temporal response time sequences or
response time values be known one after another. We increase the temporal response
time density or response time value density in the matrix. When the matrix density
is increased to a certain extent, we perform our QoS reprediction for the predicted
response time values, record the newly predicted values, and evaluate the prediction
accuracy of all the most recent repredicted response time values for the current time
slot to be predicted. Meanwhile, we record the overall model reconstruction times. In
our experiment, we first increase the temporal response time density from 10% to 90%
with 80% response time value density while conducting our continuous QoS repredic-
tion. Then, we increase the response time value density from 50% to 95% with 100%
temporal response time density while using this mechanism.

As shown in the results from Figures 10−17, temporal QoS prediction accuracy
for the current time slot increases continuously in general as a result of prediction
model reconstruction or QoS reprediction when the matrix density increases. Since
the values of τ and rmin affect the model reconstruction frequency as in Section 4, we
mainly analyze the values of them on the effects of this mechanism. As demonstrated
in our results, when rmin is too large (0.95), the overall prediction accuracy of the QoS
values for the current time slot cannot increase significantly with the increase of the
response time value density or temporal response time density. When rmin is too small
(0.7), on the other hand, the overall prediction accuracy increases in general. However,
it may not increase stably. If rmin is too small, the required model reconstruction times
increases dramatically with the increase of accumulated historical QoS values, which
is very time-consuming, as shown in Figure 11 and Figure 15. Therefore, the best
value of rmin is around 0.8 based on our empirical results. Then, we vary the value of τ
and analyze the performance of our continuous QoS reprediction mechanism as shown
Figures 12 and 16. When τ is large (1.0), the overall prediction accuracy for unknown
QoS values does not increase stably with the increase of the response time value
density or temporal response time density. Furthermore, if τ is large, the required model
reconstruction times increases dramatically with the increase of accumulated historical
QoS values. Based on these results, we can determine the best value of τ . Using the best
values of both rmin and τ , our QoS reprediction mechanism can improve the prediction
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Fig. 11. Reconstruction times. response time value density with various rmins.

Fig. 12. MAE. response time value density with various τs.

Fig. 13. Reconstruction times. response time value density with various τs.
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Fig. 14. MAE. temporal response time density with various rmins.

Fig. 15. Reconstruction times. temporal response time density with various rmins.

Fig. 16. MAE. temporal response time density with various τs.
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Fig. 17. Reconstruction times. temporal response time density with various τs.

Table VI. Computational Time on 483,235 Sequences

Method ARIMA UPCC IPCC WSRec LASSO

Time 2416.2s 80.5s 672.7 773.8s 308.8s

Table VII. Computational Time Under Different K Values

K 10 20 30 40 50

Time 304.1s 412.5s 321.5s 327.5s 336.1s

accuracy consistently with the increasing number of accumulated historical QoS values
while requiring less computational time to rebuild the model.

5.6. Computational Time

Finally, we conduct an experiment to analyze the efficiency of various method, including
ARIMA, UPCC, IPCC, WSRec, and our proposed Lasso approach. The experimental
results are summarized in Table VI. It can be clearly seen that the proposed approach
is as efficient as the CF method while being much fast than ARIMA.

We also study the efficiency of our method under different K values. The experimental
result are summarized in Table VII. It can be clearly seen that the computational time
of our proposed method is insensitive to the values of K.

6. CONCLUSION AND FUTURE WORK

In this article, we proposed a novel spatial temporal QoS prediction approach to time-
aware Web service recommendation. We formulated the temporal QoS prediction as a
generic regression problem, where a zero-mean Laplace prior distribution assumption
is made on the residuals of QoS prediction. Lasso regularization was introduced to
facilitate the sparse representation of the temporal QoS sequence. Moreover, the geo-
locations of end users and services were employed to effectively retrieve the most
similar QoS series. The extensive experimental results demonstrated that the proposed
approach outperforms the state-of-the-art temporal QoS prediction methods for time-
aware Web service recommendation.

Although achieving promising performance, some limitations should be addressed.
The current method requires us to retrieve other QoS values at the current time slot,
which cannot be applied to forecast future temporal QoS values. In the future, we will
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investigate an online algorithm to predict future QoS values based on accumulated
data. Moreover, we will study the hierarchical indexing method to improve overall
performance for the spatial-temporal QoS prediction
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