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a b s t r a c t

Code retrieval is a common practice for programmers to reuse existing code snippets in the open-
source repositories. Given a user query (i.e., a natural language description), code retrieval aims at
searching the most relevant ones from a set of code snippets. The main challenge of effective code
retrieval lies in mitigating the semantic gap between natural language descriptions and code snippets.
With the ever-increasing amount of available open-source code, recent studies resort to neural
networks to learn the semantic matching relationships between the two sources. The statement-level
dependency information, which highlights the dependency relations among the program statements
during the execution, reflects the structural importance of one statement in the code, which is
favorable for accurately capturing the code semantics but has never been explored for the code
retrieval task. In this paper, we propose CRaDLe, a novel approach for Code Retrieval based on
statement-level semantic Dependency Learning. Specifically, CRaDLe distills code representations
through fusing both the dependency and semantic information at the statement level, and then
learns a unified vector representation for each code and description pair for modeling the matching
relationship. Comprehensive experiments and analysis on real-world datasets show that the proposed
approach can accurately retrieve code snippets for a given query and significantly outperform the
state-of-the-art approaches on the task.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Implementing projects from scratch is tedious for program-
ers. In most cases, they know what they want to do, but do
ot have the capability to implement all the details. For ex-
mple, a Python programmer may want to ‘‘convert date_string
nto datetime format ’’, but not able to recognize the proper syn-
ax datetime.strptime(date_string, format) for the
ealization. To mitigate the impasse, it is common for program-
ers to search the web in natural language (NL), find relevant
ode snippets, and modify them into the desired form (Brandt,
uo, Lewenstein, Dontcheva, & Klemmer, 2009). Many code re-
rieval approaches (Brandt et al., 2009; Lv et al., 2015; McMillan,
rechanik, Poshyvanyk, Xie, & Fu, 2011) have been proposed
o improve the recommendation accuracy of the returned code
nippets given a natural language description. The main challenge
f effective code retrieval is the semantic gap between source
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code and natural language descriptions since the two sources are
heterogeneous and share few common lexical tokens, synonyms
and language structures (Gu, Zhang, & Kim, 2018).

Prior efforts have been conducted for effective code retrieval.
The existing research can be divided into two categories ac-
cording to the involved techniques, i.e., Information Retrieval
(IR)-based and Deep Neural Network (DNN)-based. The IR-based
techniques rely on token-wise similarities between source code
and queries. Since the variable and API definitions in code are
generally word combinations or abbreviations in natural lan-
guage, more semantically-similar tokens in code and queries can
indicate more relevancy between them. For example, McMillan
et al. propose Portfolio which utilizes keyword matching and
PageRank to return a list of functions (McMillan et al., 2011).
Lv et al. propose CodeHow to combine API matching for code
retrieval (Lv et al., 2015). With an increasing amount of available
source code and flourish development of deep learning tech-
niques, many studies (Gu et al., 2018; Husain, Wu, Gazit, Alla-
manis, & Brockschmidt, 2019) propose to adopt neural network
models for jointly encoding tokens of source code and queries
into a single and joint vector space, where one encoder is em-

ployed for each input (natural or programming) sequence. The
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bjective is to map semantically relevant code and language into
ectors that are near to each other in the vector space.
Considering the highly-structured characteristic of source

ode, recent research proposes to integrate the structural infor-
ation of code such as Abstract Syntax Tree (AST) and Control
low Graph (CFG) for representing code semantics (Wan et al.,
019; Yin & Neubig, 2017; Zhang et al., 2019), demonstrating
he effectiveness of involving structural information for the task.
owever, the deep nature of the extracted trees in ASTs renders
t hard for deep learning models to comprehensively capture the
tructural information (Zhang et al., 2019). CFG, which repre-
ents all possible execution paths for a program, may contain
tatement orders which are not contributing to the actual ex-
cution result, probably leading to biased code representation
earning (Wan et al., 2019). In this paper, we propose to utilize
tatement-level dependency relations in a code snippet based
n Program Dependency Graph (PDG). The PDG is established
ased on AST but less deeper than AST in the structure and only
etains the execution paths that will affect the execution result.
he dependency relations are then explicitly integrated with
he statement-level semantics to capture the code semantics.
ctually, the effectiveness of incorporating dependency relations
or code representation learning has proven in tasks such as bug
etection (Li, Wang, Nguyen, & Nguyen, 2019) and code clone
etection (Henderson & Podgurski, 2016); while no prior work
as explored the impact on the code retrieval task so far.
Specifically, we introduce a novel neural network model

amed CRaDLe, an abbreviation of Code Retrieval based on
semantic Dependency Learning. CRaDLe couples both structural
and semantic information of code at the statement level, where
the code structures are extracted based on PDG. Extensive ex-
periments have been conducted to verify the performance of
the proposed approach. The evaluation results show that CRaDLe
can significantly outperform the state-of-the-art models by at
least 36.38% and 22.34% on two real datasets respectively, in
terms of R@1, one standard metric for validating recommendation
performance.

In summary, the main contributions of the paper include:

• We propose a novel code retrieval model, CRaDLe, to en-
code both source code and natural language queries into
unified vector representations. CRaDLe is the first code re-
trieval approach that integrates the dependency and seman-
tics information at the statement level for learning code
representations.
• We conduct large-scale experimental evaluations on public

benchmarks. The results demonstrate the superior perfor-
mance of CRaDLe over the state-of-the-art and baseline
models.

The rest of this paper is organized as follows. Section 2 in-
troduces an overview of the proposed approach and details the
design of the approach. Section 3 illustrates the experimental
datasets, evaluation metrics, and implementation details. Sec-
tion 4 elaborates on the experimental results. Section 6 surveys
the related work and Section 7 concludes our work.

2. The proposed CRaDLe

In this section, we elaborate on the overview and detailed
design of the proposed approach CRaDLe, including the code
encoder, description encoder and the similarity measurement
component.
386
Fig. 1. Overview of the proposed CRaDLe.

2.1. Overview

Fig. 1 depicts the overview of the proposed approach, CRaDLe.
The implementation includes both offline and online modes. Dur-
ing the offline stage, we first collect datasets containing <code,
description> pairs. The collected code and descriptions are then
preprocessed and separately encoded into vectors by the code
encoder and query encoder respectively. Unified representations
of code and corresponding descriptions are finally learnt after
the offline training process, where semantically similar code and
descriptions locate closely to each other in the same embed-
ding space. During the online process, when a new natural lan-
guage query arrives, the trained model recommends the most
related code snippets to the programmer according to the se-
mantic distances between code and the query in the embedding
space.

Fig. 2 illustrates the overall framework of the CRaDLe ap-
proach, which details the design of the code encoder and descrip-
tion encoder. The code encoder fuses the statement-level token
semantics and distilled dependency information to represent the
code semantics. The description encoder also embeds the token
sequences in the descriptions to vectors. Finally, similarity match-
ing scores between the code and descriptions are learnt based on
their respective vector representations.

2.2. Code encoder

The code encoder aims at embedding code snippets into vec-
tor representations. We propose to integrate the statement-level
token semantics with the dependency information between state-
ments for accurately capturing the code semantics. We first il-
lustrate the process conducted for the dependency information
extraction, and then describe the networks proposed for learning
statement-level dependency and semantic representations.

Algorithm 1 shows the procedures for the code encoder. The
input of the code encoder includes the token matrix E comprised
by a sequence of token embedding vectors {e1,1, . . . , ei,j, . . .}
nd dependency matrix Υ . First, the dependency embedding
ayer encodes the dependency matrix Υ into dependency embed-
ings P . The token embedding layer then represents the token
atrix E into statement-level representations T comprised by

t1, . . . , ti, . . .}. Finally, the token embeddings are concatenated
ith the dependency embeddings in statement level, and the
ewly comprised vectors are fed into the Bi-LSTM layer. The
ast hidden state vector from the Bi-LSTM layer is treated as the
epresentation vector of the code.

.2.1. Dependency information extraction
We obtain the dependency information between statements

y adopting PDGs of the code snippets. PDG explicitly indicates
he data dependency and control dependency of a program,
here the data dependency can represent the relevant data

low relationships and control dependency exhibits the essential
ontrol flow relationships (Ferrante, Ottenstein, & Warren, 1987).
ince there exists no mature tool for extracting PDG of one code
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Fig. 2. Overall framework of the proposed CRaDLe.
Fig. 3. Workflow for extracting PDG of the code snippet in Listing 1. For the extracted PDG in (c), red and black arrowed lines indicate data dependency and control
dependency respectively. The tokens beside each statement block denote the variables (re)defined (highlighted in red underlined font) or used in the corresponding
statement.
Algorithm 1: The algorithm of code encoding
input : the token matrix E, the matrix of input dependency: Υ

utput: The representation vector of code: C
unction CODEENCODER(E, Υ ):

P ← DependencyEmbedding(Υ ) ; // corresponding to
Eq. (1)
T ← TokenEmbedding(E);
S ← StatementAttention(T ) ; // corresponding to
Eqs. (2) and (3)
C ← SemanticDependencyEmbedding([S; P]) ;
// corresponding to Eq. (4)
return C;

snippet in interpreted languages such as Python, we propose to
establish the PDG based on the AST of a code snippet.

For clarifying the PDG establishment process, we use the code
xample illustrated in Listing 1. Fig. 3(a) depicts the mark for each
tatement in the code example, in which we regard the func-
ion name and required parameters as two separate statements.
387
Function name can be treated as a short summary of the code
functionality; while the definitions of the required parameters
generally reflect the semantics of the input data. Treating function
names and parameters separately could be helpful for capturing
their respective semantics.

Fig. 3(b) demonstrates the simplified AST of the code example
where we construct the AST in statement level and hide the
details of each statement. The data dependency of one statement
with the other statement can be identified if the variable used in
one statement is (re)defined in the other statement and the value
of the variable is unchanged on the execution path between these
two statements. The control dependency of one statement with the
other is determined if the execution of the statement relies on the
execution results of the other one. The control dependency can be
directly captured by the tree structure in the AST, i.e., statements
in child leaf nodes are considered possessing dependent relations
with the statements in the parent nodes. The extracted PDG is
depicted in Fig. 3(c), with red arrowed lines and black arrowed
lines indicate data dependency and control dependency between
the two statements, respectively. Tokens beside each statement

block denote the related variables, in which we use black or
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ed underlined variables to distinguish whether the variables are
sed or (re)defined in the corresponding statement. For example,
he parent nodes of S10 in the AST include S3, S5, S7, and S9 (as
shown in Fig. 3(b)), so the control dependency between S10 and
S3,5,7,9 is marked in the obtained PDG. Also, the variable mid in
S6, corresponding to line 5 in the Listing 1, is from S4, i.e., line 3
in the code example; so S6 shows a data dependency relation to
S4 in the PDG.

2.2.2. Statement-level dependency embedding
The dependency embedding network is designed to encode

the data dependency and control dependency involved in the
PDG of a code snippet into a vector representation. According
to the extracted PDG (as shown in Fig. 3(c)), we can build a
dependency matrix Υ ∈ {0, 1}(l)×(l), where l indicates the number
of statements in the code. The element υij = 1 if the ith statement
has a data/control dependency on the jth statement; otherwise
υij = 0. Note that υij ̸= υji. For example, S4 and S6 exhibit a data
dependency relation, so υ64 = 1. To embed the obtained depen-
dency matrix Υ , we employ one layer of multi-layer perceptron
(MLP):

pi = tanh(WΓ υi),∀i = 1, 2, . . . , l,
P = [p1, . . . , p(l)],

(1)

where WΓ is the matrix of trainable parameters in MLP and
pi is the embedding of the dependency information for each
statement.

2.2.3. Statement-level token embedding
The token embedding network is designed for capturing the

semantics of each statement based on the constituted tokens.
We first tokenize the statements into sequences of tokens fol-
lowing Gu et al.’s work (Gu et al., 2018), during which process
duplicate tokens and the keywords in the programming language
such as while and break are removed. Then tokens in
each sequence are embedded into vectors individually through
an embedding layer. An attention layer is utilized to compute a
weighted average. Given a sequence of token embedding vectors
{ei,1, . . . , ei,j, . . .} for the ith statement, the attention weight αi,j
for each ei,j is calculated as follows:

αi,j =
exp(e⊺i,j)∑
j exp(e

⊺
i,j)

. (2)

Each statement is embedded based on the attention weights αi,j.

ti =
∑

j

αi,je
⊺
i,j, (3)

where i indicates the ith statement.

2.2.4. Semantic dependency embedding
We consider both statement-level dependency and seman-

tic information for learning the vector representation of a code
snippet. Specifically, for each statement si, we concatenate its
dependency embedding pi and token embedding ti as the rep-
resentation of the statement, i.e., si = [ti; pi]. We finally adopt
bi-LSTM to encode the sequence of the statement embeddings
and use the last hidden state as the vector representation of the
code.

c = BiLSTM(hl, sl), (4)

where l indicates the number of statements.
388
2.3. Description encoder

The description encoder aims at embedding natural language
descriptions into vectors. Given a description D = {w1, . . . , wk,
. . , wNd} comprising a sequence of Nd words, the description
ncoder embeds it into a vector d using a bi-LSTM model with
axpooling:

hk = BiLSTM(hk−1,wk),∀k = 1, 2, . . . ,Nd,

d = maxpooling([h1, . . . ,hNd ]).
(5)

The maxpooling layer is used to mitigate the effect of long-
term information loss caused by the LSTM mechanism and catch
the global feature of the whole sentence.

2.4. Similarity measurement

The semantic similarity between the code vector c and de-
scription vector d is calculated based on its cosine distance in the
embedding space:

cos(c, d) =
c⊺d
∥c∥∥d∥

. (6)

The vector features of the two different embedding models are
trained using the loss function, i.e., Eq. (6), to maximize the cosine
similarities in the projected space, so aligned code and descrip-
tions would be close to each other in the space. Such design is
widely adopted in prior code search studies (Cambronero, Li, Kim,
Sen, & Chandra, 2019; Gu et al., 2018; Sachdev et al., 2018). The
target of the design is to get unified representations for both code
and description, so as to mitigate the problem of semantic gap
between them. The higher the similarity, the more relevant the
code is to the description.

2.5. Model training

We obtain the representation vectors for code snippets and
descriptions based on the proposed code encoder and description
encoder, respectively. Following previous studies (Cambronero
et al., 2019; Gu et al., 2018; Sachdev et al., 2018), we project the
code vectors and description vectors to the same space, and train
the vectors for aligned code snippets and descriptions to be close
in the space.

Specifically, every single code snippet in the training data
T will be constructed as a triplet ⟨C,D+,D−⟩. C represents the
ode snippet from the training Corpora, D+ indicates the descrip-
ion which semantically matches the code snippet in the ground
ruth, and D− denotes the negative description which is ran-
omly chosen from the training corpora with the true description
xcluded. The loss function is as below:

(θ ) =
∑

⟨C,D+,D−⟩∈T

max(0, ϵ − cos(c, d+)+ cos(c, d-)), (7)

where θ denotes the parameters in the proposed model, c denotes

the code vector of C , d+ and d- denote the description vectors
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Table 1
Statistics of the number of statements in CodeSearchNet dataset.
#Statements Training set Validation set Test set

0 ∼ 10 2,30,183 12,413 12,326
11 ∼ 20 1,17,060 6,364 6,361
21 ∼ 30 32,904 1,875 1,843
31 ∼ 40 12,834 755 633
41 ∼ 50 5,723 386 326
51 ∼ 8,422 509 413

Table 2
Statistics of the number of statements in Code2Seq dataset.
#Statements Training set Validation set Test set

0 ∼ 10 2,18,679 32,429 33,210
11 ∼ 20 73,870 11,301 12,251
21 ∼ 30 20,956 3,215 3,478
31 ∼ 40 7,957 1,251 1,370
41 ∼ 50 3,540 573 632
51 ∼ 4,326 650 786

of D+ and D−, respectively. Based on the training loss function,
we can get unified representations for both code and description,
thus mitigating the semantic gap between them.

3. Experimental setup

In the section, we introduce the collected dataset for exper-
mentation, the evaluation metrics, implementation details and
aseline models.

.1. Dataset collection

Two datasets are adopted for our experimental evaluation.
ne dataset is obtained from CodeSearchNet (Husain et al., 2019),
publicly-available GitHub repository. We focus on the Python
rogram language since it is one of the most popular program-
ing languages, accounting for more than 30% of the total market
hare as PYPL reported (PYPL, 2020). Detailed statistics of the
ataset can be found in Table 3. All the code in the corpus is in
ython and with English descriptions. We have 407,126, 22,302,
nd 21,902 <code, description> pairs for training, validating and
esting, respectively. The median and average numbers of the
tatements in the code are around 10. We also observe that
he statements contain around three tokens on average, with
he minimum at zero which is because the input parameters
eside the method name are treated as an individual statement
nd some code snippets may not require any input parameters.
nother dataset is from Code2seq (Alon, Brody, Levy, & Yahav,
019), with the statistics illustrated in Table 4. We only select the
ode written in Python 3 from both datasets since the PDG extrac-
ion tool (introduced in Section 2.2.1) is specifically designed for
ython 3 and may fail to parse the code written in Python 2.
Tables 1 and 2 illustrate the distribution of statements num-

ers of the codes in the two dataset, i.e., CodeSearchNet and
ode2Seq, respectively. We can observe that the long tail phe-
omenon occurs in the two datasets. Besides, more than 50%
f the code has ≤10 statements and more than 80% has ≤20
tatements.

.2. Performance measurement

Following the evaluation settings in Wan et al. (2019), we fix
set of 999 distractor snippets cj for each test pair (ci, di) and

calculate the average ranking score for all the testing pairs as
the evaluation result. We involve two metrics: R@k and MRR, for
validating the ranking performance.
389
Table 3
Statistics of the CodeSearchNet dataset.
# <code, description> Training Validating Testing

4,07,126 22,302 21,902

Statistics of # statements in code

Min. 1 1 1
Med. 7 8 7
Max. 1,385 909 363
Ave. 11.45 11.87 11.24

Statistics of # tokens in the statements

Min. 0 0 0
Med. 3 3 3
Max. 514 155 83
Ave. 3.92 3.87 3.91

Table 4
Statistics of the Code2seq dataset.
# <code, description> Training Validating Testing

3,29,328 49,419 51,727

Statistics of # statements in code

Min. 2 2 2
Med. 7 7 7
Max. 1,463 416 1,463
Ave. 10.17 10.33 10.68

Statistics of # tokens in the statements

Min. 0 0 0
Med. 3 3 3
Max. 682 199 1,864
Ave. 3.75 3.73 3.73

3.2.1. R@k
R@k is a common metric to evaluate whether an approach

an retrieve the correct answer in the top k returning results. It
s widely used by many studies on the code retrieval task. The
etric is calculated as follows:

@k =
1
|Q |

|Q |∑
q=1

δ(FRankq < k), (8)

where Q denotes the query set and FRankq denotes the rank of the
correct answer for query q. The function δ(Frankq < k) returns 1 if
the rank of the correct answer within the top k returning results
otherwise the function returns 0. A higher R@k indicates a better
code retrieval performance.

3.2.2. MRR
Mean Reciprocal Rank (MRR) is the average of the reciprocal

ranks of the correct answers of query set Q , which is another
popular evaluation metric for the code retrieval task. The metric
MRR is calculated as follows:

MRR =
1
|Q |

|Q |∑
q=1

1
FRankq

. (9)

The higher the MRR value is, the better performance the model
has.

3.3. Implementation details

In our experiment, we select the top 10,000 words according
to the word frequencies as the vocabularies of code snippets and
descriptions, respectively. All the word embeddings are randomly
initialized and adjusted during training. The dimension of word
embedding is set as 256. All LSTMs have 1024 hidden units in
each direction. The maximum number of considered statements
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n the code and the maximum number of tokens in each state-
ent are set as 20 and 5, respectively. The sequence lengths of
escriptions are limited as 30 following the work (Gu et al., 2018).
he CRaDLe model is trained via the AdamW algorithm (Kingma
Ba, 2015) and the learning rate is 2.08e−4. To mitigate the over-

itting issue, we add a dropout layer with dropout rate at 0.25. We
rain our models on a server with one Nvidia GeForce RTX 2080
i and 11 GB memory. The training lasts ∼20 h with 200 epochs
nd the early stopping strategy (Goodfellow, Bengio, Courville, &
engio, 2016) is adopted to avoid overfitting.

.4. Baseline models

We compare our proposed model with several state-of-the-art
aseline models. CODEnn is one of the state-of-the-art models
roposed in Gu et al. (2018). This model extracts the method
ame, API sequence and tokens from the code and utilizes neural
etwork to learn the unified vector representation of query and
hese code features. UNIF (Cambronero et al., 2019) focuses on
he semantic information from the tokens in the code and utilizes
mbedding techniques and attention mechanism to embed the
okens in the query and code into a single vector respectively.
he projection of the query and code vector in the same space
s learned by this model. NeuralBoW (Wang & Manning, 2012)
mbeds each token in the two input sequences to a learnable
mbedding. The token embeddings are then combined into a
equence embedding using max-pooling and an attention-like
eighted sum mechanism. The RNN baseline adopts two-layer
i-directional LSTM model (Cho, van Merrienboer, Bahdanau, &
engio, 2014) to encode the input sequences. CONV (Kim, 2014)
ses 1D convolutional neural network over both the input se-
uences of tokens. CONVSelf (Lin et al., 2017) combines 1D con-
olutional neural network and self-attention layer to embed both
nput sequences. SelfAttn (Husain et al., 2019) utilizes multi-head
ttention (Vaswani et al., 2017) to encode both input sequences
f tokens, and has proven effective on multiple types of pro-
ramming languages such as Python and JavaScript. The hyper-
arameters of the baselines are defined according to the original
apers (Cambronero et al., 2019; Gu et al., 2018; Husain et al.,
019). During implementing CODEnn, NeuralBoW, RNN, CONV,
ONVSelf and SelfAttn, we directly utilized the released code;
hile for UNIF, we tried our best to replicate the code according
o the paper and will make the replication publicly available.

. Experimental results

In this section, we present the evaluation results, including the
ain results, parameter analysis, case studies and error analysis.

.1. Main results

Involving semantic dependency embeddings increases the
ode search performance. Tables 5 and 6 illustrate the evalua-
ion results comparing with the baseline models. As can be seen,
RaDLe presents the best performance comparing with all the
aseline models, increasing the performance of 36.38% in terms
f R@1, 17.13% in terms of R@5, 12.54% in terms of R@10 and
5.26% in terms of MRR at least on the dataset of CodeSearch-
et. CRaDLe can achieve the improvement of the performance
t least 22.34%, 22.51%, 21.54% and 21.79% in R@1, R@5, R@10
nd MRR on the dataset of Code2Seq, respectively. This indicates
hat CRaDLe can rank the correct answer the top more accurately
hen given a natural language query. The improvement on R@1

s most significant among all the metrics in our proposed model,
hich is over 20% in both datasets. R@1 is the metric concerned
ost by programmers since they prefer to use the code search
390
able 5
omparison results with baseline models on the CodeSearchNet dataset. The best
esults are highlighted in bold fonts.
Approach R@1 R@5 R@10 MRR

CODEnn 0.367 0.573 0.652 0.465
UNIF 0.379 0.615 0.706 0.490
NeuralBoW 0.521 0.747 0.807 0.622
RNN 0.556 0.772 0.832 0.654
CONV 0.475 0.703 0.776 0.579
CONVSelf 0.571 0.788 0.845 0.668
SelfAttn 0.580 0.786 0.840 0.673

CRaDLemaxpooling 0.777 0.914 0.946 0.838
CRaDLe 0.791 0.923 0.951 0.843

Table 6
Comparison results with baseline models on the Code2seq dataset. The best
results are highlighted in bold fonts.
Approach R@1 R@5 R@10 MRR

CODEnn 0.330 0.532 0.617 0.427
UNIF 0.380 0.588 0.668 0.478
NeuralBoW 0.546 0.693 0.738 0.615
RNN 0.438 0.623 0.688 0.526
CONV 0.425 0.584 0.645 0.502
CONVSelf 0.470 0.642 0.700 0.552
SelfAttn 0.525 0.683 0.731 0.599

CRaDLemaxpooling 0.664 0.843 0.892 0.745
CRaDLe 0.668 0.849 0.897 0.749

system which can return the best results in first. The higher MRR
score further verifies the effectiveness of CRaDLe. The difference
between CRaDLe and the baseline models is the code represen-
tation strategy, which shows the effectiveness of the semantic
dependency embeddings for code search.

Attention mechanism can be helpful for effective code
search. By comparing CONV with CONVSelf, we can observe that
with the attention mechanism integrated, CONV presents a better
performance than the pure CONV model on both datasets. For
example, CONVSelf increases the accuracy of CONV by 20.21% and
15.37% in terms of R@1 and MRR on the CodeSearchNet dataset,
respectively. Similar result also appears on the Code2Seq dataset.
The results imply the effectiveness of the attention mechanism on
the code search task. We also compared with the performance of
the CRaDLemaxpooling where the attention mechanism is replaced
with the max pooling strategy (Lee, Gallagher, & Tu, 2016).
As can be seen in Tables 5 and 6, CRaDLe with the attention
mechanism involved outperforms the CRaDLe with max pooling
strategy integrated on both datasets, which further demonstrates
the effectiveness of the attention mechanism on the task.

CRaDLe shows better generalizability than baseline models.
As can be observed from Tables 5 and 6, one baseline model’s
extraordinary performance on a specific dataset cannot transfer
to other datasets. For example, SelfAttn achieves the best per-
formance among all the baselines on the CodeSearchNet dataset
with respect to R@1, but perform worse than NeuralBoW on the
Code2seq dataset. Comparing with the baselines, CRaDLe presents
the best performance on both datasets, which can explicate the
good generalizability of CRaDLe.

4.2. Parameter analysis

In this section, we will discuss how the hyperparameters affect
the performance of CRaDLe. Three hyperparameters are analyzed,
including the number of hidden units in LSTMs, the maximum
number of considered statements in the code, and the maximum
number of considered tokens in each statement. Figs. 4 and 5
depict the results of the parameter analysis.
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Fig. 4. Parameter sensitivity study for CodeSearchNet.
Fig. 5. Parameter sensitivity study for Code2Seq.
.2.1. # Hidden units in LSTMs
As shown in Figs. 4(a) and 5(a), all the metric values present

n increasing trend as the number of hidden units grows. The
henomenon is understandable since more hidden units imply
hat the model has more parameters to learn and can extract
ore knowledge from the same input. We can also observe that

or each doubling of the number of hidden units, the growth
ates of the R@1 scores are 1.9%, 0.54%, 0.41% respectively on the
odeSearchNet dataset. The trend is identical for the Code2Seq
ataset. So we can summarize that with an increasing number of
he hidden units, the model performance would increase but the
ncreasing rates show a declining tendency. Due to the limitation
f the computing source and the marginal enhancement when
he number of hidden units is larger than 1024, we choose 1024
s the number of hidden units for our experiment.

.2.2. # Maximum statements in code
Figs. 4(b) and 5(b) illustrate the variations of the model per-

ormance as the maximum number of considered statements
ncreases. We can observe that the metrics achieve the highest
alues when the number equals 20 and manifests a declining
rend as the statement number further increases. As can be found
n Tables 3 and 4, the median numbers of the statements in both
odeSearchNet and Code2seq datasets are 7, with the average at
round 10. Thus, more statements considered would not be ben-
ficial for capturing the code semantics for most code snippets.
n the experiment, we set the maximum number of considered
tatements in code as 20.

.2.3. # Maximum tokens in statement
The impact of different maximum numbers of involved tokens

n a statement is shown in Figs. 4(c) and 5(c). We can find
hat when the involved token number increases, the performance
resents a downward trend. According to Tables 3 and 4, the
verage number of tokens in the statements is ∼3. So with more
okens recognized, the model could not learn more knowledge
f the code snippets. In the experiment, to balance the model
erformance with the number of tokens considered, we define
he maximum number of the tokens in a statement as 5.
391
4.3. Ablation study

In the ablation study, we validate the contribution of data
dependency or control dependency to CRaDLe and the effec-
tiveness of combining both dependency types. Tables 7 and 8
show the results of the ablation study on the datasets of Code-
SearchNet and Code2seq, respectively. CRaDLeFull represents the
model utilizes both data dependency and control dependency,
CRaDLeDataDependency represents the model only employs data de-
pendency and CRaDLeControlDependency represents the mode only
utilizes control dependency.

From the results, we can find that the performance of the
model that only utilizes data dependency is very close to the
performance of the model with only control dependency, which
shows that the importance of data dependency and control de-
pendency is relatively equivalent under our implementation.
However, we can find that the model that contains both data
dependency and control dependency outperforms the model that
only contains one dependency type, especially in terms of the
R@1 metric. The results indicate that the combination of data
dependency and control dependency is beneficial for effective
code search.

4.4. Case studies

Listing 2 shows our predicted code snippet for the query

‘‘Generates a dictionary that contains all collected statistics’’. We
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blation study on the CodeSearchNet dataset.
Approach R@1 R@5 R@10 MRR

CRaDLeFull 0.791 0.923 0.951 0.843
CRaDLeDataDependency 0.779 0.910 0.946 0.840
CRaDLeControlDependency 0.785 0.918 0.950 0.845

Table 8
Ablation study on the Code2seq dataset.
Approach R@1 R@5 R@10 MRR

CRaDLeFull 0.668 0.849 0.897 0.749
CRaDLeDataDependency 0.645 0.827 0.880 0.724
CRaDLeControlDependency 0.645 0.828 0.882 0.730

can find that our predicted result correctly matches the given
query. Although no overlapping words exist between the code
and query, CRaDLe could capture that the code tokens such as
rate and compute are semantically related to the query word
‘statistics’’. Besides, since the semantically-related tokens mainly
ppear at the line 3, 4 and 5, and do not span the entire code,
e guess that the involved dependency information helps to
stablish the relationships among the statements.
Listing 3 shows another predicted code snippet that accu-

ately matches the given query ‘‘Tile N images into one big PxQ
mage (P,Q)’’. Clearly, the function name contains the keywords
n the query, e.g., ‘‘tile" and ‘‘images". Moreover, the core idea
f this query is to tile N images into one image, essentially
elated to matrix operations. As shown in the Listing 3, the
ode contains tokens associated with matrix transformation such
s reshape and transpose . So with statement-level to-
ens explicitly incorporated, CRaDLe could well catch the code
unctionality.

Overall, the above two examples indicate that CRaDLe can
ccurately capture the code semantics with the statement-level
ependency and semantic information integrated.

.5. Error analysis

Although most of the time, our model returns correct code
nippets, we still notice that our model fails under the following
wo particular circumstances.

.5.1. Code containing complex mathematical logic
Listing 4 provides a failure case where the code contains com-

lex mathematical logic. The description corresponding to the
ode is ‘‘Convert directly the matrix from Cartesian coordinates (the
rigin in the middle of image) to Image coordinates (the origin on the
op-left of image)", which includes some mathematical concepts
uch as ‘‘Cartesian coordinates’’. Nevertheless, no words related to
he mathematical concepts appear in the code. Less knowledge
earnt about the mathematical terminology renders the model
arder to capture the semantic relevance between the code and
392
natural language. Future work can incorporate external knowl-
edge such as API documentation or Wikipedia for enhancing the
understanding of the mathematical concepts.

4.5.2. Code containing function invocation
We also find that the proposed model may fail to capture the

code semantics when the code involves function invocation but
the details of the invoked function are missing. Listing 5 illus-
trates such an example, and the corresponding description is ‘‘Get
uccessor to key, raises KeyError if a key is max key or key does not
xist ’’. As can be seen in the code example, the execution results
trongly rely on the invoked function succ_item(), however,
he implementation of the invoked function is not detailed. For
he case, the code semantics is difficult to be fully captured by
he model, leading to failure.

5. Discussion

5.1. Dependency embedding approach

In this section, we design another method for representing the
dependency information. Specifically, we enrich the dependency
matrix with the semantics of the tokens at statement level. The
statement-level dependency embedding is calculated as below:

pi =

∑
j tjυij

max (1,
∑

j υij)
,∀i = 1, 2, . . . , l,

P = [p1, . . . , p(l)],

(10)

where tj represents the statement-level token embedding for jth
statement, which is calculated via Eq. (1). υij indicates whether
the ith statement has a data/control dependency on the jth state-
ment and pi is the new dependency embedding.

We evaluated the performance of new dependency embedding
methods on the datasets of CodeSearchNet and Code2seq, as
shown in Table 9.

From the table, we can find that the new strategy for encoding
the dependency information outperforms our original approach
in terms of the R@1 and MRR metrics for both datasets. The
results indicate that the new approach for the dependency em-
bedding may be more effective than the original approach for the
task.

Graph neural networks (GNNs) is also a potential way to
represent the dependency between different statements in one
code snippet. However, using GNNs for representing the semantic
dependency of code is beyond the scope of the work, since the
assumption of GNNs that adjacent nodes share similar semantics
no long holds for the control dependency information, and it
would be more challenging to encode the semantic dependency
information through GNNs. In the future, we will investigate var-
ious strategies to embed the semantic dependency with GNNs (Li,
Ma, Wang, & Zhuang, 2020; Wang et al., 2020).
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able 9
omparison results with our original models. The best results are highlighted in
old fonts.
Dataset Approach R@1 R@5 R@10 MRR

CodeSearchNet CRaDLeoriginal 0.791 0.923 0.951 0.843
CRaDLenew 0.794 0.920 0.949 0.851

Code2seq CRaDLeoriginal 0.668 0.849 0.897 0.749
CRaDLenew 0.676 0.852 0.899 0.756

6. Related work

The work is inspired by the studies related to both code search
nd code semantics representation learning.

.1. Code search

In software development, developers accomplish the goal of
ffective and high quality code by reusing the existing huge
mount of available code resources. Prior work has explored a
umber of methods to find the implicit connections between
uman language queries and code databases. Early studies con-
entrate mainly on extracting useful features from both codes and
ueries. For example, the work (Shepherd, Fry, Hill, Pollock, &
ijay-Shanker, 2007) extracts scattered verbs from queries and
pplies action-oriented identifier graph model to inspect the re-
ult graph, which helps to optimize the queries. In Lu, Sun, Wang,
o, and Duan (2015), Lu et al. reformulate and extract natural
anguage phrases from source code identifiers since the synonyms
n source codes and NL queries may affect the code search result
ignificantly. The work (McMillan et al., 2011) proposes Portfolio
ses random surfer to model the navigation behavior of program-
ers. Then with association model based on Spreading Activation
etwork (Crestani, 1997), functional relevant functions can be
et in the same list. Ponzanelli et al. (Ponzanelli, Bavota, Penta,
liveto, & Lanza, 2014) propose to retrieve pertinent discussions
rom Stack Overflow when given a context in the IDE, which saves
evelopers’ time spent on formulating more standardized queries.
With rapid development of deep learning, an increasing

mount of work has focused on using neural networks for ef-
ective code search. In the work (Sachdev et al., 2018), Sachdev
t al. first develop neural code search model called NCS to conduct
L search directly over large source code corpora. In Liu et al.’
ork (Liu, Kim, Murali, Chaudhuri, & Chandra, 2019), they present
neural model called NQE, which expands the queries and

mproves performance for shorter queries. Codenn embeds both
ode snippets and natural language descriptions into a unified
ector space, in such way that code and its corresponding NL
escription have similar vectors (Gu et al., 2018). Iyer et al. (Iyer,
onstas, Cheung, & Zettlemoyer, 2016) use attentional long short
erm memory (LSTM) networks to focus on more cardinal parts
f the source code to produce search queries. Cambronero et al.
ropose UNIF, a bag-of-words-based network which includes API
equences, method tokens, method body tokens and docstring
okens for representing source code (Cambronero et al., 2019).
ao, Pedamail, and Sun regard code annotation and code search as
ual task and consider the generated code annotations for better
ode search (Yao, Peddamail, & Sun, 2019). Husain et al. explore
he semantic representations of different neural architectures and
hey find that self-attention-based architectures achieve the best
erformance (Husain et al., 2019).

.2. Representation learning for source code

Prior work has conducted many investigations to effectively
epresent the semantics of source code. Early studies widely use
393
machine learning and traditional information retrieval methods.
For instance, in Vásquez, McMillan, Poshyvanyk, and Grechanik
(2014), Vásquez et al. adopt SVM to discriminate semantic simi-
larities between code snippets and properly categorize software
repositories. In the work Kamiya, Kusumoto, and Inoue (2002),
programs are morphed into token sequences for facilitating po-
tential code clone detection. Recent work employs deep learn-
ing techniques for code semantics learning. Mou et al. adopt
tree-structured convolutional neural network (Tree-CNN) to con-
vert source code into distributed vector for program classifica-
tion (Mou, Li, Zhang, Wang, & Jin, 2016). The work Akbar and
Kak (2019) suggests that the order of the embedded words can
affect the accuracy of semantic representations. Besides the plain
textual information, many studies utilize the structural features of
source code, such as abstract syntax tree (AST) and control flow
graph (CFG), to enrich the representations of source code. For ex-
ample, in the work Zhang et al. (2019), AST-based neural network
is proposed to capture the structural information of source code.
In another work (Chan, Cheng, & Lo, 2012), an API graph and a
greedy subgraph search algorithm are utilized to help find the
usage of source code, which excavates more semantic details in
source code. Functions repetitively called and variables with the
same names are involved into Graph Neural Networks (GNNs) for
better representing the graph information in the work (Allamanis,
Brockschmidt, & Khademi, 2018). Wan et al. propose a multi-
modal attention network to combine the heterogeneous sources
including AST, CFG and sequences of code tokens (Wan et al.,
2019).

7. Conclusions

In this paper, we propose a novel deep neural network named
CRaDLe for code retrieval. According to our knowledge, CRa-
DLe is the first deep learning model which utilizes the program
dependency information for the task. CRaDLe learns the code
representations with the semantic dependency information com-
bined. Specifically, the dependency information and statement-
level tokens are jointly embedded for learning code semantics.
Finally, CRaDLe learns unified representations for both code and
natural language queries. The experiment results have shown
that CRaDLe outperforms the state-of-the-art approaches and
the semantic dependency learning is helpful for effective code
retrieval.

In the future, we will make a further exploration of the code
structure and explicitly incorporate external knowledge such as
API documentation to find a better way of representing source
code semantics.
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