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Disaggregated memory (DM) is an increasingly prevalent architecture with high resource utilization. It sepa-

rates computing and memory resources into two pools and interconnects them with fast networks. Existing

range indexes on DM are based on B+ trees, which suffer from large inherent read and write amplifications.

The read and write amplifications rapidly saturate the network bandwidth, resulting in low request through-

put and high access latency of B+ trees on DM.

In this article, we propose that the radix tree is more suitable for DM than the B+ tree due to smaller read

and write amplifications. However, constructing a radix tree on DM is challenging due to the costly lock-based

concurrency control, the bounded memory-side IOPS, and the complicated computing-side cache validation.

To address these challenges, we design SMART, the first radix tree for disaggregated memory with high

performance. Specifically, we leverage (1) a hybrid concurrency control scheme including lock-free internal

nodes and fine-grained lock-based leaf nodes to reduce lock overhead, (2) a computing-side read-delegation

and write-combining technique to break through the IOPS upper bound by reducing redundant I/Os, and

(3) a simple yet effective reverse check mechanism for computing-side cache validation. Experimental results

show that SMART achieves 6.1× higher throughput under typical write-intensive workloads and 2.8× higher

throughput under read-only workloads in YCSB benchmarks, compared with state-of-the-art B+ trees on DM.
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1 INTRODUCTION

Distributed range indexes are fundamental building blocks of many applications, e.g., databases
and key-value stores, to conduct range queries [1, 26, 65, 69, 72]. To improve resource utilization,
many new proposals adopt the disaggregated memory (DM) architecture [65, 72]. DM can de-
couple computing and memory resources into two elastic resource pools (i.e., computing pool and
memory pool) interconnected with high-speed networks, e.g., remote direct memory access

(RDMA) connections [3, 9, 19, 22, 25, 32, 57]. In this way, a DM range indexing system can utilize
resources more efficiently.

Current DM index systems [65, 72] use B+ tree to build range indexes, following the idea gener-
ally adopted in the monolithic server solutions. However, B+ trees can bring severe read and write
amplification issues on DM. Specifically, when reading or writing a key-value item in a B+ tree, one
should search the tree by traversing many nodes that contain many irrelevant pivot keys and point-
ers. This inevitably amplifies the network bandwidth consumption. As such network bandwidth
is generally the bottleneck of the DM architecture [28], the amplified bandwidth consumption in-
curred by B+ trees exacerbates the bottleneck. This issue will lead to low overall throughput and
high access latency. Our experimental study shows that it can dramatically degrade the throughput
of Sherman [65], the state-of-the-art B+ tree index on DM. The throughput is 10.8× lower than the
theoretical bound of RDMA network interface cards (RNICs) under the YCSB workloads [10].

In this article, we propose that radix tree is a more suitable tree index structure for DM. Com-
pared with B+ trees, radix trees have smaller read and write amplifications, since they do not store
the entire keys in internal nodes. Moreover, the state-of-the-art radix tree design, i.e., ART [38],
further reduces read and write amplifications with an adaptive internal node design. However,
several challenges should be addressed before radix trees become a high-performance, practical
indexing solution for DM.

(1) Lock-based concurrency control is expensive. Remote lock operations are expensive on
DM. However, the existing ART design adopts a lock-based algorithm for concurrency control [39],
which contains many remote lock operations, worsening the write performance. In addition,
computing-side caches are required on DM to reduce operation latency. The traditional read-copy-

update (RCU) scheme for radix trees causes frequent changes in the addresses of cached nodes,
leading to cache thrashing.

(2) Redundant I/Os deteriorate the throughput. RNICs in the memory pool of DM have
bounded IOPS (I/O per second) [62]. However, radix trees have multiple small-sized read and
write operations when traversing and modifying the tree index. Many of these read and write
operations are redundant when multiple clients on the same compute node concurrently traverse
the tree. These redundant I/Os on DM waste the limited IOPS of RNICs and thus decrease the peak
throughput of radix trees.

(3) The complicated computing-side cache validation. Tree indexes on DM typically adopt
computing-side caches to reduce access latency [68]. However, the structural features of radix trees
(e.g., path compression) incur many address changes and metadata changes in radix tree nodes.
These changes add more cache invalidation situations and thus complicate the cache design.

To address the above challenges, we propose SMART, a diSaggregated-meMory-friendly
Adaptive Radix Tree. First, for better concurrency control, we present a hybrid ART concurrency
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control scheme with a lock-free internal node design and a lock-based leaf node design. The lock-
free internal node design avoids the expensive coarse-grained lock-based concurrency control of
the traditional ART. The lock-based leaf node adopts an in-place update scheme, which avoids fre-
quently changing leaf node addresses and prevents computing-side cache thrashing. Second, for
an IOPS breakthrough, we propose a read-delegation and write-combining (RDWC) technique
to reduce computing-side redundant I/Os. Third, for cache validation, we co-design SMART with
an ART cache, including a reverse check mechanism to handle new cache invalidation situations
of ART.

We implement SMART from scratch and evaluate it using the YCSB benchmark [10]. Compared
with Sherman [65], the state-of-the-art B+-tree-based range index on DM, SMART achieves up
to 6.1× higher throughput and 1.4× lower latency for typical write-intensive workloads and 2.8×
higher throughput with similar latency for read-only workloads. The code of SMART is available
at https://github.com/dmemsys/SMART.

In summary, this article makes the following contributions:
— We propose that ART is a better tree index on DM based on theoretical analysis and experi-

mental results.
— We present the first memory-disaggregated radix tree, SMART, with three key designs for

high performance, including a hybrid ART concurrency control scheme, a read-delegation
and write-combining technique, and a reverse check mechanism for cache validation.

— We implement SMART and evaluate it using YCSB workloads [10]. The evaluation results
demonstrate the efficacy and efficiency of SMART.

2 BACKGROUND

2.1 Disaggregated Memory Architecture

Traditional data centers are built on top of distributed monolithic servers, each of which physi-
cally packs CPU and memory resources together. Such an architecture causes low memory uti-
lization (<60%) in today’s cloud data centers [44, 52, 63]. First, the CPU and memory resources an
application requires are allocated from the same monolithic server, which could lead to memory

stranding, a situation in which all CPUs of the server are allocated, and the remaining unallocated
memory on the server cannot be utilized. The experiences in Azure reveal that up to 25% of mem-
ory becomes stranded as more CPUs are allocated to applications [40]. Second, each virtual server
(e.g., virtual machine, container) used in many cloud data centers is configured to accommodate
the peak memory usage, resulting in untouched memory, the allocated but unused memory. It is
reported that only around 50% of the allocated memory is used in Google [52]. Some scheduling-
based methods (e.g., memory harvesting [18]) have been proposed to attack the above issues. How-
ever, the accurate estimation of memory usage of heterogeneous applications is a long-standing
challenge.

DM is an increasingly prevalent architecture proposed to address the above resource utilization
issue at the architectural level [21, 35, 51, 53, 56, 66], the idea of which can work both on special
servers and commodity servers, i.e., physical disaggregation and logical disaggregation. As shown
in Figure 1, it physically separates computing (e.g., CPUs) and memory (e.g., DRAM) resources
into two independent resource pools, i.e., a computing pool and a memory pool. Compute nodes

(CNs) in the computing pool own powerful computing resources but only have a small piece
of memory serving as local caches. In contrast, memory nodes (MNs) in the memory pool are
equipped with masses of memory but only own a few wimpy computing cores for simple tasks
such as establishing network connections and allocating memory spaces. Since all the CNs can
access and fully use the whole shared memory on MNs, DM can achieve great resource utilization.
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Fig. 1. The architecture of disaggregated memory.

A high-speed network with high bandwidth and low latency, e.g., RDMA network, is a crucial
component in the DM architecture that interconnects CNs and MNs [13, 20]. RNICs allow CNs and
MNs to communicate with each other using one-side verbs (e.g., RDMA_READ, RDMA_WRITE,
RDMA_CAS) or two-side verbs (e.g., RDMA_SEND, RDMA_RECV). One-side verbs are preferred
on the DM architecture to enable computing-side clients to operate directly on the disaggregated
memory without involving the weak CPUs on MNs.

2.2 B+ Trees on Disaggregated Memory

Tree indexes are critical for many applications requiring range queries. All previously proposed
tree indexes on DM are variants of the B+ tree, including FG [72] and Sherman [65]. FG is the first
RDMA-based index supporting DM. It uses a B-link tree structure and completely leverages one-
sided verbs to perform index operations, with RDMA-based spin locks for concurrency control.
Since FG directly ports the spin-lock-based concurrency control and B-link tree node designs on
monolithic servers to DM, its performance suffers from severe network contention on lock retries
and write amplification on B-link tree nodes. Sherman [65] is the state-of-the-art B+ tree on DM
that addresses the network contention and write amplification issues of FG. First, it addresses the
network contention on lock-fail retires with a hierarchical on-chip lock (HOCL) scheme. The
network requests on lock-fail retries are reduced with a local lock table shared among clients on
the same CN. The on-chip memory of RNICs is leveraged to reduce PCIe transmissions further. Sec-
ond, it mitigates the write amplification by allowing fine-grained modification to B+ tree nodes
with a two-level version mechanism. Therefore, Sherman achieves much better performance than
FG. However, Sherman still suffers from the natural performance bottleneck of B+ trees, i.e., inher-
ent read amplification, which will be analyzed in Section 3.

2.3 Radix Tree

The radix tree is another popular tree index structure. It stores the segmented key in the top-down
search path over the tree rather than storing the whole key in the internal node. Specifically, each
internal node in the radix tree consists of an array of child pointers. Each pointer is associated
with a segment of bits of the whole key, called partial key, as shown in Figure 2.

Path compression. Path compression is an optimization method for the radix tree to reduce
tree height by removing one-child internal nodes and can be implemented in three ways [38]:
(1) The optimistic method simply abandons the partial keys in the removed nodes and instead stores
a depth value to ensure the subsequent traversal process. (2) The pessimistic method stores all the
partial keys of the removed nodes in the header of the subsequent node. (3) The hybrid method

integrates the two methods above by storing partial keys into the fixed-sized header of the subse-
quent node, together with a depth value to ensure the subsequent traversal if some partial keys
overflow from the header.
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Fig. 2. The optimization process from the basic radix tree to ART. For clarity, hexadecimal partial keys are
shown.

Adaptive radix tree (ART). ART [38] is the state-of-the-art variant of the 8-bit-span radix
tree, designed to optimize the memory utilization of traditional radix trees. Traditionally, an inter-
nal node of a radix tree has all 256 pointers representing all possible partial keys. Many pointers
are empty due to the sparse key distribution [38], wasting memory space in these internal nodes.
ART addresses the issue by proposing four well-designed internal node structures with different
numbers of pointers, i.e., 4, 16, 48, and 256. It dynamically chooses the best-fit internal node struc-
ture to save memory space. As for concurrency control, ART is synchronized using a lock-based
algorithm, i.e., the read-optimized write exclusion (ROWEX) protocol [39]. There are some pro-
posed ART-based indexes designed on monolithic servers [31, 36, 37, 45], while none of them is
designed for DM.

3 ANALYSIS OF TREE INDEXES BUILT ON DM

Since there is no radix tree designed for DM, in this section, we first discuss the design choices
for porting a radix tree to DM (Section 3.1). We then theoretically and experimentally compare B+
trees with the radix tree (specifically, ART) that we port to DM (Section 3.2). At last, we present
the challenges of designing a high-performance ART on DM (Section 3.3).

Unless otherwise stated, all the experiments in this section are conducted with eight CNs and
one MN, each equipped with a 100 Gbps Mellanox ConnectX-6 RNIC. Each CN launches 32 clients
with one shared 600 MB cache. We use YCSB workloads [10] (including 60 million entries, using the
default Zipfian distribution of skewness 0.99) with 32-byte string keys and 64-byte values, which
is typical in real-world workloads [4, 70].
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Fig. 3. Analysis of traditional optimizations of the radix tree on DM. “PC” means path compression.

3.1 Radix Tree on DM

As mentioned in Section 2.3, path compression (including optimistic, hybrid, and pessimistic meth-
ods) and ART are optimizations for a local radix tree to reduce tree height and improve memory
utilization, respectively. In this section, we experimentally show the efficacy and efficiency of these
optimizations in the DM architecture, based on which we summarize the design choices for porting
a radix tree to DM.

Design choice 1: Path compression and ART are both necessary for the radix tree on DM.

In the DM architecture, the remote tree should be traversed layer by layer via one-side RDMA verbs

due to the weak memory-side computing power. Therefore, the tree height determines the RTTs
required for a traversal. Since path compression can structurally reduce the tree height, it can save
RTTs and thus reduce request latency.

The memory-side network bandwidth is generally the performance bottleneck in the DM archi-
tecture [28]. As the clients usually need to read the whole tree nodes (including metadata and child
pointers) during traversal, the node size determines the network bandwidth consumption. Since
ART can reduce the sizes of internal nodes, it can save network bandwidth consumption and thus
improve overall throughput.

We evaluate these two optimizations in a radix tree we port to DM with the YCSB C workload,
as shown in Figure 3(a). Path compression reduces the P99 latency by 11%, since it can reduce the
tree height. The ART design can bring 3.5× improvement in throughput, since it has much smaller
internal nodes and thus consumes less network bandwidth during each request.

Design choice 2: The pessimistic method is the best choice for path compression on DM.

The insertion process of a radix tree is different if the tree adopts a different path compression
method. Specifically, the optimistic method needs two tree traversals to insert a nonexistent key.
One entire tree traversal is required to search for the nonexistent key. The existence of the key is
unknown until a different key stored in the leaf node is found. The other traversal executes the
actual insertion, where the insertion position is determined by both the target key and the key
found in the previous search.

In contrast, the pessimistic method can insert the nonexistent key through one traversal. The
existence of the key can be determined in advance, since all the compressed partial keys are stored
in the headers. The insertion position is where a mismatch between the target key and the partial
keys along the search path occurs.

The hybrid method integrates the two insertion process above. If all the partial keys of the target
key are stored in the limited fixed-sized headers in the hybrid method, then the insertion process
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Table 1. Read and Write Amplification
Factors of Different Trees

ART B+ Tree Sherman

Read M1+E
E

M2+S ·E
E

M2+S ·(M3+E)
E

Write M1+E
E

M2+S ·E
E

M3+E
E

Table 2. An Example of Calculated Read
and Write Amplification Factors

ART B+ Tree Sherman

Read 1.10 32.7 33.0

Write 1.10 32.7 1.01

is the same as that of the pessimistic method. Otherwise, the hybrid method needs two traversals
to insert the key, like the optimistic one.

To verify this, we compare the insert performances of these three path compression methods,
as shown in Figure 3(b). As the pessimistic method can conduct each insertion through only one
traversal, it shows the best performance on DM.

3.2 Motivations: B+ Tree vs. ART on DM

The main problem of B+ trees on DM is their severe read and write amplifications. Generally,
in internal nodes, the B+ tree stores the whole keys. In leaf nodes, the B+ tree stores multiple
keys together. Without optimizations, the B+ tree needs to read and write the entire nodes during
each index operation, causing serious read and write amplifications. In the following, we first
theoretically compare the read and write amplifications of ART with the B+ tree and the write-
optimized B+ tree (i.e., Sherman [65]). We then experimentally show the performance impacts due
to the read amplification.

3.2.1 Theoretical Analysis. The read and write amplification factors of different tree structures
are shown in Table 1, respectively. We assume the internal nodes are cached and no node split
occurs for brevity. M1 and M2 denote the metadata size of the leaf node of the radix tree and B+
tree, respectively. M3 denotes the size of the additional metadata (i.e., entry-level versions) that
Sherman applied to each key-value item. S denotes the span size (i.e., the number of items stored
in a node) of the B+ tree node. E denotes the key-value item size. Thus, the node size of the B+ tree
is S · E.

The amplification factor is defined as the ratio of bandwidth consumption from the server and
bandwidth returned to the application. Without optimizations, when a client reads or writes a
single key-value item in a tree index, the whole leaf node should be read or written. We use
96-byte items, with 32-byte keys and 64-byte values, for all trees as an example.

The leaf node of the ART contains one item with its metadata. In our implementation, 10 bytes

of metadata is enough for each item in ART. The read and write amplification factors are M1+E
E
=

10B+96B
96B

= 1.10. The leaf node of the B+ tree contains S items together with the metadata. The
metadata at least includes two fence keys (2 · 32 bytes), a valid bit, a lock bit, a 1-byte level field,
and two 7-bit versions [65], i.e., 67 bytes in total. We use the default span size in Sherman, which

is 32. The read and write amplification factors are M2+S ·E
E
= 67B+32·96B

96B
= 32.7. For Sherman, each

key-value item in the leaf node is surrounded by a pair of 4-bit entry-level versions. Thus, the read

amplification factor is M2+S ·(M3+E)
E

=
67B+32·(1B+96B)

96B
= 33.0. When writing an item without node

splitting, the client only requires to write back the modified item with its associated entry-level

versions. Thus, the write amplification factor is M3+E
E
= 1B+96B

96B
= 1.01. As shown in Table 2, ART

has the most minor overall amplifications according to the above quantitative calculation.
In addition to the amplification factors, tree height is a potential factor affecting the overall

performance of tree indexes on DM. When traversing a tree on DM without caches, the higher the
tree is, the more network round trips it requires. The tree height of ART is α · K

P
, where α , K , and

P are the path compression ratio, key size, and the size of each partial key, respectively. The path
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compression ratio, ranging from 0 to 1, represents the effect of path compression in ART, which
is determined by the key distribution. The tree height of the B+ tree is �loдSN �, where S and N
are the span size of the node and the total number of key-value items in the tree, respectively.
With 60 million key-value items loaded, the tree height of Sherman, whose span size is 32, is
�loдSN � = �loд326e7� = 6.

Note that there is a tradeoff between the amplification factor and the tree height of the B+ tree. A
smaller node size results in a higher B+ tree with smaller amplifications and vice versa. However,
with long items (e.g., 32-byte keys and 64-byte values), limiting the node size of the B+ tree to
a small value (e.g., 256 bytes) is unacceptable. In this case, the span size of the B+ tree is only
� 256B

32B+64B
� = 2. This results in huge cache consumption, since the smaller the span size, the more

pivot keys are stored in internal nodes, and the more computing-side memory is consumed to
cache the internal nodes. Besides, the tree height in this case is �loдSN � = �loд26e7� = 26, which
leads to high latency when a cache miss occurs.

3.2.2 Experimental Results. To show the impact of read amplification on the performance, we
compare the performances of Sherman and ART under read-only workloads. The impact of write
amplification is similar. We observe that the amplification leads to low throughput and high latency
of B+ trees on DM.

Observation 1: The throughput of the B+ tree is bounded by network bandwidth. The
memory-side network bandwidth is generally the performance bottleneck in the DM architec-
ture [28]. The read and write amplifications of B+ trees cause more bandwidth consumption for
each request, exacerbating the network bottleneck and resulting in low throughput.

As shown in Figure 4(a), with an increasing number of clients, the limited bandwidth prevents
the throughput of Sherman and ART from continually rising. With the same RNIC bandwidth,
Sherman has a lower peak throughput than ART due to the severe read amplification. As shown
in Figure 4(b), the larger the key size or the span size is, the larger the read amplification is, which
decreases the peak throughput of Sherman.

A computing-side cache is usually used for caching the internal nodes of the B+ tree on DM.
As shown in Figure 4(c), with the increasing size of the cache, the throughput of Sherman keeps
bounded by the bandwidth bottleneck and finally saturates at 4.17 Mops/s. The bandwidth con-
sumption from the server equals the maximum network bandwidth of 100 Gbps (12.5 GBps), and
the bandwidth returned to the application is 4.17 Mops/s · 96B = 0.39 GBps . Thus, the measured
read amplification factor of Sherman is 12.5 GBps / 0.39 GBps = 32.1, which is close to our
theoretical analysis in Section 3.2.1.

In contrast, without the read amplification from leaf nodes, the throughput of ART reaches about
45 Mops/s, which is the IOPS upper bound of the RNIC we use. This indicates that ART can make
full use of the RNIC capacity and achieve the best resource efficiency as DM desires.

Observation 2: The latency of the B+ tree is worsened by early network congestion. Net-
work congestion occurs when computing-side requests saturate the bandwidth or IOPS upper
bound of RNICs. As the number of clients keeps growing, excess client requests need to queue
up across the network, which results in latency deterioration. The read and write amplifications
make B+ trees consume the bandwidth rapidly, expediting the process of network congestion.

As shown in Figure 4(d), with the increase of throughput, the latency of Sherman and ART is
stable in the beginning and then experiences a sudden surge due to the network congestion. More-
over, with the same memory-side RNIC bandwidth, Sherman has a much smaller inflection point
(i.e., the throughput threshold that triggers network congestion) than ART. As a result, Sherman
shows an extremely high latency with relatively few clients. By contrast, ART has a high tolerance
to this latency deterioration, thanks to its small amplifications.
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Fig. 4. The read performances of Sherman and ART on DM under the YCSB C workload (100% read).

In addition to the read amplification, the tree height, which determines the number of network
round trips, can also affect the latency of tree indexes on DM. The tree height of the B+ tree is
determined by the span size and the total number of loaded key-value items, while that of ART is
related to the key size.

As shown in Figure 4(e), without caches, the average number of network round trips of ART
is slightly smaller than that of Sherman with 8-byte keys. However, ART requires more network
round trips than Sherman with 32-byte keys. Both ART and Sherman require only one network
round trip with caches, since the internal nodes are cached. Figure 4(f) shows the corresponding
latency. Even though more network round trips are required, the latency of ART is still lower
than that of Sherman. This is because the read amplification of Sherman causes severe latency
deterioration.

ACM Trans. Storage, Vol. 20, No. 3, Article 15. Publication date: June 2024.
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Fig. 5. The challenge of building high-performance ART on DM under hybrid read-write workloads.

3.3 Challenges: ART on DM

Even though ART has superiority under read-only workloads, it suffers from significant challenges
on DM under hybrid read-write workloads.

Challenge 1: Lock-based concurrency control of ART causes poor write performance.

Existing ART adopts lock-based algorithms to perform synchronization [39]. However, lock
operations are expensive on DM and lead to poor write performance, as shown in Figure 5(a).
Specifically, unlike local memory, each lock operation on DM requires additional network trans-
mission (e.g., RDMA_CAS). Furthermore, the lock conflict mechanism (i.e., busy waiting) causes
frequent RDMA retries when failing to acquire a lock, which wastes the limited IOPS of RNICs
and reduces the throughput.

One feasible solution is to design lock-free algorithms. However, lock-free design is not the best
choice for ART as well. Specifically, an out-of-place update scheme is required for lock-free algo-
rithms to update items larger than 8 bytes. It atomically compares and swaps the corresponding
8-byte addresses instead of modifying the items in place, as the latter cannot be realized atom-
ically. However, in high-concurrency scenarios, a mass of out-of-place updates lead to frequent
changes in the addresses of items. This brings about the severe cache coherence issue, since the
old addresses of the items have been cached in other CNs. Even worse, in skewed workloads, the
addresses of hot items are changed continuously and repeatedly, resulting in cache trashing.

To verify this, we evaluate the two update schemes in ART with the YCSB A workload,1 as
shown in Figure 5(b). The out-of-place scheme brings about an average of 19.1% invalid cached

1To eliminate the impact of concurrency conflicts, we scatter the update part of workloads among clients without

intersection.
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addresses of leaf nodes and thus results in a 44.5% throughput decline compared with the in-place
scheme.

Challenge 2: Inter-client redundant I/Os on DM waste the limited IOPS of RNICs. As
mentioned in Observation 1, B+ trees suffer from bandwidth bottleneck, while ART can break
through the bottleneck and achieve the IOPS upper bound of RNICs, with small read and write
amplifications.

However, we find that there are redundant I/Os that waste the limited IOPS of RNICs in the DM
architecture, hindering ART from continually breaking through the IOPS upper bound. Specifically,
taking read operations as an example, when several clients on the same CN read the same key-
value item concurrently, they send identical RDMA_READs across the network. This is superfluous
duplication of effort, since all these requests do the same transmission work.

To measure the extent of underlying inter-client redundant reads, we launch various numbers of
clients on the same CN. Each client continuously issues 1 KB RDMA_READs, with their destination
addresses following a Zipfian distribution of skewness 0.99 (i.e., the same as YCSB’s). As shown
in Figure 5(c), during each read time window, the average number of redundant RDMA_READs
increases with the number of clients and achieves up to 0.48 with 64 clients, implying 48% read
performance improvement potential.

As for inter-client redundant writes, we issue constant RDMA_WRITEs with lock-based con-
currency control via RDMA_CASes from each client. As shown in Figure 5(d), during each
write time window (including lock acquirement and release), the average number of redundant
RDMA_WRITEs grows and reaches up to 3.3, indicating around 330% write performance improve-
ment space with 64 clients. Interestingly, the number of redundant writes is more than the read
one, since redundant writes inevitably exacerbate the concurrency conflicts, leading to a longer
write time window and thus more redundant writes in return. The nearly exponential growth of
the redundant number of RDMA_CASes saturates the IOPS upper bound rapidly and causes poor
write performance.

Challenge 3: Structural features of ART deteriorate the problem of computing-side cache

invalidation. As presented in Section 2.3, path compression and adaptive nodes are two important
structural features that reduce memory consumption by reducing the tree height and the node
size, respectively. However, these two features introduce new cache validation problems. For in-
stance, adjustments on the parent-child relationship of nodes may happen during insertion into
compressed nodes. The caches on other CNs still store the old content of the parent node. If a
client on those CNs does not conduct a cache verification, then it incorrectly reads the old child
node according to the outdated cache and thus fails to access the newly inserted node. Similarly,
node type changes are invisible by the computing-side cache either, which may lead to incomplete
node fetching.

4 SMART DESIGN

We propose SMART, a high-performance ART for DM. Figure 6 shows the overview of SMART. To
improve the efficiency of concurrency control (Challenge 1), we present a hybrid ART concurrency

control scheme. The scheme contains a lock-free internal node design and a lock-based leaf node
design to achieve high write performance without cache thrashing (Section 4.1). To save the limited
IOPS of RNICs (Challenge 2), we propose an RDWC technique to eliminate inter-client redundant
I/Os (Section 4.2). To handle the cache validation (Challenge 3), we co-design SMART with an
ART cache (Section 4.3), including a reverse check mechanism. We then introduce how we use
coroutines further to improve the computing-side request throughput of SMART (Section 4.4).
Last, we summarize the operations (i.e., insert, search, update, delete, scan) that SMART supports
(Section 4.5).
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Fig. 6. The overview of SMART.

4.1 Hybrid ART Concurrency Control

In this section, we first describe the data structures and concurrent operations of the hybrid con-
currency control scheme in SMART. We then introduce RDMA-related optimizations.

4.1.1 Data Structures.

Lock-free internal node. As the addresses of internal nodes change more infrequently, internal
nodes do not cause cache thrashing like leaf nodes. Hence, it is feasible for lock-free internal nodes
to achieve high performance. We modify the internal nodes of ART as follows:

(1) Homogeneous adaptive internal node. As illustrated in Figure 2, a naive ART stores partial
keys and child pointers separately. Such a heterogeneous design makes it hard to design a lock-free
algorithm, since the separated partial key and child pointer should be modified atomically. Besides,
it incurs additional read amplification due to the inflexible fixed-sized internal nodes.

We come up with a homogeneous internal node design that embeds the partial keys into slots.
First, this enables a child pointer to be modified together with its corresponding partial key atomi-
cally, laying the foundation for lock-free algorithms. Second, the read amplification can be reduced,
since internal nodes can have an arbitrary number of slots.

As shown in Figure 7(a), an internal node of SMART consists of an 8-byte reverse pointer, sev-
eral 8-byte slots, and an 8-byte header. The reverse pointer is used for cache validation, which
will be presented in Section 4.3. As for each slot, apart from the embedded 8-bit partial key and
the 48-bit child pointer, we add a 1-bit Leaf field to indicate whether the pointer is pointing to a
leaf node. When Leaf is set, a Lenleaf field is provided, which is used to support variable-sized
keys (Section 4.6). When Leaf is unset, there is a 5-bit Typenode field to indicate the type of the
following internal node. Note that SMART mainly uses theTypenode to reduce the network band-
width consumption rather than memory consumption. When fetching an internal node, SMART
can RDMA_READ only the required number of slots according to theTypenode field, reducing the
read amplification and thus saving the network bandwidth.
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Fig. 7. The structure of the internal node and the leaf node in SMART. The reverse pointer and the in-header
Typenode field are used for cache validation.

(2) Pessimistic 8-byte header of the internal node. We choose the pessimistic method for
path compression, since it can insert a nonexistent key through one traversal, as mentioned in
Section 3.1. Besides, following previous designs [36, 39, 45], we fix the header size to 8 bytes, which
can be changed atomically. If some partial keys overflow from the header, then we store them in
an empty following node. Although this may increase the tree height, we mitigate this with the
help of cache (Section 4.3).

As shown in Figure 7(a), a header consists of an 8-bit Depth field, a 5-bit Typenode field, a 3-bit
Sizearr ay field, and a 6-byte array of partial keys. The Depth field indicates the start position for
matching the target key. The Typenode field is used for cache validation, which will be illustrated
in Section 4.3. The Sizearr ay field records the length of the partial key array, where at most six
partial keys can be stored.

Lock-based leaf node. In-place update schemes are preferred, as it does not cause cache thrashing.
To adopt the in-place update, lock-based concurrency control for the leaf node is required. This
is acceptable, since locks are fine-grained, as each leaf node in the radix tree only contains one
key-value item. We design the leaf node structure as follows for concurrency control:

(1) Checksum-based update-in-place leaf node. The in-place update scheme overwrites the
leaf node at the same address, causing conflicts among readers and writers. To avoid conflicts,
we adopt an optimistic lock in each leaf node with a checksum-based consistency check mecha-
nism [48, 65], where the fixed-sized key-value item in the leaf node is protected by a checksum.
For write-write conflicts, an exclusive lock is used to synchronize the writers. As for read-write
conflicts, when a writer modifies the leaf node, the checksum is re-calculated based on the new
content of the leaf node and written with the new content. The readers verify the checksum after
reading the leaf node. If the checksum verification fails, then the reader conducts a re-read.

Apart from the checksum-based method, version-based methods [13, 33, 49, 65] are also pro-
posed to detect the read-write conflicts. However, when applied to DM, existing version-based
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Fig. 8. A step-by-step example of inserting several new keys into SMART with 8-bit partial keys. For clarity,
hexadecimal partial keys are shown and reverse pointers are omitted. Each thick dotted box indicates an
atomic CAS.

methods will be inefficient, incorrect, or complicated. We will discuss their feasibility for SMART
in Section 4.6.2.

(2) Rear embedded lock. To further reduce the overhead of locks, we combine the lock release
with the writing back of the updated leaf node by embedding the lock into each leaf node. There-
fore, the two operations can be done via one single RDMA_WRITE. Particularly, to avoid premature
lock release, we ensure that the lock release is always triggered after the completion of writing
back. We achieve this by placing the lock at the rear of a leaf node, which leverages the in-order
delivery property of RNICs [13].

As shown in Figure 7(b), a leaf node of SMART consists of an 8-byte reverse pointer, aValid bit,
an 8-byte checksum, a 1-byte rear lock, and a fixed-sized key-value item. The reverse pointer is
used for cache validation, which will be illustrated in Section 4.3. TheValid bit is used to indicate
the deleted state.

4.1.2 Concurrent Operations. Based on the above structural modifications, we demonstrate es-
sential write-related sub-operations with a step-by-step example, as shown in Figure 8. Except for
the in-place leaf update, all the sub-operations are lock-free. The complete operation process will
be described in Section 4.5.

Normal insert. During an insert, the target partial key may not be in the internal node yet.
As shown in Figure 8(b), after the WRITE of the new leaf node (k4), the client CASes the first
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empty slot in the node, together with the new partial key. If the CAS fails, then the client checks
whether the return value (i.e., a new value of the slot written by a concurrent client) contains the
target partial key. If yes, then the client continues to traverse the tree following the return pointer.
Otherwise, the client tries the insert again with the next empty slot.

Leaf split. If an existing leaf node is found during an insert, then a leaf split is needed as shown
in Figure 8(c). Specifically, the client first calculates the rest of the longest common key prefix of
the two leaf nodes (k5 and k1). Then, it allocates sufficient sequentially-connected internal nodes
to store the common key prefix in their headers. The last internal node will contain two child
pointers pointing to the old and new leaf nodes. All internal nodes and the new leaf node can be
written in parallel, after which the client CASes the parent slot to point to the first new internal
node. If the CAS fails, then the client continues to traverse following the return pointer.

Header split. If a mismatching for in-header partial keys is found, then a header split is required
as shown in Figure 8(d). Specifically, the client allocates a new NODE_4 pointing to the split inter-
nal node and new leaf node (k6), with its header storing the matched part of partial keys. The new
internal and leaf node can be written in parallel. Then, the client CASes the parent slot to make
it point to the new internal node ( 1©). If CAS succeeds, then the redundant in-header old partial
keys are removed via an additional CAS ( 2©). Otherwise, the client continues to traverse following
the return pointer.

Note that the correctness of concurrent searches can be guaranteed by the in-header Depth
value, which indicates the start position for matching the current key. A concurrent search READs
the parent node and then the child node. Therefore, there are two situations of read-write conflicts.
First, the READ of the parent node occurs after the CAS of the parent slot ( 1©), while the READ of
the child node occurs before the CAS of the split header ( 2©). In this situation, redundant in-header
partial keys are read, which does not affect the correctness. Second, the former READ occurs before
the former CAS ( 1©), while the latter READ occurs after the latter CAS ( 2©). In this case, the reader
re-reads the parent slot if finding partial keys missing according to the Depth value.

Node type switch. To avoid copy-on-write (COW) overhead and additional cache coherence
introduced by out-of-place updates (Challenge 1), we conduct an in-place node type switch. This
is feasible, thanks to the homogeneous adaptive internal node design (Section 4.1.1). To be specific,
we pre-allocate the contiguous space of NODE_256 on MNs for each internal node. This consumes
a little additional memory but enables lock-free operations during the node type switch. When
neither a matching partial key nor an empty slot is found in the current internal node, the client
can try to CAS the following empty slots one-by-one, whose addresses are behind the node ( 1©)
as shown in Figure 8(e). After a successful CAS, the current best-fit node type can be determined
by the index of the newly inserted slot. The client then tries to update the two oldTypenode values
(on the header and the parent slot) with the new one via two concurrent CASes ( 2©), making the
newly inserted leaf visible by subsequent search. If both CASes succeed or fail with return values
containing Typenode values larger than/equal to the expected one, then the node type switch is
finished. Otherwise, the client retries the CASes.

In-place leaf update. To update a leaf node, the client first acquires the rear embedded lock in
the leaf node. It then WRITEs back the updated leaf node with the re-calculated checksum and the
unset lock, after which the in-place leaf update is finished with the lock properly released.

4.1.3 RDMA-related Optimizations. To further optimize performance on DM, SMART adopts
the following RDMA-related optimizations [28].

Inline write. For small-sized WRITE (e.g., writing internal nodes smaller than NODE_16 or leaf
nodes), the INLINE flag is set, enabling the RNIC to encapsulate payload into the work queue

entry (WQE) and thus reducing PCIe overhead.
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Unsignaled verbs. As for writing commands allowing asynchronous execution (e.g., CAS of the
header during header split), SMART unsets the SIGNALED flag to reduce the overhead of polling
RDMA completion queues.

Doorbell batching. If a client issues multiple WQEs to the same queue pair (e.g., to the same
MN), then a doorbell batching is conducted to reduce PCIe overhead.

4.2 Read Delegation and Write Combining

SMART proposes the RDWC technique on DM to eliminate inter-client redundant I/Os in terms
of reads and writes, respectively, to break through the IOPS upper bound. The high-level idea of
RDWC is similar to FLOCK [50], a communication framework that enables connection sharing
among threads for RDMA networks. In FLOCK, the client side coalesces a set of requests in one
message, and then the server processes all the requests in the message. However, FLOCK is un-
suitable for DM due to the weak computing power of MNs. Unlike FLOCK, RDWC only focuses
on eliminating redundant requests and does not involve MNs. In this section, we first introduce
hash-based local locks, a critical component to implement RDWC. We then present the processes
of the read delegation and the write combining, respectively.

4.2.1 Hash-based Local Locks. The inter-client redundant I/Os on each CN occur among the
concurrent read and write operations on the same key or address. Therefore, computing-side local
locks are needed to collect the concurrent operations.

We maintain the local locks in each CN as a table, similar to the local lock table of HOCL in Sher-
man [65]. However, unlike Sherman, which maintains each local lock for a coarse-grained global
lock, SMART maintains each local lock for a key (i.e., fine-grained leaf node). It is challenging to
store all such locks in each limited computing-side memory. To address this, we use hash-based
local locks, where a lock corresponds to a set of keys with the same hash value.

We dynamically maintain a unique key in each local lock to solve the hash-conflict problem
of our hash-based scheme. Specifically, the first client who acquires a local lock successfully will
record its target key as the unique key of this local lock. The subsequent clients who fail to acquire
this local lock will conduct a hash-conflict check by comparing their target key with the unique
key. If the target key is exactly the same as the unique key, then the client can be involved in
the read delegation or write combining. Otherwise, a hash conflict is found, and the client should
execute a normal remote read or write on its own for correctness. The unique key is freed when
the first client releases the local lock.

4.2.2 Read Delegation. To reduce inter-client redundant I/Os for reads, a delegation client can
be elected on each CN to execute the same read and then share its RDMA_READ result with other
waiting clients. The first client who acquires the local lock successfully is the delegation client,
and the subsequent clients who fail to acquire the lock are the waiting clients. The relationship
between the delegation client and the waiting clients is similar to that between the first cache miss
and the subsequent delayed cache hits in the cache system [5].

We implement this as shown in Figure 9(a). After acquiring the corresponding local lock success-
fully, the delegation client records its target key as the unique key and then conducts the remote
tree search (i.e., including cache search, tree traversal, and leaf node read), which is the time win-
dow of read delegation ( 1©). During the time window, the subsequent clients failing to acquire the
local lock first execute the hash-conflict check by comparing their target key with the unique key.
If a hash conflict is found, then the client executes a normal tree search by itself ( 2©). Otherwise,
it pushes itself into a read-waiting queue and waits for the search result from the first client ( 3©).
Finally, the delegation client shares its search result with the waiting clients and releases the local
lock.
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Fig. 9. The processes of the read delegation and the write combining on SMART, respectively.

4.2.3 Write Combining. Write combining (WC) is a normal technology in modern proces-
sors [11]. When a processor intends to issue multiple writes to the same memory region in a small
time window, it combines the writes into a single burst write to save the system bus bandwidth.
This idea, also known as write coalescing, is applied to many storage systems [27, 34, 61]. Inspired
by this, we find it feasible to conduct a WC on each CN. When clients intend to make several con-
current key-value writes to the same memory-side key or address, they can combine the writes
into a single consensus write to save the network bandwidth and the limited IOPS of RNICs.

We implement WC on DM as shown in Figure 9(b). A client that succeeds in acquiring the
corresponding local lock first records its target key as the unique key and writes its new value
into the write combining buffer (WCB) and then conducts the remote tree insert or update ( 1©).
Differently, the time window of write combining is the former partial period of tree insert or update
(i.e., cache search, tree traversal, and lock acquirement on leaf node). After that, the client reads the
combined consensus result from WCB and then makes an RDMA_WRITE to write back the result
and release the remote lock. Finally, the client releases the local lock. During the write-combining
time window, the subsequent clients first perform the same hash-conflict check. If a hash conflict
is found, then the client performs a normal tree insert or update on its own ( 2©). Otherwise, it first
writes its expected value into the WCB (with local lock-based concurrency control), making the
value visible to the first client. Then, the client pushes itself into a write-waiting queue to wait for
the completion of the remote write ( 3©).

4.2.4 Put Both Together. Naively putting read-delegation and write-combining together may
introduce incorrect read results when a client reads a key-value item after writing it. Specifically,
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Fig. 10. The issue (the left part) and the solution (the right part) of putting the read-delegation (RD) time
window and the write-combining (WC) time window together, respectively.

the latter read may be delegated by a client whose read happens before the write operation. In
this case, the old value (i.e., the value of the item before the client’s write) is returned to the read
operation that happens after the write, breaking the causality of the read and write. As shown
in Figure 10, we use the same time window for read-delegation and write-combining to address
this issue. For clarity, we call the same time window as the execution window, define the write and
read with causality asW0 and R1, and define the read happening beforeW0 as R0. Without loss of
generality, we assume that R0 andW0 are operations succeeding in acquiring the local locks in the
read-delegation time window and the write-combining time window, respectively. The execution
window is one of the two time windows that has an earlier end time. It will cut off the other
window to make the two time windows end at the same time, thus separating R0 and R1 into two
different time windows.

Specifically, if R0 ends earlier than W0, then the execution window is the read-delegation time
window. R1 has yet to happen during this window, since it should be conducted after W0 is com-
pleted due to their causality. Thus, it is not delegated by R0. If W0 ends earlier than R0, then the
execution window is the write-combining time window. Since the execution window will cut off
the read-delegation time window, R1 is also not delegated by R0 in this case. Consequently, by de-
termining the execution window, the write and read operations with causal relations are included
in two non-overlapped time windows, and thus, the above issue can be avoided. To achieve this, we
let R0 andW0 fairly acquire another local lock when they complete their remote processes, where
the winner decides the execution window. The winner cuts off the other time window atomically
without blocking the corresponding process, and thus, the read delegation and the write combining
can be conducted exclusively and concurrently.2

4.3 ART Cache

To reduce remote access during tree traversal, a memory-efficient ART-indexed cache is designed
on each CN to store partial internal nodes of SMART. To be specific, utilizing the feature that each
radix tree node (excluding header) can be uniquely identified by a key prefix, we adopt a local
ART on each CN to index the cached internal nodes. Each CN maintains its local ART without
interfering with each other. All operations of SMART first search in the local ART for the deepest
internal node matching the prefix of the target key. The operations then start the remote traversal

2Note that with N clients in each CN, there are at most N dynamically allocated WCBs and unique keys at the same time,

whose memory consumption (i.e., size of N key-value items) is negligible.
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Fig. 11. The structure of the local ART in the ART cache.

from the cached internal node to save network round trips. If a client reads a remote internal node,
then it will insert the node into the local ART or replace the outdated cached node with the new
read one. If a client is steered to the wrong remote node due to the cache invalidation, then it will
invalidate and remove the outdated cache node from the local ART. In this section, we first present
the structure of the local ART. We then introduce the cache invalidation situations in SMART and
the reverse check mechanism to handle the cache invalidation.

4.3.1 Local ART. Figure 11 shows the structure of the local ART in the ART cache. As shown in
Figure 11(a), each leaf node (i.e., cache entry) of the local ART contains the snapshot of a traversal
context (i.e., the content of an internal node being read from MNs, theDepth value, and the address
of the node). As shown in Figure 11(b), the internal node of local ART is structurally similar to the
remote one (Section 4.1.1) without the reverse pointer, except for the following two designs:

(1) High-level leaf node. For clarity, we define internal nodes adjacent to the leaf nodes as
lowest-level internal nodes and others as high-level internal nodes. In the remote ART, key-value
items can be inserted into the lowest-level internal nodes, since all the keys can be zero-padded to
the same length. However, as a unique identifier for a remote internal node, a key prefix is variable-
length and cannot be padded by zero. For instance, “\01” and “\0\01” represent the key prefixes of
two remote internal nodes, whose depth is 2 and 3, respectively. With zero padding, these two key
prefixes will be indistinguishable. Since the local ART uses key prefixes to index the cache entries,
the cache entries should be inserted into high-level internal nodes of the local ART. We call leaf
nodes (i.e., cache entries) inserted into the high-level internal nodes as high-level leaf nodes.

Since local locks are much less expensive than remote locks, the lock-free design (Section 4.1.1)
is no longer necessary for the local ART. Therefore, we extend the 8-byte slot into the 16-byte
Lonд Slot , as shown in Figure 11(b), to realize the high-level leaf node described above. For each
Lonд Slot , apart from the 8-bit partial key and the 48-bit child pointer, we add a 48-bit leaf pointer
to point to a high-level leaf node, i.e., a cache entry.
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(2) External variable-length header. In the remote ART, we fix the header size to 8 bytes for
the lock-free algorithm. This is unnecessary for the local ART. We extend the fixed-sized header to
a variable-length header in the local ART to store all the corresponding compressed partial keys in
each header. Specifically, instead of embedding the header in each internal node, we use an 8-byte
header pointer to point to the variable-length header, as shown in Figure 11(b). This is acceptable
in the local ART, since local memory access is much less expensive than remote access, which
consumes one RTT.

4.3.2 Cache Invalidation Situations. Since we cache the slots of the internal nodes in clients,
changing the slots in the disaggregated memory leads to cache invalidation. We analyze all opera-
tions that change the slots (i.e., slot insert, update, and delete) and find there are only three types
of cache invalidation in the current SMART design, i.e., Type 1: adjustments on the parent-child

relationship, Type 2: node type changes, and Type 3: deleted nodes. Specifically:
For slot insert, inserting a new slot does not affect the client cache, since the new slot is not in

the client cache.
For slot update, it contains four situations according to the structure of slots in Figure 7(a)

(note that the Partial Key field keeps unchanged until deleted):
— Updating the Child Pointer field. This type of cache invalidation corresponds to Type 1.
— Updating the Typenode field. This type of cache invalidation corresponds to Type 2.
— Updating the Leaf field. Since leaf nodes have different addresses from internal nodes, the

Leaf field update should be combined with a Child Pointer update. Thus, this type of cache
invalidation corresponds to Type 1.

— Updating the Lenleaf field. This field keeps unchanged, since SMART is currently designed
for fixed-sized leaf nodes. The support for variable-sized leaf nodes will be discussed in
Section 4.6.

For slot delete, this type of cache invalidation corresponds to Type 3.

4.3.3 Reverse Check Mechanism. To handle the above three types of cache invalidation situa-
tions, we design a reverse check mechanism specifically for SMART, as existing solutions on B+
trees are infeasible for ART. We store the check information in remote internal and leaf nodes. A
mismatch between check information and cache content indicates an outdated cache entry, which
will be invalidated.

(1) Adjustments on the parent-child relationship. We store a reverse pointer in the front of
each node to point to its parent, as shown in Figure 7. If the client reads a remote node according
to a cached pointer, then it checks whether the reverse address is equal to the node address in
the cache entry. If not, then a mismatch is found, which indicates that a newly inserted node (e.g.,
caused by leaf split or header split) is invisible to the client due to the outdated cache entry.

(2) Node type changes. We design a Typenode field in the header of each node to indicate the
current type of the node, as shown in Figure 7(a). If the client reads a remote node according to
a cached pointer, then it checks whether the in-header Typenode value being read is the same as
that in the cached slot. If not, and the in-headerTypenode value is larger than the cached one, then
read the rest of the remote node.

(3) Deleted nodes. We set the in-header Typenode value to zero to indicate the deleted state of
an internal node. As for a deleted leaf node, the Valid bit is unset.

4.4 Coroutine-based Throughput Boost

In this section, we present how we use coroutines [12, 24] to improve the computing-side request
throughput of SMART. A coroutine is a special function that can suspend and resume during
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Fig. 12. The timelines of a client thread executing two simultaneous operations with no (the upper part) or
two coroutines (the lower part), respectively.

the execution of each thread. It is a lightweight way for each client thread to handle multiple
tasks simultaneously. The client thread can schedule the coroutines with some manually defined
program points. For brevity, we define these program points as switching points. When a coroutine
executes to the switching points, it saves its context and suspends. After that, another coroutine
will resume and restore its context.

We implement each operation of SMART as a coroutine function. Thus, each client thread can
execute multiple operations simultaneously. Figure 12 shows the timeline of a client thread exe-
cuting two simultaneous operations with two coroutines, compared with that without coroutines.
The client can hide the busy-waiting overhead and achieve higher throughput by scheduling the
two coroutines according to the switching points. Specifically, we define the following three types
of switching points in the coroutine functions of SMART.

(1) Switching after issuing synchronous RDMA requests. Each operation of SMART con-
tains multiple RDMA requests (e.g., RDMA_READ, RDMA_WRITE, RDMA_CAS). After issuing a
synchronous RDMA request, the client should poll the completion queue (CQ) to check whether
the RDMA request is complete. This wastes the computing-side CPU resources and results in low
overall throughput. Therefore, we let the client thread switch to another coroutine after issuing
each synchronous RDMA request to hide the RDMA polling overhead.

(2) Switching after failing to acquire remote locks. As mentioned in Section 4.1.1, SMART
adopts a lock-based leaf node design. When failing to acquire the lock of the leaf node, the client
needs to retry until the lock request is successful. Switching a coroutine that fails to acquire a lock
can avoid a dead-lock problem where two coroutines of the same client thread try acquiring the
same lock. The coroutine that succeeds in acquiring the lock will never resume if the other one is
trapped in lock-fail retries without this switching point. In addition, this type of switching can also
hide the busy waiting overhead to some extent, as the lock-fail retries introduce many network
I/Os and lead to low overall throughput.

(3) Switching after being pushed into waiting queues. As mentioned in Section 4.2, SMART
proposes the RDWC technique to batch concurrent read or write operations. Note that the RDWC
technique actually batches the coroutine functions, since we implement each operation as a corou-
tine function. The coroutines can improve the batch rate of RDWC, since each client thread exe-
cutes multiple coroutines simultaneously. This switching point can also avoid a dead-lock problem
like the previous type. Take read delegation as an example. The elected delegation coroutine will
never resume if others of the same thread are trapped in the read-waiting queue without this
switching point.
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ALGORITHM 1: Search(key, &value).

1 // Search a non-empty slot from the cache; READ the root slot if a cache miss occurs
2 slot, cache_entry = CacheSearchOrRootRead(key)
3 RESTART:
4 // If the slot is empty, the key is not found
5 if (slot == NULL)
6 return KEY_NOT_FOUND
7 // READ the leaf or internal node pointed by the slot
8 node = NodeRead(slot.child_pointer, slot.leaf)
9 // If the reverse check fails, invalidate the cache entry and READ the slot

10 if (ReverseCheck(node, cache_entry, &slot) == IS_EXPIRED)
11 goto RESTART
12 if (IsLeaf(node))
13 if (node.key == key) // The key is found
14 value = node.value
15 return SEARCH_FINISH
16 else return KEY_NOT_FOUND
17 else
18 // If the header does not match, the key is not found
19 if (HeaderMatch(key, node.header) == NOT_MATCH)
20 return KEY_NOT_FOUND
21 // Search the node for a slot whose partial key is matched
22 if (SlotSearchOnNode(key, node, &slot) == SUCCESS)
23 goto RESTART // search next level of the tree
24 return KEY_NOT_FOUND

4.5 Operations

All operations first search in the cache for the deepest slot that is matched by the prefix of the
target key. If none of the cached slots hits, then start the traversal from the tree root slot.

Search. The pseudo-code of the search operation is shown in Algorithm 1. The client first reads
the node according to the slot, after which a reverse check is conducted to check if the cache
entry expires. If yes, then invalidate the cache entry and retry this search (lines 7–11). As for
a leaf node being read, the target item is found if its key is the same as the target key. Other-
wise, it does not exist (lines 13–16). As for an internal node, if all the in-header partial keys are
matched, and the next target partial key can be found in a slot, then read the next node along
the child pointer in the slot and repeat the process. Otherwise, the target item does not exist
(lines 18–24).

Insert/Update. The pseudo-code of the insert and update operations are shown in Algorithm 2.
The client first reads the node and conducts a reverse check like the search (lines 9–11). After that,
as for a leaf node, if its key is the same as the target key, then execute an in-place leaf update

(lines 13–16). Otherwise, a leaf split is needed (lines 17–20). As for an internal node, if a mis-
matching for the in-header partial keys is found, conduct a header split (lines 22–26). Other-
wise, turn to search among the slots. If the current target partial key can be found in a slot, then
read the next node along the corresponding child pointer in the slot and start the process again
(lines 27–28). Otherwise, conduct a normal insert with the first empty pointer slot (lines 29–35).
If no empty slot can be found, then a node type switch is needed (lines 36–39).

Delete. The pseudo-code of the delete operation is shown in Algorithm 3. Delete operations
have a similar process as insert operations. A normal delete clears the slot pointing to the target
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ALGORITHM 2: Insert/Update(key, value).

1 /* For all CAS-related functions below, the slot is updated to the return value of
the CAS. Other functions are the same as those in Search(). */

2 slot, cache_entry = CacheSearchOrRootRead(key)
3 RESTART:
4 // If the slot is empty, execute a normal insert via a CAS
5 if (slot == NULL)
6 if (NormalInsert(key, value, &slot) == CAS_SUCCESS)
7 return INSERT_FINISH
8 else goto RESTART
9 node = NodeRead(slot.child_pointer, slot.leaf)

10 if (ReverseCheck(node, cache_entry, &slot) == IS_EXPIRED)
11 goto RESTART
12 if (IsLeaf(node))
13 // If the key is found, execute an in-place leaf update
14 if (node.key == key)
15 InPlaceLeafUpdate(key, value, node)
16 return UPDATE_FINISH
17 // Otherwise, execute a leaf split via a CAS
18 if (LeafSplit(key, value, &slot, node) == CAS_SUCCESS)
19 return INSERT_FINISH
20 else goto RESTART
21 else
22 // If the header does not match, execute a header split via CASes
23 if (HeaderMatch(key, node.header) == NOT_MATCH)
24 if (HeaderSplit(key, value, &slot, node.header) == CAS_SUCCESS)
25 return INSERT_FINISH
26 else goto RESTART
27 if (SlotSearchOnNode(key, node, &slot) == SUCCESS)
28 goto RESTART // search next level of the tree
29 // If no matched slot is found, execute a normal insert on the first empty slot
30 for slot in EmptySlots(node)
31 ret = NormalInsert(key, value, &slot)
32 if (ret == CAS_SUCCESS)
33 return INSERT_FINISH
34 if (ret == SAME_PARTIAL_KEY_INSERTED)
35 goto RESTART
36 // If the node is full, conduct a node type switch via CASes
37 if (NodeTypeSwitch(key, value, &slot, node) == SAME_PARTIAL_KEY_INSERTED)
38 goto RESTART
39 return INSERT_FINISH

leaf node via RDMA_CAS and unsets the Valid bit of the deleted leaf node (lines 6–10). Opposite
operations of leaf split and header split are conducted for path compression (lines 11–25).

Scan. The pseudo-code of the scan operation is shown in Algorithm 4. At each level of traversal,
the client conducts parallel RDMA_READs to fetch all nodes inside the target key range (lines 7–8).
For each RDMA_READ, the client processes the node being read in the same way as the search
operation, with an additional comparison between partial keys and target key range to exclude
unwanted concurrent search paths (lines 14–20). Like many other existing tree indexes [65, 72] on
DM, SMART does not guarantee the scan is atomic with concurrent insert or update operations.
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ALGORITHM 3: Delete(key).

1 /* The implementation of the function Search_() is similar to the function Search(),
while it additionally returns the slot that points to the target node, the
node that contains the slot, and the parent slot that points to the node. */

2 RESTART:
3 ret, slot, node, parent_slot = Search_(key)
4 if (ret == KEY_NOT_FOUND)
5 return KEY_NOT_FOUND
6 // Set the slot to NULL via CAS
7 if (NormalDelete(&slot) != CAS_SUCCESS)
8 goto RESTART
9 // Unset the valid bit of the deleted leaf

10 InvalidateNode(slot.child_pointer)
11 // Path compression is available
12 if (CurrentNonEmptySlotNum(node) <= 1)
13 remain_slot = RemainSlot(node, slot)
14 // If the node is empty, recursively remove empty nodes
15 if (remain_slot == NULL)
16 return Delete(KeyPrefix(node))
17 // If the remaining slot points to a leaf node, execute a leaf merge
18 if (remain_slot.leaf && LeafMerge(remain_slot, &parent_slot) == CAS_SUCCESS)
19 InvalidateNode(parent_slot.child_pointer)
20 return DELETE_FINISH
21 // If the remaining slot points to an internal node, execute a header merge
22 if (!remain_slot.leaf && HeaderMerge(remain_slot, &parent_slot) == CAS_SUCCESS)
23 InvalidateNode(parent_slot.child_pointer)
24 return DELETE_FINISH
25 goto RESTART
26 return DELETE_FINISH

4.6 Discussion

4.6.1 Support for Variable-sized Keys and Values. SMART currently supports fixed-sized keys
and values. For variable-sized keys and values, the optimizations of update-in-place leaf node and
rear embedded lock in SMART are no longer applicable. Instead, SMART can use the RCU scheme
to out-of-place update the leaf node to support variable-sized keys and values. The search, insert,
and delete operations on variable-sized key-value items are the same as those on fixed-sized ones.

To apply the RCU scheme, when updating a key-value item, SMART first allocates a new leaf
node and writes the new item into it via an RDMA_WRITE. SMART then updates the parent slot
of the old leaf node via an RDMA_CAS, with the Lenleaf field storing the new leaf node size and
the child pointer pointing to the new leaf node. Like PACTree [31], SMART can use the epoch-

based memory reclamation (EBMR) technique [17, 23] to detect the state in which no thread
is reading the old leaf node, and the node can be safely freed.

As for the leaf node structure, SMART can follow the design in RACE [73]. As shown in Fig-
ure 13, the leaf node structure includes a Lenkey field and a Lenval field, which indicate the sizes
of the following Key and Value fields, respectively. SMART can use the 7-bit Lenleaf field in the
parent slot and a pre-configured lenдth_unit value to indicate the length of the leaf node. The
maximum length of a leaf node is 27 · lenдth_unit . When a key-value item exceeds the maximum
length, SMART can store the remaining content in a second key-value block linked to the leaf
node.
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ALGORITHM 4: Scan(from, to, &results).

1 /* Most functions are the same as those in Search(). */
2 slots, cache_entries = CacheScanOrRootRead(from, to)
3 RESTART:
4 // If no slot is to be processed, the scan is finished
5 if (IsEmpty(slots))
6 return SCAN_FINISH
7 // Read all the nodes pointed by the slots via doorbell batching
8 nodes = NodeBatchRead(slots)
9 next_slots = EmptySet()

10 for slot, node, cache_entry in slots, nodes, cache_entries
11 if (ReverseCheck(node, cache_entry, &slot) == IS_EXPIRED)
12 next_slots.add(slot)
13 continue
14 // For a leaf node, check if the key is within [from, to)
15 if (slot.leaf && node.key >= from && node.key < key)
16 results.add(node.key, node.value)
17 // For an internal node, filter out slots whose key ranges overlap [from, to)
18 if (!slot.leaf)
19 for next_slot in FilterSlotsOnNode(node, from, to)
20 next_slots.add(next_slot)
21 slots = next_slots
22 goto RESTART

Fig. 13. The structure of the variable-sized leaf node.

Moreover, the cache validation mechanism (Section 4.3.3) can be extended to support variable-
sized leaf nodes with a new cache invalidation situation, i.e., Type 4: leaf node length changes.
When a client reads a remote leaf node according to a cached slot, it checks whether the sum of
the Lenkey and Lenval values equals the Lenleaf · lenдth_unit value. If not, then the cached slot is
invalid.

4.6.2 Feasibility of Version-based Consistency Check. There are generally four existing version-
based approaches for readers to detect concurrent writes on data, i.e., single version [71], Lamport

versions [33], bookend versions [49, 65], and FaRM cache line versions [13].
The single version method requires two dedicated RDMA_READs to read the version number and

data, respectively. After reading the data, the version number is read once more via RDMA_READ
and compared to the initial value to detect concurrent modifications to the data. This method is
inefficient on DM due to multiple RDMA_READs.

The Lamport versions method maintains two version numbers for each data, i.e., v1 and v2. The
writer increments v1 before writing the data and increments v2 after writing. The reader reads
v2 before reading the data and v1 after reading it. The concurrent modifications to the data are
detected by comparing the two version numbers. Unfortunately, when implemented on DM, the
readers also need to send multiple RDMA_READs, which is expensive.

The bookend versions method embeds a pair of version numbers into the data. One is stored at
the start of the data, and the other is stored at the end. The data obtained via RDMA_READ is
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consistent only when the two versions are identical. Although this method only requires a sin-
gle RDMA_READ in the best case, it presumes that the RDMA_READ is performed in increasing
address order, which is proved to be incorrect [71].

The FaRM cache line versions method is a technique proposed by FaRM [13], which leverages the
cache-coherent DMA specified by x86. It stores a version number at the beginning of every cache
line and detects the concurrent modifications to the data by comparing the cache line versions that
the data contains. Like the checksum-based method, this method is correct and efficient on DM
with only one RDMA_READ required in the best case, and thus, it is feasible for the consistency
check to the leaf node of SMART. However, it is complicated due to the cache-line-based data man-
agement. Therefore, we choose to use the checksum-based method in our design (Section 4.1.1).

4.6.3 Generality of Techniques in SMART. Some techniques in SMART can also be applied to
other kinds of indexes. Particularly: (1) The RDWC technique can benefit any tree indexes, since it
is transparent to the lower-level index structures. When applied to other index structures, it brings
about the same performance improvement as applied to ART. (2) The reverse check mechanism can
benefit any radix-tree-based indexes. It is designed to handle the cache validation problems caused
by ART’s features. (3) The rear embedded lock can be adopted in any lock-based structures on DM
to save one RTT.

4.6.4 The First Lock-free ART Design. A pure lock-free ART can be formed with the lock-free
node design in Figure 7(a) and a lock-free leaf node design with a traditional RCU scheme. To our
knowledge, this is the first lock-free ART design. In our implementation, SMART can degenerate
into the pure lock-free ART by disabling the optimizations of update-in-place leaf node and rear

embedded lock.

5 EVALUATION

5.1 Experimental Setup

5.1.1 Testbed. We run all experiments on 16 physical machines (16 CNs and 2 MNs)3 on the
Clemson cluster of CloudLab [14]. Each machine has two 36-core Intel Xeon CPUs, 256 GB of
DRAM, and one 100 Gbps Mellanox ConnectX-6 RNIC. Each RNIC is connected to a 100 Gbps
Ethernet switch. Each MN owns 64 GB DRAM and one CPU core for network connection and
memory allocation. Each CN owns 4 GB DRAM and 64 CPU cores, where each core can serve as
a client. The MNs register memory with huge pages to reduce page translation cache misses of
RNICs [13].

5.1.2 Workloads. Without explicit mention, we use the index microbench [67] to generate
YCSB [10] workloads like previous work [6, 31, 47]. We evaluate SMART with six YCSB core work-
loads: A (50% read, 50% update), B (95% read, 5% update), C (100% read), D (latest-read, 95% read,
5% insert), E (95% scan accessing up to 100 items, 5% insert), and an additional LOAD (100% insert)
workloads, using the default Zipfian distribution for all workloads except for YCSB LOAD and D.
We also evaluate SMART with four uniform workloads: A, B, C, and D, which are generated using
the uniform distribution for the corresponding YCSB workloads. For most workloads, we test two
key types, i.e., integer (8-byte) and string (32-byte). For string workloads, we use 125 million pub-
licly available email addresses [16] and conduct a common pre-processing (i.e., swap username
and domain fields of email addresses) like previous work [38, 46, 47, 67]. We use 8-byte values
consistent with prior work [6, 29, 46, 49, 65, 68]. For each workload, we populate 60 million keys
before conducting 60 million operations, except for the LOAD test.

3Like Sherman [65], we make two physical machines act as both CN and MN to save machine resources.
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Fig. 14. The performance comparison of tree indexes on DM under YCSB and uniform workloads of integer
keys, respectively.

5.1.3 Comparisons. We compare SMART with two state-of-the-art tree indexes, i.e., Sher-
man [65] and ART [38]. We use the default configuration of Sherman (e.g., a span size of 32 for
long key) with all optimizations enabled (e.g., on-chip memory). Since ART is not designed for DM,
we port it to DM by re-implementing it from scratch (as mentioned in Section 3), including its syn-
chronization design (i.e., ROWEX [39]). For better baseline performance, we apply the HOCL of
Sherman to ART and any other baselines of SMART. Coroutines are used in all three indexes to
boost overall throughput.

5.2 Performance Comparison

Figures 14 and 15 present the throughput-latency curves of the three indexes with integer and
string keys, respectively, using various numbers of clients (16 at least and 896 at most, evenly
distributed across 16 CNs). Without loss of generality, we discuss the performance of integer keys
in the following:
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Fig. 15. The performance comparison of tree indexes on DM under YCSB and uniform workloads of string
keys, respectively.

5.2.1 YCSB Workloads. The performances of the three tree indexes with the default six YCSB
workloads are shown in Figures 14(a)–14(e).

Search-only workload (YCSB C). For the YCSB C workload, SMART outperforms Sherman by
2.8× due to no leaf read amplification, as mentioned in Section 3. Moreover, it outperforms ART
by 1.2× due to the read delegation mechanism for reducing redundant I/Os. It is worth noting that
SMART achieves up to 96 M requests per second, which breaks through the sum of the IOPS upper
bounds of memory-side RNICs (about 90 Mops/s in total for two MNs, each equipped with one
RNIC capable of 45 Mops/s). This is because the read delegation can perform concurrent duplicated
reads with only one delegated read. In this experiment, the read delegation ratio (i.e., the number
of concurrent reads being delegated) is 7.8%, with 48 clients on each CN. Besides, the similar P99
latency of SMART and ART shows that the read delegation causes near-zero overhead.

Insert workload (YCSB LOAD, D). For the YCSB LOAD workload, SMART outperforms
Sherman and ART by 1.6×, 1.5× in throughput and achieves 1.4×, 1.5× lower P99 latency,

ACM Trans. Storage, Vol. 20, No. 3, Article 15. Publication date: June 2024.



A Memory-Disaggregated Radix Tree 15:29

Fig. 16. The scalability of tree indexes un-
der the YCSB A workload of integer keys.

Fig. 17. The performance of scan under the YCSB E
workload of integer keys with different value sizes.

respectively. This can be attributed to the design of the lock-free internal nodes. Specifically, both
Sherman and ART have low throughput and high latency due to the node-grained locks, which in-
troduce additional RTTs with frequent lock-fail retries, thus wasting the limited IOPS of RNICs in
write-intensive scenarios (i.e., 50% insert). Interestingly, with string workloads, the latency of ART
becomes much worse, since the smaller set of string partial keys (e.g., alphanumeric characters)
aggravates concurrency conflicts.

For the YCSB D workload, SMART achieves 2.4× and 1.4× higher throughput and 1.1× and 1.8×
lower P99 latency, compared with Sherman and ART, respectively. With fewer write conflicts (i.e.,
only 5% insert), read and write amplifications become the main reason for the poor performance
of Sherman. ART still has a high tail latency, since concurrent writes cause cache misses, leading
to remote tree traversals and thus continuous lock operations on the remote tree.

Update workload (YCSB A, B). Compared with Sherman and ART, SMART gains 6.1× and
3.4× improvement in throughput and 1.4× and 1.3× reduction in latency for YCSB A and achieves
2.4× and 1.8× higher throughput and 1.1× and 1.7× lower P99 latency for YCSB B, respectively.

Unlike the insert workload, YCSB A and B follow a Zipfian distribution of skewness 0.99, indi-
cating a high amount of update concurrency conflicts. Consequently, Sherman performs poorly
with YCSB A due to its coarse-grained, lock-based concurrency control. ART performs better than
Sherman, since update operations do not modify the partial key fields and thus do not need to
acquire locks. However, the out-of-place update scheme used by ART causes cache thrashing, re-
sulting in huge cache-miss overhead and thus much higher latency than SMART. Note that the
cache thrashing also impacts search performance, leaving a poor performance of ART on YCSB
B (with only 5% update). As shown in Figure 16, ART experiences performance collapse with in-
creasing clients due to severe cache thrashing. In contrast, SMART shows excellent scalability due
to the cache-friendly in-place leaf node design and fine-grained concurrency control.

Scan workload (YCSB E). We evaluate the performance of scan operations with 128 clients
using varying value sizes as shown in Figure 17. For a small value size (e.g., 8 bytes), SMART
shows poorer performance than Sherman, since the small-sized leaf nodes saturate the memory-
side IOPS upper bound, which is an inherent shortcoming of radix trees. However, for a value
size larger than 64 bytes, which is common in real-world workload [4, 70], the scan perfor-
mance of Sherman becomes worse than SMART, since the large-sized leaf nodes rapidly saturate
the bandwidth bottleneck.

5.2.2 Uniform Workloads. As shown in Figures 14(f)–14(i), the performances of the three tree
indexes with the uniform workloads are basically the same as those with the YCSB workloads,
except for the following two workloads: (1) Uniform A. All three tree indexes show a much better
performance with uniform A than YCSB A, since, with the uniform workload, the concurrency
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Fig. 18. The factor analysis of overall performance on SMART.

conflicts are significantly reduced. For the uniform A workload, SMART still outperforms Sherman
and ART by 1.7× and 1.8× in throughput, respectively, and achieves 1.8× lower P99 latency than
ART. (2) Uniform C. ART and SMART show a similar performance for the uniform C workload.
This is because the read delegation in SMART does not benefit the throughput, as the clients on
each CN rarely concurrently search for the same key under the uniform workload. Compared with
Sherman, SMART still gains 2.5× improvement in throughput.

5.3 Factor Analysis for SMART Design

5.3.1 Main Design. Figure 18 presents the factor analysis on SMART. We start with the naive
ART and apply each proposed technique one-by-one. We use 16 CNs (each launches 24 clients)
and integer keys for experiments in this section.

+ Lock-free internal node. The lock-free internal nodes mainly contribute to the insert work-
load. With YCSB LOAD, it brings 1.5× improvement in throughput and 1.8×/1.4× reduction in
P50/P99 latency. Unlike ROWEX, lock-free internal nodes eliminate expensive lock overhead dur-
ing insertion and thus improve performance.

+ Update-in-place leaf node. In-place update scheme mainly contributes to the update work-
load. It achieves 1.5× improvement in throughput and 1.4×/1.7× reduction in P50/P99 latency with
YCSB B. The in-place update scheme alleviates the cache coherence problem, as the addresses of
the cached leaf nodes never expire until being deleted.

+ Rear embedded lock. The rear embedded locks further optimize the in-place update scheme.
It eliminates the lock-releasing overhead, saving one RTT during each update. With YCSB A, it
improves throughput by 3.0× and reduces tail latency by 11.3×.

+ Read delegation. The read delegation mechanism contributes to the search workload. It
brings 1.1× throughput improvement and 1.3× tail latency reduction with YCSB C. It eliminates
superfluous reads and thus saves network I/O consumption to support more client requests.

+ Write combining. The write combining mechanism mainly contributes to the write-intensive
workload. It improves the throughput by 1.1× and reduces tail latency by 1.3× with YCSB A. Both
the read delegation and the write combining bring much less improvement under uniform work-
loads than YCSB workloads, since there are few redundant I/Os with the uniform key distribution.

As the RDWC technique can reduce concurrency conflicts similar to HOCL, we compare their
efficiency by applying them on SMART, respectively. As shown in Figure 19, when applying the
primitive HOCL design, SMART shows poor performance with an average of 0.76 lock-fail retry
count, due to the limited on-chip memory space (128 MB per RNIC in our evaluation) with only
2 MNs, which is insufficient for a large number of fine-grained locks. With E-HOCL (i.e., integrat-
ing the rear embedded lock technique into HOCL), SMART achieves much better performance
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Fig. 19. The efficiency comparison of
HOCL, E-HOCL, and RDWC under the
YCSB A workload.

Fig. 20. The factor analysis of cache efficiency on SMART
under the YCSB C workload of string keys with different
cache sizes.

with an average of 0.29 lock-fail retry count. However, despite the optimization, HOCL still shows
lower improvement efficiency than RDWC, which can introduce a 26.2% higher throughput. This is
because RDWC saves not only the lock overhead but also the superfluous bandwidth consumption
of reads and writes.

As the design of RDWC is transparent to the lower-level index structures, it will lead to the same
amount of performance improvements on Sherman, i.e., 1.3× and 1.1× under write-intensive and
read-only workloads (Figure 18). Therefore, after applying RDWC to Sherman, SMART can still
achieve 4.7× (= 6.1/1.3) higher throughput under write-intensive workloads and 2.5× (= 2.8/1.1)
higher throughput under read-only workloads.

5.3.2 Cache-related Techniques. Some cache-related techniques contribute to cache efficiency:
(1) Homogeneous adaptive internal node. Due to the homogeneous adaptive internal node de-
sign, more fine-grained and flexible adaptive nodes are available, saving cache space with smaller
sizes of cached nodes. (2) ART-indexed cache. Compared with a normal hash-based cache index,
ART-indexed cache can efficiently save memory consumption of index keys without redundant
key prefixes stored. As shown in Figure 20, after applying the above two techniques one-by-one,
SMART achieves an increasing cache hit ratio and overall throughput under each specific limited
cache size.

5.3.3 Coroutine-based Throughput Boost. We make each client thread execute multiple corou-
tine functions simultaneously to improve the throughput of SMART. To demonstrate the efficacy
of coroutines, we evaluate SMART with each client executing different numbers of coroutine func-
tions under the YCSB A and YCSB C workloads, as shown in Figures 21(a) and 21(b), respectively.
With sufficient coroutines, SMART achieves 1.3× and 1.6× higher throughput under the YCSB A
and C workloads, respectively, since the clients can schedule their coroutine functions to hide the
busy-waiting overhead (e.g., RDMA polling). The improvement in SMART with YCSB C is higher
than that with YCSB A, since the read-only workload consumes less network I/Os and thus leaves
more improvement space for the coroutines to boost the throughput. Note that the improvement
slows down when the number of coroutines exceeds two with YCSB A and three with YCSB C.
This is because such numbers of coroutines are enough for each client thread in SMART to hide
the busy-waiting overhead and saturate the limited memory-side IOPS.

ACM Trans. Storage, Vol. 20, No. 3, Article 15. Publication date: June 2024.



15:32 X. Luo et al.

Fig. 21. The throughput of SMART with different numbers of coroutines for each client thread under the
YCSB A and C workloads of integer keys, respectively.

5.4 Sensitivity

In this section, we investigate how the workload skewness, key size, and value size affect the
performance of SMART. Without explicit mention, we use 16 CNs with 16 clients each and integer
keys for the sensitivity evaluation.

5.4.1 Skew Test. Figure 22(a) shows the performances of different tree indexes on a generated
Zipfian workload [42] (50% search + 50% update) with various skewness. SMART performs best
under both slightly and highly skewed workloads. Sherman shows a good performance in slightly
skewed workloads, while having the poorest performance in highly skewed workloads because of
its coarse-grained lock-based concurrency control design. ART performs better than Sherman in
highly skewed workloads due to the lock-free RCU scheme but performs worst in slightly skewed
workloads due to cache thrashing. Note that the RDWC in SMART does not benefit the overall
throughput, since the network bandwidth is unsaturated. As the Zipfian skewness grows from 0.5
to 0.99, the performances of ART and SMART decrease by the same multiple (2.6×), and thus their
performance gap is reduced. The performance of Sherman decreases by 7.4×, indicating the poor
efficiency of coarse-grained lock-based design.

5.4.2 Impact of Key/Value Size. Figures 22(b) and 22(c) show the impact of key size and value
size on the performances of the three tree indexes under YCSB C with sufficient caches. As the
key size grows from 8 to 256 bytes, SMART and ART show a slight performance decline (1.3×),
while Sherman experiences a rapid drop in performance (14×). As the value size grows from 8
to 1,024 bytes, the performance declines of SMART, ART, and Sherman are 3.1×, 3.4×, and 64×,
respectively. This is because, during each search, Sherman needs to fetch the whole leaf node,
whose size grows with key and value size, causing the rapidly increasing consumption of network
bandwidth. On the contrary, SMART and ART only need to fetch the fine-grained small-sized
leaf node. Thus, they are not bounded by the network bandwidth bottleneck, showing a stable
performance with varying key sizes and value sizes. The performances of ART and SMART are
close, since the read delegation in SMART does not benefit the throughput under the unsaturated
network. This is consistent with the results shown in Figure 14(d).

5.4.3 Impact of Number of Node Types. As stated in Section 4.1.1, SMART proposes the homo-

geneous adaptive internal node. Thus, more fine-grained node types are available. Like ART [38],
we make the distribution of the sizes of different node types approximately a geometric sequence
from 4 to 256. Figure 22(d) shows the performance of SMART under YCSB C with increasing num-
bers of node types. As the number of node types increases from 1 (i.e., only NODE_256) to 10,
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Fig. 22. The sensitivity analysis.

SMART achieves 1.5× higher throughput, since fine-grained node types can save more network
bandwidth. Note that the throughput stops increasing when the number of node types exceeds 7.
This is because the granularity of seven node types is already fine enough.

5.4.4 Impact of Number of Local Locks. As presented in Section 4.2.1, SMART adopts hash-
based local locks on each CN to perform the RDWC technique. Figure 22(e) shows the performance
of SMART with various numbers of local locks on each CN. As the number of local locks grows
from 1 to 128, SMART achieves 6.1× improvement in throughput, since with more local locks,
more keys can benefit from the RDWC technique. When the number of local locks exceeds 128,
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the increase in the throughput slows down, since it is sufficient for 128 local locks to distinguish
the target keys of the concurrent operations from the 16 clients on each CN.

5.4.5 Impact of Number of MNs. We use 16 CNs with 64 clients each and the YCSB C workload
to evaluate the impact of the number of MNs on the performance. As shown in Figure 22(f), the
performances of all three tree indexes increase as the number of MNs grows. This verifies that
the performances of tree indexes on DM are all bottlenecked by the memory-side RNICs. Both
SMART and ART perform better than Sherman, since they have smaller read amplification and
thus are bottlenecked by the limited IOPS of RNICs rather than the bandwidth. The performance
of SMART is higher than that of ART due to the read delegation technique, which works, since
the 1,024 clients are enough to saturate the network.

5.4.6 Impact of Number of Key-value Items. We use 16 CNs with 64 clients each and two gen-
erated Zipfian workloads to evaluate the impact of the number of key-value items on the RDWC
ratio of SMART. As shown in Figure 22(g), with 60 million key-value items, the read delegation
ratio achieves 11.9% under the read-only workloads (100% search). As shown in Figure 22(h), with
60 million key-value items, the read delegation ratio and write combining ratio achieve 7.5% and
8.8%, respectively, under the write-intensive workload (50% search + 50% update). As the num-
ber of key-value items grows from 60 million to 960 million, both the read delegation and write
combining ratios decrease. This is because, with a huge number of items, e.g., 720 million, there
will be only a low chance of conflicting accesses even with a skewed key distribution. In this case,
the RDWC technique is no longer needed to optimize the IOPS bottleneck, since there are few
redundant I/Os and concurrency conflicts on DM.

6 RELATED WORK

6.1 Disaggregated Memory

The DM architecture is widely discussed in the literature [3, 9, 19, 22, 25, 32, 57], which is pro-
posed to address the problem of a growing imbalance between computing and memory resources.
Many recent academic works have been conducted on DM. LegoOS [56] designs a distributed
operating system for disaggregated resource management. PolarDB Serverless [8] co-designs the
database and DM to achieve better dynamic resource provisioning and faster failure recovery
speed. Clover [64] explores an efficient manner to build a key-value store on disaggregated persis-

tent memory (PM), with careful designs between the data plane and the metadata/control plane.
FUSEE [59] designs a fully memory-disaggregated key-value store that brings disaggregation to
metadata management. Ditto [58] is an elastic and adaptive caching system on DM that can adjust
resources in a resource-efficient and agile manner. The above works mainly focus on designing
high-performance, resource-efficient storage systems on DM. SMART focuses on building a fast,
scalable RDMA-based range index on DM for the above storage systems. In the following, we will
introduce the related work on the RDMA-based indexes on DM.

6.2 RDMA-based Indexes

Attracted by the high performance of RDMA, there are increasing studies focusing on RDMA-
based indexes [2, 49, 55, 65, 72]. Many studies conduct index operations via remote procedure

calls (RPCs), which is unsuitable for DM due to weak memory-side computing power. RACE [73]
is an extendible RDMA-based hashing index on DM with lock-free remote concurrency control
and efficient remote resizing. As a hashing index, it cannot support range queries like SMART.
FG [72], designed as a B-link tree, is the first range index that completely leverages one-side verbs

for write operations and thus supports DM. Sherman [65] is the state-of-the-art B+ tree index with
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several RDMA-friendly software techniques. However, constrained by the structure of the B+ tree,
both FG and Sherman suffer from low peak throughput and early latency deterioration due to read
and write amplifications. To avoid such issues of B+ trees, SMART proposes that the radix tree is
a more suitable tree index structure for DM. ROLEX [41] is a scalable RDMA-oriented learned
index on DM. It mainly focuses on improving the cache efficiency of range indexes using learned
models. Unlike ROLEX, SMART focuses on reducing the read and write amplifications of range
indexes using the radix tree. Besides, extending RDMA interfaces is another approach to design
tree indexes on DM, which offloads index write operations into memory-side NICs via SmartNICs
or other customized hardware [2, 7, 15, 30, 43, 54, 60]. Different from these works, SMART is
designed with commodity RNICs. To our knowledge, SMART is the first radix tree index on DM
that achieves high performance with commodity RNICs.

7 CONCLUSION

Based on a thorough theoretical and experimental analysis of tree indexes built on DM, this article
points out the performance bottleneck of B+ trees on DM due to severe read and write amplifi-
cations and then presents SMART, the first radix-tree-based index on DM. SMART addresses the
challenges of applying ART on DM, including a hybrid concurrency control scheme to reduce lock
overhead and avoid cache thrashing, a read-delegation and write-combining technique to reduce
redundant I/Os, and a tailed cache validation mechanism. Our evaluation results show that SMART
outperforms the state-of-the-art B+ tree on DM by up to 6.1× under write-intensive workloads and
2.8× under read-only workloads.

APPENDIX

A ARTIFACT APPENDIX

A.1 Abstract

The artifact provides the source code of SMART and automated scripts to reproduce all the ex-
periment results in the article. The experiment results can show the superiority of ART on DM
compared with the B+ tree and demonstrate the efficacy and efficiency of SMART we design.

A.2 Scope

A.2.1 Design Choices of the Radix Tree on DM. By reproducing the experiments of Figure 3, the
artifact can validate that path compression and ART are both necessary for the radix tree on DM,
and the pessimistic method is the best choice for path compression on DM.

A.2.2 Superiority of ART on DM. By reproducing the experiments of Figure 4, the artifact can
validate that the radix tree is more suitable for DM than the B+ tree due to smaller read amplifica-
tion under read-only workloads.

A.2.3 Challenges of ART on DM. By reproducing the experiments of Figure 5, the artifact can
validate that ART suffers from significant challenges on DM under hybrid read-write workloads.

A.2.4 Efficacy and Efficiency of SMART. By reproducing the experiments of Figures 14–22, the
artifact can validate that SMART can show better performance under YCSB workloads, compared
with the state-of-the-art B+ tree on DM and a naive ART design.

A.3 Contents

A.3.1 Source Codes. The artifact contains source codes of SMART and the compared baselines
(e.g., ART). Specifically, the source code of SMART contains the implementation of our three
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key designs, i.e., the hybrid ART concurrency control scheme, the read-delegation and write-
combining technique, and the reverse check mechanism for cache validation.

A.3.2 Automated Scripts. Except for Figures 14(f)–14(i), 15(f)–15(i), and the results with uni-
form workloads in Figure 18, which can be reproduced by manually changing the workloads,
the artifact provides automated scripts to reproduce all the other experiment results in the arti-
cle. Each figure has a Python script to automatically reproduce and visualize the experimental
results.

A.4 Hosting

The artifact is available at https://github.com/dmemsys/SMART. Please use the latest commit ver-
sion on the extended-version branch.

A.5 Requirements

The artifact is developed and tested using the r650 machines on CloudLab. Sixteen r650 machines
are needed to reproduce all the results. Each r650 machine has two 36-core Intel Xeon CPUs,
256 GB of DRAM, and one 100 Gbps Mellanox ConnectX-6 RNIC. Each RNIC is connected to a
100 Gbps Ethernet switch.

A.6 Tutorial

A.6.1 Environment Setup. To set up the environment, please clone the source codes to the r650
machines. The necessary dependencies can be installed using our provided shell scripts in the
artifact. Listing 1 shows the commands to set up the experiment environment.

1 # Get the source codes
2 git clone -b extended-version https://github.com/dmemsys/SMART
3 git clone https://github.com/River861/Sherman
4 # Set bash as the default shell
5 sudo su && chsh -s /bin/bash
6 # Install Mellanox OFED
7 cd SMART && sh ./script/installMLNX.sh
8 # Resize disk partition
9 sh ./script/resizePartition.sh

10 reboot
11 sudo su && resize2fs /dev/sda1
12 # Install libraries and tools
13 cd SMART && sh ./script/installLibs.sh
14 # Setup hugepages
15 echo 36864 > /proc/sys/vm/nr_hugepages

Listing 1. Commands to set up the environment.

A.6.2 Workloads Generation. The index microbench is used to generate YCSB workloads, in-
cluding two key types, i.e., integer and string. Listing 2 shows the commands to generate the
YCSB workloads to reproduce the results.
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1 # Download YCSB source code
2 cd SMART/ycsb
3 sudo su && curl -O --location https://github.com/brianfrankcooper/YCSB

/releases/download/0.11.0/ycsb-0.11.0.tar.gz
4 tar xfvz ycsb-0.11.0.tar.gz
5 mv ycsb-0.11.0 YCSB
6 # Download the email dataset
7 gdown --id 1ZJcQOuFI7IpAG6ZBgXwhjEeKO1T7Alzp
8 # Start to generate all the YCSB workloads
9 sh generate_full_workloads.sh

Listing 2. Commands to generate the YCSB workloads.

A.6.3 Results Reproduced. The artifact provides a single batch script to reproduce all the exper-
iments with the YCSB workloads. This script should be run on a master node, which can directly
establish SSH connections to other nodes of the r650 cluster. To reproduce the experiments, please
set up the home_dir and master_ip values in ./exp/params/common.json. Then, the script can be
run. Listing 3 shows the commands. The reproduced results will be saved automatically.

1 sudo su && cd SMART/exp
2 # Run all the YSCB experiments
3 sh run_all.sh

Listing 3. Commands to start the experiments.
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