
Making Online Sketching Hashing Even Faster
Xixian Chen , Haiqin Yang ,Member, IEEE, Shenglin Zhao ,Member, IEEE,

Irwin King , Fellow, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—Data-dependent hashing methods have demonstrated good performance in various machine learning applications to

learn a low-dimensional representation from the original data. However, they still suffer from several obstacles: First, most of existing

hashing methods are trained in a batch mode, yielding inefficiency for training streaming data. Second, the computational cost and the

memory consumption increase extraordinarily in the big data setting, which perplexes the training procedure. Third, the lack of labeled

data hinders the improvement of the model performance. To address these difficulties, we utilize online sketching hashing (OSH) and

present a FasteR Online Sketching Hashing (FROSH) algorithm to sketch the data in a more compact form via an independent

transformation. We provide theoretical justification to guarantee that our proposed FROSH consumes less time and achieves a

comparable sketching precision under the same memory cost of OSH. We also extend FROSH to its distributed implementation,

namely DFROSH, to further reduce the training time cost of FROSH while deriving the theoretical bound of the sketching precision.

Finally, we conduct extensive experiments on both synthetic and real datasets to demonstrate the attractive merits of FROSH

and DFROSH.

Index Terms—Hashing, sketching, dimension reduction, online learning

Ç

1 INTRODUCTION

HASHING on features is an efficient tool to conduct
approximate nearest neighbor searches for many

machine learning applications such as large scale object
retrieval [24], image classification [44], fast object detec-
tion [16], and image matching [15], etc. The goal of hashing
algorithms is to learn a low-dimensional representation from
the original data, or equivalently to construct a short
sequence of bits, called hash code in a Hamming space [51],
for fast computation in a commonCPU. Previously proposed
hashing algorithms can be categorized into two streams,
data-independent and data-dependent approaches. Data-
independent approaches, e.g., locality sensitive hashing
(LSH) methods [3], [10], [18], [22], [47], try to construct sev-
eral hash functions based on random projection. They can be
quickly computed with theoretical guarantee. However, to
attain acceptable accuracy, the data-independent hashing
algorithms have to take a longer code length [47], which
increases the computation cost. Contrarily, data-dependent
hashing approaches utilize the data distribution information
and usually can achieve better performance with a shorter

code length. These approaches can be divided into unsuper-
vised and supervised approaches. Unsupervised approaches
learn hash functions from data samples instead of randomly
generated functions to maintain the distance in the Ham-
ming space [19], [25], [30], [35], [36], [37], [41], [45], [52], [57].
Supervised approaches utilize the label information and
can attain better performance than that of unsupervised
ones [27], [31], [32], [34], [42], [46], [50].

However, data-dependent hashing approaches still
suffer from several critical obstacles. First, in real-world
applications, data usually appear fluidly and can be proc-
essed only once [30], [33]. The batch trained hashing
approaches become costly because the models need to be
learned from scratch when new data appears [6], [20], [29].
Second, the data can be in a huge volume and in an
extremely large dimension [17], which yields high compu-
tational cost and large space consumption and prohibits
the training procedure [30], [33]. Though batch-trained
unsupervised hashing techniques, such as Scalable Graph
Hash (SGH) [25] and Ordinal Constraint Hashing
(OCH) [35], have overcome the space inefficiency by per-
forming multiple passes over the data, they increase the
overhead of disk IO operations and yield a major perfor-
mance bottleneck [55]. Third, the label information is usu-
ally scarce and noisy [48], [54], [56]. Fourth, the data may
be generated in a large amount of distributed servers. It
would be more efficient to train the models from the local
data independently and to integrate them afterwards.
However, the distributed algorithm and its theoretical
analysis are not provided in the literature yet.

To tackle the above difficulties, we present a FasteR
Online Sketching Hashing (FROSH) algorithm and its dis-
tributed implementation, namely DFROSH. The proposed
FROSH not only absorbs the advantages of online sketching
hashing (OSH) [30], i.e., data-dependent, space-efficient,

� X. Chen and S. Zhao are with the Youtu Lab, Tencent, Shenzhen 518057,
China, and also with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Sha Tin, Hong Kong.
E-mail: {xixianchen, henryslzhao}@tencent.com.

� H. Yang is with theMeitu, Hong Kong, China, and also with the Department
of Computing, The Hang Seng University of Hong Kong, Siu Lek Yuen,
HongKong. E-mail: haiqin.yang@gmail.com.

� I. King and M.R. Lyu are with the Shenzhen Research Institute, The Chinese
University of Hong Kong, Shenzhen 518057, China, and also with the Depart-
ment of Computer Science and Engineering, The Chinese University of Hong
Kong, Shatin, N.T., Hong Kong. E-mail: {king, lyu}@cse.cuhk.edu.hk.

Manuscript received 28 Dec. 2018; revised 22 July 2019; accepted 29 July
2019. Date of publication 14 Aug. 2019; date of current version 3 Feb. 2021.
(Corresponding author: Xixian Chen.)
Recommended for acceptance by F. Geerts.
Digital Object Identifier no. 10.1109/TKDE.2019.2934687

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021 1089

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1845-3556
https://orcid.org/0000-0002-1845-3556
https://orcid.org/0000-0002-1845-3556
https://orcid.org/0000-0002-1845-3556
https://orcid.org/0000-0002-1845-3556
https://orcid.org/0000-0001-5453-476X
https://orcid.org/0000-0001-5453-476X
https://orcid.org/0000-0001-5453-476X
https://orcid.org/0000-0001-5453-476X
https://orcid.org/0000-0001-5453-476X
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-0752-9877
https://orcid.org/0000-0002-7055-141X
https://orcid.org/0000-0002-7055-141X
https://orcid.org/0000-0002-7055-141X
https://orcid.org/0000-0002-7055-141X
https://orcid.org/0000-0002-7055-141X
mailto:
mailto:
mailto:

and online unsupervised training, but also speeds up the
sketching operations significantly. Here, we consider the
unsupervised hashing approach due to relieving the burden
of labeling data and therefore overcome several popular
online supervised hashing methods, e.g., online kernel
hashing (OKH) [21], online supervised hashing [8], adaptive
online hashing (AOH) [7], and online hashing with mutual
information (MIHash) [5].

In sum, we highlight the contributions of our proposed
FROSH algorithm in the following:

� First, we present a FasteR Online Sketching Hashing
(FROSH) to improve the efficiency of OSH. The main
trick is to develop a faster frequent direction (FFD)
algorithm via utilizing the Subsampled Randomized
Hadamard Transform (SRHT).

� Second, we devise a space economic implementation
for the proposed FFD algorithm. The crafty imple-
mentation reduces the space cost fromOðd2Þ toOðd‘Þ,
attaining the same space cost of FD,where d is the fea-
ture size and ‘ is the sketching size with ‘ < d.

� Third, we derive rigorous theoretical analysis of the
error bound of FROSH and show that under the
same sketching precision, our proposed FROSH con-
sumes significantly less computational time, eOðn‘2þ
ndþ d‘2Þ, than that of OSH with Oðnd‘þ d‘2Þ, where
n is the number of samples.

� Fourth, we propose a distributed implementation of
FROSH, namely DFROSH, to further speed up the
training of FROSH. Both theoretical justification and
empirical evaluation are provided to demonstrate
the superiority of DFROSH.

The remainder of the paper is structured as follows. In
Section 2, we define the problem and review existing online
sketching hashing methods. In Section 3, we present our
proposed FROSH, its distributed implementation, and
detailed theoretical analysis. In Section 4, we conduct exten-
sive empirical evaluation and detail the results. Finally, in
Section 5, we conclude the whole paper.

2 PROBLEM DEFINITION AND RELATED WORK

2.1 Notations and Problem Definition

To make the notations consistent throughout the whole
paper, we present some important notations with the spe-
cific meaning defined in Table 1. Given n data in d dimen-
sion, i.e., A 2 Rn�d, the goal of hashing is to seek a
projection matrix W 2 Rd�r for constructing r hash func-
tions to project each data point ai 2 R1�d defined as follows:

hkðaiÞ ¼ sgnððai � mmÞwkÞ; k ¼ 1; . . . ; r; (1)

where mm is the row center of A defined by 1
n

Pn
i¼1 a

i. To pro-
duce an efficient code in which the variance of each bit is
maximized and the bits are pairwise uncorrelated, one can
maximize the following function [19]:

max
W

Xr
k¼1

VarðhkðaÞÞ;

s.t. E½hkiðaÞhkjðaÞ� ¼ 1 for i ¼ j; and 0 otherwise:

(2)

Adopting the same signed magnitude relaxation in [50], the
objective function becomes [30]

max
W

TrðWT ðA� mmÞT ðA� mmÞWÞ; s.t. WTW ¼ Ir; (3)

where ðA� mmÞ denotes a matrix of ½a1 � mm; a2 � mm; . . . ;
an � mm�.

In Eq. (3), we only need to performs Principal Compo-
nent Analysis (PCA) on A, and W 2 Rd�r results from
the top r right singular vectors of the covariance matrix
ðA� mmÞT ðA� mmÞ. When d < n, it requires Oðnd2Þ time cost
and OðndÞ space, which is infeasible for large n and d [26].

2.2 Online Sketching Hashing

To reduce the computational cost of seeking W, researchers
have proposed various methods, e.g., random projection,
hashing, and sketching, and provided the corresponding
theoretical guarantee on the approximation [30], [40], [51].

TABLE 1
Key Notations Used in This Paper

Notations Description

mm,W Bold small and capital letters denote vectors and matrices, respectively.
½k� An integer set consisting of 1; 2; . . . ; k

ai (aj, or aij) The ith row (the jth column, or the ði; jÞth element) of A, where ai 2 R1�d for the matrix A 2 Rn�d

and i 2 ½n�, j 2 ½d�
fAtgkt¼1 A set of kmatrices consisting of A1;A2; . . . ;Ak

at;ij (at;i) The ði; jÞth element (the ith column) of matrix At

AT The transpose of A
TrðAÞ The trace of A
jaj The absolute value of a real number a

kAk2 (kAkF) The spectral (Frobenius) norm of A

kakq ¼ ðPd
j¼1 jajjqÞ1=q The ‘q-norm of a 2 Rd, where q � 1

DðAÞ The square diagonal matrix whose main diagonal has only the main diagonal elements of A

A = USVT ¼Pr
i¼1 siuiv

T
i

= UkSkV
T
k þU?

k S
?
k V

?
k

T

The SVD of A, where rankðAÞ ¼ r, Ak ¼ UkSkV
T
k represents the best rank k approximation to A,

and siðAÞ denotes the ith largest singular value of A

A � B B�A is positive semi-definite.

1090 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

Among them, sketching is one of the most efficient and eco-
nomic ways by only selecting a significantly smaller data to
maintain the main information of the original data while
guaranteeing the approximation precision [4], [12], [13],
[14], [33], [39], [53].

Online Sketch Hashing (OSH) [30] is an efficient hashing
algorithm to solve the PCA problem of Eq. (3) in the online
mode. Given n data points appearing sequentially, denoted

by a matrix A 2 Rn�d, the goal of OSH is to efficiently attain

a small mapping matrixWT 2 Rr�d via constructing SVD on
a small matrix B 2 R‘�d, where r is the number of hashing
bits and ‘ is the sketching size with ‘ < d; see step 13 in
Algorithm 1. The key of OSH is to construct B from the cen-
tered data ðA� mmÞ by the frequent direction (FD) algorithm
along with the creative idea of online centering procedure [11],
[30], i.e., the same procedure of steps 3 to 10 in Algorithm 1
except that the sketching method faster frequent direction
(FFD) in steps 4 and 8 is replaced by FD.

Algorithm 1. FasteR Online Sketching Hashing (FROSH)

Require: Data A ¼ fAj 2 Rhj�dgsj¼1, sketching size ‘ < d,
positive integer h, hashing bits r

1: Initialize sketching matrix with B ¼ 0‘�d

2: Set mm1 to be the row mean vector of A1

3: Let ’’ ¼ mm1, t ¼ h1, � ¼ 0
4: Invoke FFD(G1, B), whereG1 ¼ ðA1 � mm1Þ 2 Rh1�d,

B 2 R‘�d # SketchG1 into B via FFD
5: for j 2 f2; . . . ; sg do
6: Set mmj to be the row mean vector of Aj

7: Set && ¼
ffiffiffiffiffiffiffiffi
thj
tþhj

q
ðmmj � ’’Þ 2 R1�d

8: Invoke FFD(Gj, B), where Gj ¼ ½ðAj � mmjÞ; &&� 2 Rðhjþ1Þ�d

SketchGj into B via FFD
9: Set ’’ ¼ t’’

tþhj
þ hjmmj

tþhj
Update the row mean vector

10: Set t ¼ t þ hj # Update the number of data instances
11: Set � ¼ � þ 1
12: if � ¼¼ h then
13: Run the SVD of B 2 R‘�d, and set the top r right

singular vectors asWT 2 Rr�d

14: Set � ¼ 0
15: return W
16: end if
17: end for

3 OUR PROPOSAL

3.1 Motivation and FROSH

It is noted that OSH consumes Oðnd‘þ d‘2Þ time with
Oðnd‘Þ for sketching n incoming data points and Oðd‘2Þ for
compute PCA on B, while maintaining an economic storage
cost at Oðd‘Þ. This is still computationally expensive when
1 � d � n [17].

By further reducing the sketching cost in OSH, we pro-
pose our FROSH algorithm, outlined in Algorithm 1 via uti-
lizing a novel designed Faster Frequent Directions (FFD)
algorithm.

Remark 1.We elaborate more details about Algorithm 1:

� Steps 3-10 are the creative online centering procedure
proposed in OSH [30], which guaranteesGT

½j�G½j� ¼
ðA½j� � m̂mjÞT ðA½j� � m̂mjÞ, after the jth iteration, where

A½j� ¼ ½A1;A2; . . . ;Aj� are stacked vertically for all
sequential sampleAj and m̂mj denotes the rowmean
vector of A½j�. Via invoking FFDð	; 	Þ, we expect in

the final step, BTB
 GT
½s�G½s�, which is equal to

ðA½s� � m̂msÞT ðA½s� � m̂msÞ, i.e., ðA� mmÞT ðA� mmÞ.
� Step 4 and step 8 invoke FFD to sketch a smaller

matrix B such that BTB
 GT
½j�G½j� at the jth itera-

tion. The key contribution of our FROSH is to
design and utilize a faster sketching method in
Algorithm 2 rather than the original FD.

� The step 13 is to compute the top r right singular
vectorsW, which yieldsOðd‘2Þ computational cost.

� Here, we highlight again the advantages of FFD
for the streaming data, which borrows the idea of
FD in [33] and OSH [30]. For example, regarding
two (or more) data chunks, G1 2 Rh1�d and
G2 2 Rðh2þ1Þ�d, we run FFD on G1 with B and
achieve a sketching matrix B ¼ B1 2 R‘�d. Relying
on the current B ¼ B1, we then invoke FFD on
G2 to make an update for B and obtain B ¼ B2 2
R‘�d. This procedure is equivalent to directly
invoking FFD once on ½G1;G2� 2 Rðh1þh2þ1Þ�d and
results the same B2 for the final B.

� In sum, the total time cost of FROSH is OðTðFFDÞþ
d‘2Þ, where TðFFDÞ ¼ Oðn‘2 þ ndÞ for FFD as
depicted in Remark 2.

Algorithm 2. Faster FrequentDirections (FFD): FFD (A,B),
where A 2 Rn�d; B 2 R‘�d

1: if B not exists then
2: Set t ¼ 1, B ¼ 0‘�d

3: Set F ¼ 0m�d withm ¼ QðdÞ # Only need for notation
4: end if
5: for i 2 ½n� do
6: Insert ai into a zero valued row of F
7: if F has no zero value row then
8: ConstructFt ¼ StHDt 2 Rð‘=2Þ�m at the tth trial

9: InsertFtF 2 Rð‘=2Þ�d into the last ‘
2 rows of B

10: ½U;S;V� ¼ SVDðBÞ
11: bS ¼

ffi
maxðS2 � s2

‘=2Il; 0Þ
q

12: Set B ¼ bSVT

13: Let Bt ¼ B, Ct ¼ FtF # Only need for proof notations
14: Set F ¼ 0m�d, t ¼ tþ 1
15: end if
16: end for

3.2 Fast Frequent Directions

Our proposed FFD algorithm is outlined in Algorithm 2.

Remark 2. Here, we emphasize on several key remarks:

� Step 6-step 9 are the core steps of FFD: it first
collects m data points sequentially and stores
them in F 2 Rm�d with squeezing all zero valued
rows; next, it constructs a new Subsampled Ran-
domized Hadamard Transform (SRHT) matrix,
F ¼ SHD 2 R‘=2�m (the subscript t indicates that
St and Dt in step 8 are drawn independently at
different trials), and

CHEN ET AL.: MAKING ONLINE SKETCHING HASHING EVEN FASTER 1091

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

� S 2 Rq�m: a scaled randomized matrix with its
each row uniformly sampled without replace-
ment from m rows of the m�m identity
matrix rescaled by

ffiffiffi
m
q

q
;

� D: an m�m diagonal matrix with the ele-
ments as i.i.d. Rademacher random variables
(i.e., 1 or �1 in an equal probability);

� H 2 f�1gm�m: a Hadamard matrix defined by
hij ¼ ð�1Þhi�1;j�1i, where hi� 1; j� 1i is the
dot-product of the b-bit binary vectors of the
integers i� 1 and j� 1, b ¼ minf log ðiþ 1Þd e;
log ðjþ 1Þd eg, and xd e returns the least integer
that is greater than or equal to x.

The Hadamard matrix can also be recur-
sively defined by

Hm ¼ Hm=2 Hm=2

Hm=2 �Hm=2

� �
and H2 ¼ 1 1

1 �1

� �
;

where m is the size of the matrix. The nor-

malized Hadamard matrix is denoted by

H ¼
ffiffiffi
1
m

q
Hm. Due to the recursive structure of

Hm, for Hma, we only take Oðm logmÞ time to

compute it and OðmÞ space to store it [1],
respectively.

The objective of computing FF is to com-

press F from the size of m to ‘=2 and finally

yield a new matrix ‘� d matrix B by conca-

tenating the newly compressed data and the

previously shrunk data via conducting step 9.
� After constructing B, FFD conducts SVD on B and

condenses the original information in the first ‘
2

rows of B in the steps of 10 and 11. This procedure
is the same as that of FD in OSH and allows new
data to be concatenated into the last ‘

2 rows of B in
the next iteration.

� The step of 12 is to reconstruct B, which con-
denses the original information in the first ‘

2 rows
of B. This makes it effective and allows that in the
step of 9, FtF can only be concatenated into the
last ‘

2 rows of B.
� In sum, at each iteration, the time cost for step 9 iseOðmdÞ and it costs Oðd‘2Þ for conducting SVD

from steps 10-11. Totally, there are Oðn=mÞ itera-
tions and yield the time cost of eOðnm d‘2 þ n

mmdÞ ¼eOðn‘2 d
m þ ndÞ for running Algorithm 2. The

time cost becomes eOðn‘2 þ ndÞ when m ¼ QðdÞ,
which is smaller than Oðnd‘Þ in FD of OSH
when ‘ � d.

3.3 Space-Efficient Implementation of FFD

Though the SRHT operation can improve the efficiency of
sketching, it needs OðmdÞmemory to store the m� d matrix
F. This yields Oðd2Þ space consumption when m ¼ QðdÞ. It
is practically prohibitive because the storage space can be
severely limited in real-world applications [33]. To make
FFD competitive to the original FD algorithm in space cost,
we design a crafty way to compute the data progressively
and yield the same space cost as FD.

Fig. 1 illustrates our proposed space-efficient imple-
mentation of FFD. For simplicity, we assume m ¼ 2b, where

b is a positive integer. We can always find p in ½q2 ; q�
such that m ¼ 2c p and c is a positive integer. We then
divide the m� d data matrix F into 2c blocks denoted

by fFi 2 Rp�dg2ci¼1. Regarding F, the diagonal m�m matrix
D can be divided into 2c square blocks denoted by
fDi 2 Rp�dg2ci¼1. The Hadamard matrix H can be also
divided into ð2cÞ2 ¼ 4c square blocks denoted by
fHij 2 Rp�pg2ci;j¼1.

Remark 3. The space-efficient implementation of FFD can
then be easily achieved:

� For a mini-batch incoming data F1 2 Rp�d, the
space cost is OðpdÞ. By computing FF1, we will
attain a q � d matrix. Hence, the space cost is
Oðpdþ qdÞ ¼ OðdqÞ.

� To computeFF1, i.e., S½H11;H21; . . . ;H2c1�D1F1, we

first compute Z ¼ fZig2
c

i¼1, where Zi ¼ fHi1D1F1g.
Picking any element, say i ¼ 1, the computational
cost of Z1 ¼ H11D1F1 2 Rp�d is Oðpd log pÞ. For
other Zi, i 6¼ 1, due to the simple structure of the
Hadamard matrx, i.e., hij ¼ ð�1Þhi�1;j�1i, we have
Zi ¼ Z1 or Zi ¼ �Z1. A smart trick of computing
Zi is to check the first entry of eachHi1 in theHada-
mard matrix because Hi1 ¼ þH11 or Hi1 ¼ �H11,
which yieldsOðlogmÞ additional time cost.

� The second step of computing FF1 is to compute
SZ, which is equivalent to selecting at most q
rows from Z. The time cost is negligible. Hence,
the total time cost of computing FF1 is
Oðpd log pÞ þOðq logmÞ þOðqdÞ. The first term is
to compute Z1. The second term is to determine
the sign difference of Z1 and Zi, where
i ¼ 2; . . . ; 2c. Since only q rows are sampled from
Zi, the total number of the focused Zi is
minð2c � 1; qÞ � q. The third term is to compute at
most q rows in fZig2

c

i¼2 that are sampled by S.

� This procedure can be continuously enumerated
from F2 to F2c , where the time cost and the space
cost consume asymptotically unchanged as com-
puting FF1. Hence, the total time cost of comput-
ing FF is 2c½Oðpd log pÞ þOðq logmÞ þOðqdÞ� ¼
Oðmd log qÞ becausem is usually set toOðdÞ for the
practical usage and therefore logm � Oðd log qÞ.
The space cost ofFF is Oðpdþ qdÞ ¼ OðqdÞ. Practi-
cally, we set q ¼ ‘=2 and obtain the space cost
of Oðd‘Þ and the time cost of Oðmd log ‘Þ.
Hence, we maintain the time cost of the original
FFD, i.e., Oðn‘2 þ ndÞ, significantly reducing from
Oðnd‘þ d‘2Þ in FD, while reducing its space

cost from Oðd2Þ to Oðd‘Þ, which is the same space
cost of FD.

Fig. 1. Space-efficient implementation of FF ¼ SHDF. To simplify the
illustration, we setm to 2c p, where c ¼ 2.

1092 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

3.4 Distributed FROSH

In real-world applications, data may be stored locally in dif-
ferent servers. To accelerate the training of FROSH, we pro-
pose a distribution implementation of FROSH, namely
DFROSH, sketched in Algorithm 3, where we assume data
A ¼ fAigvi¼1 are stored in vmachines.

Remark 4. Here, we highlight several key remarks:

� Step 2 asynchronously invokes FROSH in vmach-
ines independently.

� Step 4 to step 13 are to concatenate the sketched
results from v machines and invoke FD to sketch
the concatenated matrix. The time cost is negligible
because the size of the concatenated sketched data
is very small. In step 9, the online centering proce-
dure is conducted and the objective is the same
as that in Remark 1 to ensure that we can sketch
on a certain matrix, saying bG, such that bGT bG ¼
ðA� mmÞT ðA� mmÞ, whereA ¼ ½A1;A2; . . . ;Av�.

� It is noted that the sketching precision of
DFROSH is the same as the one sketching the
concatenated data throughout all the distributed
machines, which means that the sketching preci-
sion of DFROSH and FROSH is equivalent; see
detailed theoretical analysis in Theorem 2. In
terms of the time cost, step 4 to step 13 is negligi-
ble since Bi and v are small, and step 2 takes only
about 1=v time cost of that running FROSH on
A ¼ ½A1;A2; . . . ;Av� in a single machine with con-
ducting online data centering procedure.

Algorithm 3. Distributed FROSH (DFROSH): DFROSH
(fAigvi¼1, B), where Ai 2 Rni�d; B 2 R‘�d

1: for i 2 ½v� do
2: Obtain the sketch Bi 2 R‘�d, row mean vector mmi 2 R1�d,

and data size ni of Ai by running steps 1 to 10 of FROSH
for Ai # In the ith distributed machine

3: end for
4: Receive B1, mm1, and n1

5: Let ’’ ¼ mm1, t ¼ n1

6: Initialize sketched matrix by B ¼ B‘�d
1 # In the center

machine
7: for i 2 f2; . . . ;vg do
8: Receive Bi, mmi, and ni

9: Set && ¼
ffiffiffiffiffiffiffiffi
tni
tþni

q
ðmmi � ’’Þ 2 R1�d

10: Invoke FD(Gi, B), where Gi ¼ ½Bi; &&� 2 Rðniþ1Þ�d

SketchGi into B by FD
11: Set ’’ ¼ t’’

tþni
þ nimmi

tþni
12: Set t ¼ t þ ni

13: end for
14: Compute the SVD of B 2 R‘�d and assign the top r right

singular vectors asWT 2 Rr�d

15: return W

3.5 Analysis

Before proceeding the theoretical analysis, we present the
following definitions:

Definition 1.Without loss of generality, we let q be ‘=2 and p be
n
m, the number of times to proceed step 9 in Algorithm 2. Let the

input be A ¼ ½A1;A2; . . . ;Ap� 2 Rn�d with fAt 2 Rm�dgpt¼1,
where a mild but practical assumption has also been made as
�1 � kAtk2F � �2 with �1 and �2 close to each other [2], [43].
Denote C ¼ ½C1;C2; . . . ;Cp� 2 Rpq�d, where Ct ¼ FtAt is
compressed from At via Ft ¼ StHDt. Let ‘ � k ¼ minðm; dÞ
and B 2 R‘�d is computed from FFD on C.

We first derive the following lemma:

Lemma 1 (FFD). With the notations defined in Definition 1 and
with the probability at least 1� pb� ð2pþ 1Þd� 2n

ek
, we have

kATA� BTBk2

� O

�
1

‘
log

�
md

b

�
þ log

�
d

d

� ffiffiffiffiffiffiffi
k

‘p2

s
þ

ffi
log

�
d

d

�
1þ ffiffiffiffiffiffiffi

k=‘
p
p

s �
kAk2F

� eO� 1

‘
þ Gð‘; p; kÞ

�
kAk2F ;

(4)

where Gð‘; p; kÞ ¼
ffiffiffiffiffi
k
‘p2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffi
k=‘

p
p

r
with p ¼ n

m and eOð	Þ hides
the logarithmic factors on ðb; d; k; d;mÞ.

The time consumption of FFD is eOðn‘2 d
m þ ndÞ and its

space requirement is Oðd‘Þ.
We defer the proof in Section 4.2.

Remark 5. Comparing Lemma 1 and the theoretical result
of FD in [33], we conclude the favorite characteristics of
FFD:

� The sketching error of FFD becomes smaller when
p increases, i.e., through increasing n or decreasing
m. This is in line with our intuition because
adding more training data will increase more
information while separating more blocks will
enhance the sketching precision. Note that to
make n

ek
¼ Qð n

ed
Þ � Qð1Þ, we only need to have

d � QðlognÞ, which satisfies in many practical
cases. Then, we only require p ¼ n

m ¼ QðndÞ �
Qð n

lognÞ, and the upper bound Qð n
lognÞ can be

extremely large as n increases. Thus, p can be
extremely large to make Gð‘; p; kÞ ¼

ffiffiffiffiffi
k
‘p2

q
þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffi
k=‘

p
p

r
negligible.

� The time cost of FFD is inversely proportional to
m. A smaller m will increase the time cost but
enhance the sketching precision. Hence, a proper
m is desirable.

� When m is QðdÞ, the time cost of FFD iseOðn‘2 þ ndÞ. This is significantly superior to FD,
Oðnd‘Þ, for the dense centered data when ‘ � d.
When more data come, i.e., n increases, p will
become larger and the error bound of FFD tends
to be tighter.

� In sum, FFD is more favorite to the big data appli-
cations when 1 � d � n and it can attain the
same estimation error bound as FD with lower
computational cost.

Based on Lemma 1 and the online data centering mecha-
nism, we derive the following theorem for FROSH:

CHEN ET AL.: MAKING ONLINE SKETCHING HASHING EVEN FASTER 1093

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

Theorem 1 (FROSH). Given dataA 2 Rn�d with its row mean
vector mm 2 R1�d, let the sketch B‘�d be constructed by FROSH
in Algorithm 1. Then, with the probability defined in Lemma 1,
we have

kðA� mmÞT ðA� mmÞ � BTBk2
� eO� 1

‘
þ Gð‘; p; kÞ

�
kA� mmk2F ;

(5)

where ðA� mmÞ 2 Rn�d subtracts each row of A by mm,
Gð‘; p; kÞ has been defined in Lemma 1, and WT 2 Rr�d is the
hashing projection for Remark 1 that contains the top r right
singular vectors of B‘�d.

The time cost of FROSH is eOðn‘2 þ ndþ d‘2Þ and the
space cost is Oðd‘Þ when m ¼ QðdÞ for invoking FFD of
Algorithm 2.

The detailed proof is provided in Section 4.3. The pri-
mary analysis is similar to that of OSH [30], where the learn-
ing accuracy can be maintained via accurate sketching.
Hence, we adopt the sketching error for the centered data
A� mm to justify whether the sketching-based hashing
achieves proper performance [30]. We can observe from the
bound in Eq. (5) that it significantly decreases from Oðnd‘Þ
of OSH to eOðn‘2 þ ndÞ where usually in real-world applica-
tions, 1 < ‘ � d � n. Note that, the relation between B and
A� mm can theoretically lead to a similar relation between
their projection matrices WB and W, i.e., kðA� mmÞ�
ðA� mmÞWBW

T
Bk22 � ð1þ �ÞkðA� mmÞ � ðA� mmÞWWTk22; see

details in [11].

Theorem 2 (DFROSH). Given the distributed data
A ¼ ½A1;A2; . . . ;Av� 2 Rn�d with its row mean vector
mm 2 R1�d, let the sketch B‘�d be generated by DFROSH in
Algorithm 3. Under the assumption that ni ¼ n=v for
Ai 2 Rni�d, then with the probability and notations defined in
Lemma 1 we have

kðA� mmÞT ðA� mmÞ � BTBk2
� eO� 1

‘
þ Gð‘; p; kÞ

�
kA� mmk2F :

(6)

The time cost of DFROSH is the summation ofeOðn‘2=vþ nd=vÞ in each distributed machine and Oðvd‘2Þ
in the center machine. Totally, the time cost of DFROSH can
be regarded as eOðn‘2=vþ nd=vÞ when ‘ � d � n and
v � Oð ffiffiffiffiffiffiffiffi

n=d
p Þ. In terms of the space cost, each machine con-

sumes Oðd‘Þ space when m ¼ QðdÞ for invoking FFD in
Algorithm 2.

Hence, we can guarantee the sketching precision of
DFROSH. The detailed proof can be referred to Section 4.4.

4 THEORETICAL PROOF

4.1 Preliminaries

Before providing the main theoretical results, we present
four preliminary theoretical results for the rest proofs.

The first theorem is the Matrix Bernstein inequality for
the sum of independent zero-mean randommatrices.

Theorem 3 ([49]). Let fAigLi¼1 2 Rn�d be independent random
matrices with E Ai½ � ¼ 0 and kAik2 � R for all i 2 ½L�. Let

s2 ¼ maxfkPL
i¼1 E AiA

T
i

	
k2; kPL
i¼1 E AT

i Ai

	
k2g be a vari-

ance parameter. Then, for all � � 0, we have

P
XL
i¼1

Ai

�����
�����
2

� �

 !
� ðdþ nÞexp ��2=2

s2 þR�=3

� �
: (7)

The second theorem characterizes the property of the
compressed data via an SRHT matrix.

Theorem 4 ([38]). Given A 2 Rm�d, let rankðAÞ � k �
minðm; dÞ and F 2 Rq�m be an SRHT matrix. Then, with the
probability at least 1� ðdþ m

ek
Þ we have

ð1� DÞATA � ATFTFA � ð1þ DÞATA; (8)

where D ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k log ð2k=dÞ

q

q
Þ.

By applying Corollary 3 in [2], one can directly derive the
following lemma to bound the compressed data:

Lemma 2. Give data A 2 Rm�d, and an SRHT matrix
F 2 Rq�m. Then, with probability at least 1� b, we have

kFaik2 �
ffi
2 log

2md

b

� �s
kaik2; 8 i 2 ½d�: (9)

Before proceeding, we also need the following Lemma to
characterize the property of the scaled sampling matrix:

Lemma 3. Given data X 2 Rm�d, and a scaled sampling matrix
S 2 Rq�m in SRHT. Then, we have

E½XTSTSX� ¼ XTX: (10)

4.2 Proof of Lemma 1

Proof. We follow the notations defined in Definition 1. By
the triangle inequality, we have

kATA� BTBk2 � kATA� CTCk2 þ kCTC� BTBk2:
(11)

Since B is computed from the standard FD on C, then
with the probability at least 1� pb, we have

kCTC� BTBk2 �
2

‘
kCk2F � 4

‘
log

2md

b

� �
kAk2F : (12)

The first inequality directly follows from that of FD [33].
The second inequality holds by applying Lemma 2 and
the union bound on kCk2F ¼Pp

t¼1 kCtk2F ¼Pp
t¼1

Pd
i¼1

kct;ik22.
Define Xt ¼ HDtAt, we can start to bound

kATA� CTCk2 by

kATA� CTCk2 ¼
Xp
t¼1

ðAT
t At � CT

t CtÞ
�����

�����
2

¼
Xp
t¼1

ðAT
t At � XT

t S
T
t StXtÞ

�����
�����
2

:

(13)

Let Zt ¼ AT
t At � XT

t S
T
t StXt, t 2 ½p�, we obtain indepen-

dent random variables, fZtgpt¼1. By applying Lemma 3,
we perform the expectation w.r.t. St andDt and obtain

1094 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

E½XT
t S

T
t StXt� ¼ EDtESt ½XT

t S
T
t StXtjDt�

¼ EDt ½XT
t Xt� ¼ EDt ½AT

t D
T
t H

THDtAt� ¼ AT
t At;

(14)

where the second equality follows from Lemma 3 by fix-
ing Dt and applying the property of the unitary matrices
on H and Dt to attain the last equality. Thus, fZtgpt¼1 sat-
isfy the condition of the Matrix Bernstein inequality in
Theorem 3.

By applying the union bound on Theorem 4, with the
probability at least 1� ðpdþPp

t¼1
m
ekt
Þ, we attain kZtk2 �

DtkAT
t Atk2 ¼ DtkAtk22 and

R ¼ max
t2½p�

DtkAtk22; (15)

where Dt ¼ Qð
ffi
kt log ð2kt=dÞ

q

q
Þ and rankðAtÞ � kt � min

ðm; dÞ.
Computing s2. Due to the symmetry of each matrix Zt,

we have s2 ¼ kPp
t¼1 E½ðZtÞ2�k2. Hence, with the probabil-

ity at least 1� ðdþ m
ekt
Þ, we have

0d�d � E½ðZtÞ2� (16)

¼ E½ðXT
t S

T
t StXtÞ2� � ðAT

t AtÞ2 (17)

� E½kStXtk22XT
t S

T
t StXt� � ðAT

t AtÞ2 (18)

� E½ð1þ DtÞkAtk22XT
t S

T
t StXt� � ðAT

t AtÞ2 (19)

¼ ð1þ DtÞkAtk22AT
t At � ðAT

t AtÞ2: (20)

In the above, Eqs. (17) and (20) hold because
EðXT

t S
T
t StXtÞ ¼ AT

t At. Eq. (19) follows from Theorem 4.
Eq. (18) holds because

0d�d � ðXT
t S

T
t StXtÞ2 � kStXtk22XT

t S
T
t StXt;

which results from the fact that for any y 2 Rd,

yT ðXT
t S

T
t StXtÞ2y ¼ kyTXT

t S
T
t StXtk22

� kyTXT
t S

T
t k22kStXtk22 ¼ kStXtk22yTXT

t S
T
t StXty:

Then, we have

Xp
t¼1

E½ðZtÞ2�
�����

�����
2

�
Xp
t¼1

kE½ðZtÞ2�k2

�
Xp
t¼1

���ð1þ DtÞkAtk22AT
t At � ðAT

t AtÞ2
���
2

(21)

¼
Xp
t¼1

���ð1þ DtÞkAtk22UtS
2
tUt �UtS

4
tUt

���
2

¼
Xp
t¼1

���ð1þ DtÞkAtk22S2
t � S4

t

���
2

¼
Xp
t¼1

maxj2½d�jð1þ DtÞs2
t1s

2
tj � s4

tjj

�
Xp
t¼1

ð1þ DtÞs4
t1 ¼

Xp
t¼1

ð1þ DtÞkAtk42

�max
t2½p�

pð1þ DtÞkAtk42;

(22)

where Eq. (21) holds due to Eq. (20) and Ut in Eq. (22) is
computed from the SVD of At, i.e., At ¼ UtStV

T
t and the

eigenvalues stj , st;jj listed in the descending order inSt.
By Theorem 3, we have

P
Xp
t¼1

Zt

�����
�����
2

� �

 !
� 2d exp

��2=2

s2 þR�=3

� �
: (23)

Let d denote the RHS of Eq. (23), we can get

� ¼ log
2d

d

� �
R

3
þ

ffi
R

3

� �2

þ 2s2

log ð2d=dÞ

s0@ 1A (24)

� log
2d

d

� �
2R

3
þ

ffi
2s2 log

2d

d

� �s
(25)

� max
t2½p�

eO DtkAtk22
� �

þmax
t2½p�

eO ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1þ DtÞ

p
kAtk22

� �
(26)

� max
t2½p�

eO ffiffiffiffiffiffiffi
k

‘p2

s
þ

ffi
1þ ffiffiffiffiffiffiffi

k=‘
p
p

s0@ 1A kAtk22
kAtk2F

0@ 1AkAk2F (27)

� eO ffiffiffiffiffiffiffi
k

‘p2

s
þ

ffi
1þ ffiffiffiffiffiffiffi

k=‘
p
p

s0@ 1A0@ 1AkAk2F : (28)

To derive Eq. (27) from Eq. (26), we first substitute

Dt ¼ Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt log ð2kt=dÞ

q

q� �
into Eq. (26) and set k ¼ kt ¼

minðm; dÞ, which allows Eq. (26) to become the maximum

of the sum of two functions. Then, we take the definition

q ¼ ‘=2 and apply a common practical assumption of

that p�1 � kAk2F ¼Pp
t¼1 kAtk2F � p�2 with each kAtk2F

bounded between �1 and �2 that are very close to each
other.

Combing Eq. (28) with Eqs. (11) and (12) based on the
union bound, we obtain the desired result with the prob-
ability at least 1� pb� ð2pþ 1Þd� 2p m

ek
.

The computational analysis is straightforward based
on that in FD and Section 3.3. tu

4.3 Proof of Theorem 1

Proof. By applying Lemma 1 and the proof of OSH [30], we
can derive the theoretical error bound. tu

4.4 Proof of Theorem 2

Proof. The proof resembles those in Lemma 1 and Theo-
rem 1, where we can first bound the sketching without
considering the online centering procedure. Given all dis-
tributed data A, we have

kATA� BTBk2 � kATA� CTCk2 þ kCTC� BTBk2;
where C is compressed from A by the fast transforma-
tions involved in FROSH in step 2 of Algorithm 3, and B
is the finally sketched data for C as shown in steps 5
and 10 of Algorithm 3.

CHEN ET AL.: MAKING ONLINE SKETCHING HASHING EVEN FASTER 1095

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

First, we bound kCTC� BTBk2. Without loss of gener-
ality, we compress Ci from the distributed input Ai by
the fast transformations involved in FROSH in the step 2
of Algorithm 3 and obtain the sketch Bi for Ci via FD,
i.e., Bi ¼ FDðCiÞ, where i ¼ 1; . . . ;v. Therefore, we
obtain

kCTC� BTBk2
¼ kCTC� FDð½B1;B2; . . . ;Bv�ÞTFDð½B1;B2; . . . ;Bv�Þk2
� 2

‘
kCk2F

(29)

� 4

‘
log

2md

b

� �
kAk2F ; (30)

where Eq. (29) holds due to the distributed or paralleliz-
able property of FD as proved in Section 2.2 of [33], and
Eq. (30) follows Eq. (12).

Next, we bound kATA� CTCk2 in DFROSH. Without
loss of generality, we let the distributed input
A ¼ fAigvi¼1, or A ¼ ½A11; . . . ;A1p1 ;A21; . . . ;Avpv � 2 Rn�d,
where Ait 2 Rm�d is the independent small data chunks
that are processed by each iteration of FROSH involved
in step 2 of Algorithm 3, pi ¼ ni

m, i ¼ 1; . . . ;v, and
t ¼ 1; . . . ; pv. Then, we have

kATA� CTCk2 ¼
Xv
i¼1

AT
i Ai � CT

i Ci

�����
�����
2

¼
Xv
i¼1

Xpi
t¼1

AT
itAit � CT

itCit

�����
�����
2

¼
Xp
j¼1

AjTAj � CjTCj

�����
�����
2

� eO� 1
‘
þ Gð‘; p; kÞ

�
kAk2F ;

(31)

where we denote Ait and Cit to Aj and Cj, respectively,
because

Pv
i¼1 pi ¼ p. Following the proof of Eq. (28), we

then yield Eq. (31).
Finally, we combine Eqs. (30) and (31) to derive the

corresponding bound and conclude the whole proof. tu

5 EXPERIMENTS

In the experiments, we address the following issues:

(1) What are different manifestations of FD and FFD in
terms of sketching precision and time cost?

(2) What is the performance of FROSH and DFROSH
comparing with other online algorithms and batch-
trained algorithms?

We conduct experiments on synthetic datasets to answer
the first question and real-world datasets to answer the
second question, respectively. For fair comparisons, all
the experiments are conducted in MATLAB R2015a in the
mode of a single thread running on standard workstations
with Intel CPU@2.90 GHz, 128 GB RAM and the operating
system of Linux. All the results are averaged over 10 inde-
pendent runs.

5.1 Numerical Comparisons of FD and FFD

Following the same setting of [33], we construct A ¼
PLLUþ Z=g, where P 2 Rn�k is the signal coefficient matrix
such that Pij Nð0; 1Þ, LL 2 Rk�k is a square diagonal
matrix with the diagonal entry being Lii ¼ 1� ði� 1Þ=k,
which linearly diminishes the singular values, U 2 Rk�d

defines the signal row space with UUT ¼ Id, Z 2 Rn�d is the
Gaussian noise, i.e., Zij Nð0; 1Þ, g is the parameter to con-
trol the effect of the noise and the signal, k is the length of
the controlling signal. Usually, k � d. We set both k and g

to 10 as those in [33].
In the evaluation, we vary the sketching size ‘ from

f16; 32; 64; 100; 128; 200; 256g, the dimension of the data d
from f64; 128; 256; 512g, and the number of the data n from
f50,000, 100,000, 200,000, 500,000, 1,000,000g. For FFD, we
test the effect of m by setting m ¼ td, where t ¼ f1; 2; 4; 8g.
The relative error and the time cost are measured to evalu-
ate the performance of FD and FFD under different settings,
where the relative error is defined by kATA� BTBk2=kAk2F
and B is the sketched matrix.

Fig. 2 shows the relative errors and Fig. 3 records the
time cost for the compared algorithms, respectively. The
results show that

� FFD attains comparable accuracy to FD but enjoys
much lower time cost compared with FD. From
Fig. 2a, the sketching precision increases gradually
as the sketching size ‘ increases while from Fig. 3a,
the time cost of FFD is significantly less than that of
FD. Moreover, the performance of FFD is insensitive
to m. Though the relative errors increase slightly
when m increases, the time cost can be further
reduced in a certain magnitude.

� The sketching errors decrease gradually with the
increase of the number of data n while the time cost
scales linearly with n; see Figs. 2b and 3b for the
detailed results.

� The sketching errors of both FD and FFD increase
with the increase of the dimension d while FFD is
slightly worse than FD. This follows our intuition

Fig. 2. Relative errors of FD and FFD under different settings.

1096 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

and is in line with the observation in [33] because
increasing d may increase the intrinsic properties of
data. The time cost of both FD and FFD also scales
linearly with d, but FFD costs significantly less time
than FD. The observations can be examined in
Figs. 2c and 3c.

� In sum, the above observations of FFD are consistent
with the theoretical results in Lemma 1 while the
observations of FD are in line with the results in [33].
They demonstrate the the advantages of FFD over
FD for online sketching hashing.

5.2 Comparison of Online and Batch-Trained
Algorithms

We compare our proposed FROSH and DFROSH with the
following baseline algorithms:

� OSH [30]: our basic online sketching algorithm;
� LSH [10]: online sketching algorithm without train-

ing, i.e., conducting the hash projection function via
a random Gaussian matrix;

� Scalable Graph Hashing (SGH) [25]: a leading batch-
trained algorithm which conducts graph hashing to
efficiently approximate the graphs; and

� Ordinal Constraint Hashing (OCH) [35]: another
leading batch-trained algorithm that learns the opti-
mal hashing functions from a graph-based approxi-
mation to embed the ordinal relations.

and conduct on four benchmark real-world datasets:

� CIFAR-10 [28]: a collection of 60,000 images in 10
classes with each class of 6,000 images. The GIST
descriptors are employed to represent each image,
which yields a 512-dimensional data.

� MNIST [9]: a collection of 70,000 images in 10 classes
with each class of 7,000 images represented by 784-
dimensional features.

� GIST-1M [23]: a collection of one million 960-dimen-
sional GIST descriptors.

� FLICKR-25600 [57]: a collection of 100,000 images sub-
sampled from web images with each image repre-
sented by a 25,600-dimensional vector under instance
normalization.

We follow the same measurement of [30]. Specifically,
given a query, the returned point is set to its true neigh-
bor if this point lies in the top 2 percent closest points to
the query, where the euclidean distance is applied in the
original space without hashing. To test the accuracy per-
formance of hashing, for each query, all data points are

processed by hashing and ranked according to their Ham-
ming distances to the query. In the online algorithms,
OSH, FROSH and DFROSH, we set the sketching size ‘ to
2r, where r is the code length assigned from f32; 64; 128g.
m is empirically set to 4d for FROSH and DFROSH,
respectively. In DFROSH, the data are evenly distributed
in 5 machines. The setting of batch-trained algorithms
SGH and OCH follows that in [25], [35]. We measure
precision-recall curves and the mean average precision
(MAP) score of the compared algorithms, where the pre-
cision is computed via the ratio of true neighbors among
all the returned points and the recall is computed via the
ratio of the true neighbors among all ground truths while
the precision-recall curve is obtained through changing
the number of the returned points, and MAP records the
area under the curve of precision-recall, which can be
computed by averaging many precision scores evenly
spaced along the recall to approximate such area. We
have also divided the data into 10 parts, and run the algo-
rithms and record the performance part after part sequen-
tially. Each part corresponds to a round.

Fig. 4 shows the MAP scores at different rounds with 32,
64 and 128 bits codes for online algorithms LSH, OSH, and
FROSH. The comparison indicates that

� On all datasets, it is apparent that our proposed
FROSH performs as accurately as OSH and outper-
forms LSH with a large margin.

� OSH and FROSH can stably improve the MAP scores
when receiving more data, which demonstrates that
a successful adaption to the data variations has been
achieved.

Fig. 5 also includes the online algorithm DFROSH, and
reports MAP scores of all compared algorithms with respect
to different code lengths. The results show that

� LSH yields the poorest performance because it does

not learn any information from the data. Meanwhile,

OCH attains the best performance in most cases.
This indicates that the time cost of OCH is deserved.

� Our proposed FROSH and DFROSH attain compara-

ble performance with OSH and even beat the two

leading batch-trained algorithms in FLICKR-25600,
i.e., the data with extremely high dimension.

Fig. 6 presents the precision-recall curves of the com-
pared algorithms with the code length of 128. The curves
of OSH, FROSH, and DFROSH almost overlap exhibit
competitive or better performance compared with other
methods.

Fig. 3. Time cost of FD and FFD under different settings.

CHEN ET AL.: MAKING ONLINE SKETCHING HASHING EVEN FASTER 1097

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. MAP comparisons at different code lengths.

Fig. 6. Precision-Recall comparisons for the code length of 128.

Fig. 4. MAP at each round with 32, 64, and 128 bits for online hashing: LSH, OSH, and FROSH.

1098 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

Table 2 records the time cost of all compared algorithms.
The results show that

� OCH costs the most time while SGH and OSH yield-
ing similar time cost on CIFAR-10, MNIST, GIST-
1M. For FLICKR-25600, when the number of dimen-
sion is large, SGH costs significantly more time than
OSH. These observations are in line with previous
work in [10], [25], [30], [35].

� FROSH yields significantly less training time than
OSH, only one-twentieth to one-tenth of OSH.

� DFROSH is the most efficient algorithm. Since it runs
on five machines simultaneously, its time cost is
around one-fifth of FROSH. Overall, it speeds up
40 300 times compared with the batch-trained
algorithms.

In a word, our proposed FROSH and DFROSH can adapt
hash functions to new coming data and enjoy superior train-
ing efficiency, i.e., single pass, low computational cost and
low memory cost.

6 CONCLUSIONS

In this paper, we overcome the inefficiency of the OSH algo-
rithm and propose the FROSH algorithm and its distributed
implementation. We provide rigorous theoretical analysis
to guarantee the sketching precision of FROSH and
DFROSH and their training efficiency. We conduct exten-
sive empirical evaluations on both synthetic and real-world
datasets to justify our theoretical results and practical
usages of our proposed FROSH and DFROSH.

ACKNOWLEDGMENTS

The work was fully supported by the Research Grants
Council of the Hong Kong Special Administrative Region,

China (No. CUHK 14208815, No. CUHK 14234416, and
Project No. UGC/IDS14/16).

REFERENCES

[1] N. Ailon and E. Liberty, “Fast dimension reduction using rade-
macher series on dual BCH codes,” in Proc. Annu. ACM-SIAM
Symp. Discrete Algorithms, 2008, pp. 1–9.

[2] F. P. Anaraki and S. Becker, “Preconditioned data sparsification
for big data with applications to PCA and K-means,” IEEE Trans.
Inf. Theory, vol. 63, no. 5, pp. 2954–2974, May 2017.

[3] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and L. Schmidt,
“Practical and optimal LSH for angular distance,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2015, pp. 1225–1233.

[4] H. Avron, H. Nguyen, and D. Woodruff, “Subspace embeddings
for the polynomial kernel,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2014, pp. 2258–2266.

[5] F. Cakir, K. He, S. A. Bargal, and S. Sclaroff, “MIHash: Online
hashing with mutual information,” in Proc. Int. Conf. Comput. Vis.,
2017, pp. 437–445.

[6] F. Cakir, K. He, and S. Sclaroff, “Hashing with binary matrix
pursuit,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 344–361.

[7] F. Cakir and S. Sclaroff, “Adaptive hashing for fast similarity
search,” in Proc. Int. Conf. Comput. Vis., 2015, pp. 1044–1052.

[8] F. Cakir and S. Sclaroff, “Online supervised hashing,” in Proc.
IEEE Int. Conf. Image Process., 2015, pp. 2606–2610.

[9] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,”ACMTrans. Intell. Syst. Technol., vol. 2, 2011, Art. no. 27.

[10] M. S. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. Annu. ACM Symp. Theory Comput., 2002,
pp. 380–388.

[11] X. Chen, I. King, and M. R. Lyu, “FROSH: FasteR online sketching
hashing,” in Proc. Conf. Uncertainty Artif. Intell., 2017.

[12] X. Chen, M. R. Lyu, and I. King, “Toward efficient and accurate
covariance matrix estimation on compressed data,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 767–776.

[13] X. Chen, H. Yang, I. King, and M. R. Lyu, “Training-efficient fea-
ture map for shift-invariant kernels,” in Proc. Int. Joint Conf. Artif.
Intell., 2015, pp. 3395–3401.

[14] A. Choromanska, K. Choromanski,M. Bojarski, T. Jebara, S. Kumar,
and Y. LeCun, “Binary embeddings with structured hashed projec-
tions,” in Proc. Int. Conf.Mach. Learn., 2016, pp. 344–353.

[15] O. Chum and J. Matas, “Large-scale discovery of spatially related
images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 2,
pp. 371–377, Feb. 2010.

[16] T. L. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan,
and J. Yagnik, “Fast, accurate detection of 100,000 object classes
on a single machine,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2013, pp. 1814–1821.

[17] P. Dhillon, Y. Lu, D. P. Foster, and L. Ungar, “New subsampling
algorithms for fast least squares regression,” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2013, pp. 360–368.

[18] A. Gionis, P. Indyk, R. Motwani, et al., “Similarity search in high
dimensions via hashing,” in Proc. 25th Int. Conf. Very Large Data
Bases, 1999, pp. 518–529.

[19] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quan-
tization: A procrustean approach to learning binary codes for
large-scale image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 12, pp. 2916–2929, Dec. 2013.

[20] K. He, F. Cakir, S. A. Bargal, and S. Sclaroff, “Hashing as tie-aware
learning to rank,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2018, pp. 4023–4032.

[21] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,” in
Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1422–1428.

[22] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. Annu.
ACM Symp. Theory Comput., 1998, pp. 604–613.

[23] H. Jegou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 33, no. 1, pp. 117–128, Jan. 2011.

[24] H. Jegou, M. Douze, C. Schmid, and P. P�erez, “Aggregating local
descriptors into a compact image representation,” in Proc. 23rd
IEEE Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3304–3311.

[25] Q.-Y. Jiang andW.-J. Li, “Scalable graph hashingwith feature trans-
formation,” in Proc. Int. Joint Conf. Artif. Intell., 2015, pp. 2248–2254.

[26] I. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley,
2002.

TABLE 2
The Training Cost (in Sec.) of SGH, OCH, OSH, FROSH, and
DFROSH on Four Real-World Datasets w.r.t. Code Lengths

Dataset Algorithm 32 bits 64 bits 128 bits

CIFAR-10

SGH 7.83 11.35 19.49
OCH 26.89 26.95 27.49
OSH 7.78 11.88 22.09

FROSH 0.63 0.94 2.11
DFROSH 0.13 0.20 0.44

MNIST

SGH 10.47 14.59 23.47
OCH 40.45 40.49 41.10
OSH 13.25 18.93 30.75

FROSH 1.17 1.49 2.56
DFROSH 0.24 0.31 0.53

GIST-1M

SGH 231 275 290
OCH 1,042 1,089 1,192
OSH 228 331 520

FROSH 21 27 45
DFROSH 4.3 5.6 9.7

FLICKR-25600

SGH 3,032 3,541 4,903
OCH 4,981 5,300 5,441
OSH 679 1,283 2,570

FROSH 72 92 134
DFROSH 15.6 19.4 29.2

CHEN ET AL.: MAKING ONLINE SKETCHING HASHING EVEN FASTER 1099

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

[27] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling based
discrete supervised hashing,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 1230–1236.

[28] A. Krizhevsky and G. E Hinton, “Learning multiple layers of fea-
tures from tiny images,” Master’s thesis, Department of Computer
Science, University of Toronto, Citeseer, 2009.

[29] B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2009,
pp. 1042–1050.

[30] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, “Online sketching
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 2503–2511.

[31] W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep
supervised hashing with pairwise labels,” in Proc. Int. Joint Conf.
Artif. Intell., 2016, pp. 1711–1717.

[32] Y. Li, R. Wang, H. Liu, H. Jiang, S. Shan, and X. Chen, “Two birds,
one stone: Jointly learning binary code for large-scale face image
retrieval and attributes prediction,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2015, pp. 3819–3827.

[33] E. Liberty, “Simple and deterministic matrix sketching,” in Proc.
19th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp. 581–588.

[34] G. Lin, C. Shen, Q. Shi, A. vandenHengel, andD. Suter, “Fast super-
vised hashing with decision trees for high-dimensional data,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2014, pp. 1971–1978.

[35] H. Liu, R. Ji, Y. Wu, and F. Huang, “Ordinal constrained binary
code learning for nearest neighbor search,” in Proc. AAAI Conf.
Artif. Intell., 2017, pp. 2238–2244.

[36] H. Liu, R. Ji, Y. Wu, and W. Liu, “Towards optimal binary code
learning via ordinal embedding,” in Proc. AAAI Conf. Artif. Intell.,
2016, pp. 1258–1265.

[37] W. Liu,C.Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
inProc. Int. Conf. Neural Inf. Process. Syst., 2014, pp. 3419–3427.

[38] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar, “Faster ridge regres-
sion via the subsampled randomized hadamard transform,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2013, pp. 369–377.

[39] H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford, “Efficient
second order online learning by sketching,” in Proc. Int. Conf. Neu-
ral Inf. Process. Syst., 2016, pp. 910–918.

[40] M. W. Mahoney, “Randomized algorithms for matrices and data,”
Found. Trends Mach. Learn., vol. 3, no. 2, pp. 123–224, 2011.

[41] L. Mukherjee, S. N. Ravi, V. K. Ithapu, T. Holmes, and V. Singh,
“An NMF perspective on binary hashing,” in Proc. Int. Conf. Com-
put. Vis., 2015, pp. 4184–4192.

[42] B. Neyshabur, N. Srebro, R. R. Salakhutdinov, Y. Makarychev, and
P. Yadollahpour, “The power of asymmetry in binary hashing,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2013, pp. 2823–2831.

[43] J. Pennington, F. Yu, and S. Kumar, “Spherical random features
for polynomial kernels,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2015, pp. 1846–1854.

[44] J. S�anchez and F. Perronnin, “High-dimensional signature com-
pression for large-scale image classification,” in Proc. 24th IEEE
Conf. Comput. Vis. Pattern Recognit., 2011, pp. 1665–1672.

[45] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. T. Shen, “Learning
binary codes for maximum inner product search,” in Proc. IEEE
Int. Conf. Comput. Vis., 2015, pp. 4148–4156.

[46] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp. 37–45.

[47] A. Shrivastava and P. Li, “Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS),” in Proc. Int. Conf.
Neural Inf. Process. Syst., 2014, pp. 2321–2329.

[48] J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe, “Supervised hash-
ing with pseudo labels for scalable multimedia retrieval,” in Proc.
23rd ACM Int. Conf. Multimedia, 2015, pp. 827–830.

[49] J. A. Tropp, “An introduction to matrix concentration inequal-
ities,” Found. Trends Mach. Learn., vol. 8, pp. 1–230, 2015.

[50] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2010, pp. 3424–3431.

[51] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE tran. pattern anal. mach. intell., vol. 40,
no. 4, pp. 769–790, 2017.

[52] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
Int. Conf. Neural Inf. Process. Syst., 2009, pp. 1753–1760.

[53] D. P. Woodruff, et al.“Sketching as a tool for numerical linear alge-
bra,” Found. Trends Theoretical Comput. Sci., vol. 10, pp. 1–157, 2014.

[54] C. Woolam, M. M. Masud, and L. Khan, “Lacking labels in the
stream: Classifying evolving stream data with few labels,” in Proc.
Int. Symp. Methodologies Intell. Syst., 2009, pp. 552–562.

[55] S. Wu, S. Bhojanapalli, S. Sanghavi, and A. G. Dimakis, “Single
pass PCA of matrix products,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2016, pp. 2585–2593.

[56] L. Xie, L. Zhu, and G. Chen, “Unsupervised multi-graph cross-
modal hashing for large-scale multimedia retrieval,” Multimedia
Tools Appl., vol. 75, pp. 9185–9204, 2016.

[57] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang, “Circulant
binary embedding,” in Proc. 31st Int. Conf. Mach. Learn., 2014,
pp. II-946–II-954.

Xixian Chen received the bachelor’s degree from
Nanjing University, in 2013, and the PhD degree
from the Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, in 2018. He has been a senior researcher
with Tencent Youtu Lab since 2018. His research
interests contain machine learning, deep learn-
ing, recommendation systems, big data, and
computer vision. He has several technical publi-
cations in the top-tier conferences and journals.

Haiqin Yang (M’11) received the BSc degree
in computer science from Nanjing University,
Nanjing, China, and the MPhil and PhD degrees
from the Department of Computer Science and
Engineering, The Chinese University of Hong
Kong, Hong Kong. He is currently a machine
learning research scientist with Meitu, Hong
Kong, and an adjunct assistant professor with the
Department of Computing, Hang Seng Manage-
ment College, Hong Kong. His research interests
include machine learning, data mining, and natu-

ral language processing. He has authored two books and more than 40
technical publications in journals/conferences in his areas of expertise.
He received the Young researcher award of Asia Pacific Neural Network
Society at 2018. He has initiated and co-organized five international
workshops on the topics of scalable machine learning and scalable data
analytics. He currently serves on the editorial board of the Neurocomput-
ing and also serves as a program committee member and a reviewer of
more than 20 top-tier conferences/journals. He is a member of the IEEE.

Shenglin Zhao (M’18) received the bachelor’s
and master’s degrees in engineering from the
College of Electrical Engineering, Zhejiang Uni-
versity, in 2009 and 2012, respectively, and the
PhD degree from the Department of Computer
Science and Engineering, The Chinese Univer-
sity of Hong Kong, in 2017. He has been a senior
researcher with Tencent Youtu Lab since 2018.
His research interests contain deep learning,
machine learning, recommendation systems,
computer vision, spatio-temporal data analysis.

He has published more than 10 refereed journal and conference papers.
He is a member of the IEEE.

1100 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

Irwin King (F’18) received the BSc degree
in engineering and applied science from the
California Institute of Technology, Pasadena,
Clifornia, and the MSc and PhD degrees in
computer science from the University of Southern
California, Los Angeles, California. He is cur-
rently the associate dean (education) of the
Faculty of Engineering, and a professor with
the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong,
Hong Kong. He was with AT&T Labs Research,

Florham Park, New Jersey, and also taught a number of courses with
the University of California at Berkeley, Berkeley, California, as a visiting
professor. His research interests include machine learning, social com-
puting, big data, web intelligence, data mining, and multimedia informa-
tion processing. In these research areas, he has authored more than
200 technical publications in top international journals and conferences.
In addition, he has contributed more than 30 book chapters and edited
volumes. Moreover, he has more than 30 research and applied grants
and industry projects. Some notable projects include the VeriGuide sys-
tem and the Knowledge and Education Exchange Platform. He serves
as the general co-chair of WSDM2011, RecSys2013, and ACML2015.
He is an associate editor of the ACM Transactions on Knowledge
Discovery from Data and the Journal of Neural Networks. Currently, he
is serving as the president and governing board member of both
the International Neural Network Society. He is a fellow of the IEEE.

Michael R. Lyu (F’04) received the BS degree in
electrical engineering from the National Taiwan
University, Taipei, Taiwan, the MS degree in
computer engineering from the University of
California at Santa Barbara, Santa Barbara,
California, and the PhD degree in computer
engineering from the University of California at
Los Angeles, Los Angeles, California. He was
with the Jet Propulsion Laboratory, Pasadena,
California, Telcordia Technologies, Piscataway,
New Jersey, and the Bell Laboratory, Murray Hill,

New Jersey, and taught with the University of Iowa, Iowa City, Iowa. He
has participated in more than 30 industrial projects. He is currently a pro-
fessor with the Computer Science and Engineering Department, The
Chinese University of Hong Kong, Hong Kong. He has authored close to
400 papers in the following areas. His current research interests include
software engineering, distributed systems, multimedia technologies,
machine learning, social computing, and mobile networks. He received
the best paper awards in ISSRE in 1998 and 2003, and the SigSoft Dis-
tinguished Paper Award in International Conference on Software Engi-
neering in 2010. He initiated the International Symposium on Software
Reliability Engineering (ISSRE), and was a program chair of ISSRE in
1996, the program co-chair of the Tenth International World Web Con-
ference, the Symposium on Reliable Distributed Systems in 2005, the
International Conference on e-Business Engineering in 2007, and
the International Conference on Services Computing in 2010. He was
the general chair of ISSRE in 2001, the Pacific Rim International Sympo-
sium on Dependable Computing in 2005, and the International Confer-
ence on Dependable Systems and Networks in 2011. He has been
named by the IEEE Reliability Society as the reliability engineer of the
Year in 2011, for his contributions to software reliability engineering and
software fault tolerance. He is a fellow of the IEEE and American Associ-
ation for the Advancement of Science.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

CHEN ET AL.: MAKING ONLINE SKETCHING HASHING EVEN FASTER 1101

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 24,2021 at 07:35:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

