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Abstract Point-of-interest (POI) recommendation is an important application in location-
based social networks (LBSNs), which mines user check-in sequences to suggest interesting
locations for users. Because user check-in behavior exhibits strong temporal patterns—for
instance, users would like to check-in at restaurants at noon and visit bars at night. Hence,
capturing the temporal influence is necessary to ensure the high performance in a POI rec-
ommendation system. Previous studies observe that the temporal characteristics of user
mobility in LBSNs can be summarized in three aspects: periodicity, consecutiveness, and
non-uniformness. However, previous work does not model the three characteristics together.
More importantly, we observe that the temporal characteristics exist at different time scales,
which cannot be modeled in prior work. In this paper, we propose an Aggregated Temporal
Tensor Factorization (ATTF) model for POI recommendation to capture the three temporal
features together, as well as at different time scales. Specifically, we employ a temporal tensor
factorization method to model the check-in activity, subsuming the three temporal features
together. Next, we exploit a linear combination operator to aggregate temporal latent fea-
tures’ contributions at different time scales. Experiments on two real-world data sets show
that the ATTF model achieves better performance than the state-of-the-art temporal models
for POI recommendation.
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1 Introduction

Point-of-interest (POI) recommendation is an important application in location-based social
networks (LBSNs),whichmines user historical check-in records and recommends users inter-
esting locations where they would like to check-in in the future. LBSNs have become very
popular recently with the explosively increase of smart phones. Traditional online social net-
works such as Facebook introduce location-based services, e.g., Facebook Places, to evolve
to LBSN. In the meantime, LBSNs such as Yelp and Foursquare, serving for special target
like restaurant recommendation, emerge and attract a great number of users. In such a context
of prosperous LBSNs, POI recommendation is proposed, which recommends a personalized
POI list for each user according to their tastes. To this end, POI recommendation creates val-
ues in two aspects: (1) helping users to discover interested locations and services in the city,
and (2) helping the businesses in LBSNs launch advertisements for target customers. The
potential value of POI recommendation attracts much academic attention, which motivates
a variety of POI recommendation systems [4,32,38].

To establish a practical POI recommendation system, temporal influence plays an impor-
tant role. Previous studies show that the user mobility in LBSNs exhibits distinct temporal
features [3,4,32]. For example, users always stay in the office in the Monday afternoon, and
enjoy entertainments in bars at night. In summary, the temporal features in users’ check-in
data can be abstracted in three aspects.

– Periodicity Users share the same periodic pattern, visiting the same or similar POIs at
the same time slot [3,32]. For instance, a user always visits restaurants at noon, so do
other users. Hence, the periodicity inspires the time-aware collaborative filtering method
to recommend POIs [32].

– Consecutiveness A user’s current check-in is largely correlated with the recent check-
in [2,4]. Gao et al. [4] model this property by assuming that user preferences are similar
in two consecutive hours. Cheng et al. [2] assume that two checked-in POIs in a short
term are highly correlated in latent feature space.

– Non-uniformness A user’s check-in preference changes at different hours of a day [4].
For example, at noon a user may visit restaurants while at night the user may have fun
in bars.

By capturing the observed temporal features, a variety of systems are proposed to enhance
POI recommendation performance [2,4,32], which gain better performance than general
collaborative filtering (CF)methods [30]. Nevertheless, previouswork [2,4,32] cannotmodel
the three features together. Moreover, an important fact is ignored in prior work that the
temporal influence exists at different time scales. For example, in day level, you may check-
in POIs around your home in the earning morning, visit places around your office in the day
time, and have fun at nightclubs in the evening. In week level, you may stay in the city for
work in weekdays and go out for vocation in weekends. Hence, to better model the temporal
influence, capturing the temporal features at different time scales is necessary.

In this paper, we propose an Aggregated Temporal Tensor Factorization (ATTF)model for
POI recommendation to capture the three temporal features together, as well as at different
time scales. We construct a user-time-POI tensor to represent the check-ins as shown in
Fig. 1, and then employ the interaction tensor factorization [26] to model the temporal effect.
Different from prior work that represents the temporal influence at single scale, we index
the temporal information for latent representation at different scales, i.e., hour, week, day,
and month. Furthermore, we employ a linear combination operator to aggregate different
temporal latent features’ contributions, which capture the temporal influence at different
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Fig. 1 Tensor illustration for check-ins

scales. Specifically, our ATTF model learns the three temporal properties as follows: (1)
periodicity is learned from the temporal CF mechanism; (2) consecutiveness is manifested
in two aspects—time in a slot brings the same effect through sharing the same time factor,
and the relation between two consecutive time slots can be learned from the tensor model;
(3) non-uniformness is depicted by different time factors representing different time slots
from each time scale perspective. Moreover, an aggregate operator is introduced to combine
the temporal influence at different scales, i.e., hour, week, day, and month, and represent the
temporal effect in a whole.

To sum up, we propose the ATTF model to seek a better way to capture the temporal
influence for POI recommendation. Note that we have presented our ATTF model for POI
recommendation in [36]. In this paper, we extend the work [36] with a comprehensive related
work review, an in-depth data empirical study, and more detailed performance analysis.
Moreover, we establish an embedding neural network to represent the ATTF model, which
gives new insights to understand the proposed model from the neural network perspective.
Specifically, this paper makes the following additional contributions. First, we provide an
empirical data analysis on the check-in data, which motivates our proposed ATTF model.
Second,we demonstrate the three-slice time indexing scheme and showourmemory reducing
trick via a binary representation transformation. Third, we present the detailed inference
procedure of our ATTF model and provide extensive discussion about our proposed model
on performance and parameter effect. Last but not the least, we understand the ATTF model
from the embedding neural network perspective, providing new insights to interpret the latent
ranking models.

The contributions of this paper are summarized as follows:

– To the best of our knowledge, this is the first temporal tensor factorization method for
POI recommendation, subsuming all the three temporal properties: periodicity, consec-
utiveness, and non-uniformness.

– We propose a novel model to capture temporal effect in POI recommendation at different
time scales. Experimental results show that our model outperforms prior temporal model
more than 20%.

– The ATTF model is a general framework to capture the temporal features at different
scales, which outperforms single temporal factor model and gains 10% improvement in
the top-5 POI recommendation task on Gowalla data.

– We understand the ATTF model from the embedding neural network perspective, ver-
ifying the effectiveness of the embedding neural network that is a general framework

123



978 S. Zhao et al.

for latent factor models, including rating estimation models (e.g., MF [9]) and ranking
models (e.g., our ATTF model).

This following of this paper is organized as follows. Section 2 reviews the most relevant
work. Section 3 introduces our empirical analysis on check-in data and demonstrates the time
labeling scheme. Next, Sect. 4 presents the details of our model. Then, Sect. 5 reports exper-
imental results conducted on two real-world data sets. Finally, Sect. 6 draws the conclusion
and gives possible further work in this study.

2 Related Work

In this section, we first review the literature of POI recommendation. Then, we summarize
the progress of modeling temporal effect for POI recommendation. Finally, we review the
literature of embedding learning and its applications, which inspires us to understand the
proposed ATTF model from the neural network perspective.

POI Recommendation Most of POI recommendation systems base on the collaborative
filtering (CF) techniques, which can be reported in two aspects, memory-based and model-
based. On the one hand, Ye et al. [30] propose the POI recommendation problem in LBSNs
solved by user-based CF method, and further improve the system by linearly combining
the geographical influence, social influence, and preference similarity. In order to enhance
the performance, more advanced techniques are then applied, e.g., incorporating temporal
influence [32], and utilizing a personalized geographical model via kernel density estima-
tor [33,34].On the other hand,model-basedCF is proposed to tackle the POI recommendation
problem that benefits from its scalability. Cheng et al. [1] propose a multi-center Gaussian
model to capture user geographical influence and combine it with social matrix factorization
(MF) model [19] to recommend POIs. Gao et al. [4] propose an MF-based model, Location
Recommendation frameworkwith Temporal effects (LRT), utilizing similarity between time-
adjacent check-ins to improve performance. Lian et al. [14] and Liu et al. [18] enhance the
POI recommendation by incorporating geographical information in a weighted regularized
matrix factorization model [8]. In addition, some researchers subsume users’ comments to
improve the recommendation performance [5,13,31]. Other researchers model the consecu-
tive check-ins’ correlations to enhance the system [2,16,37,38].

Temporal Effect Modeling In 2011, Cho et al. [3] propose the periodicity of check-in
data in LBSNs. People always visit restaurants at noon, so we suffice to recommend users
restaurants he/she did not visit at noon. Pearson correlation helps us to recommend similar
POIs at the same time slot. However, experiments in [3] depend on dense check-in data not
fitting most of users. In 2013, Yuan et al. [32] combine the temporal similarity and non-
temporal similarity to measure the similarity better. At the same year, Gao et al. [4] observe
the non-uniformness property (a user’s check-in preference changes at different hours of a
day), and consecutiveness (a user’s preference at time t is similar with time t − 1). Further,
Gao et al. propose LRT model based on MF technique to model the non-uniformness and
consecutiveness. Meantime, Cheng et al. [2] propose the Factorized Personalized Markov
Chain model [25] with Local Region constraint (FPMC-LR) to capture the consecutiveness,
supposing strong correlation between two consecutive checked-in POIs. However, previous
work does not model the three features together nor modeling the temporal influence at
different scales.

Embedding Neural Network The embedding neural network, e.g., word2vec frame-
work [20], has turned out to be a successful semi-supervised learning method. It is generally
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used in natural language processing [15,17]. Since the efficacy of the framework in cap-
turing the correlations of items, the embedding neural network is employed to the network
embedding [7,23,28], and as well as in recommendation systems [27,29]. Moreover, recent
studies [11,12] show that the neural word embeddings can be treated as a kind of matrix
factorization method [9]. This equivalence between neural embeddings and the latent fac-
tor models inspires us to understand our ATTF model from the embedding neural network
perspective. Our interpretation for ATTF model from neural network perspective verifies
that the embedding neural network can be treated as a general framework for latent factor
models, including rating estimation models [9] and ranking models (e.g., our proposed ATTF
model).

3 Preliminaries

In this section,we first analyse the temporal features of user check-in data. Then,we introduce
the time labeling scheme that is the prerequisite of our ATTFmodel. We analyse user check-
in data in Foursquare and Gowalla, which demonstrates the similar check-in pattern. In the
following, we show the empirical data analysis result based on a randomly selected user in
Foursquare.

3.1 Empirical Data Analysis

We leverage empirical data analysis to explore the three temporal properties of check-in data.
Our analysis verifies previous discoveries, for instance, the non-uniformness—user check-in
preference changes at different time of a day [4]. Moreover, we observe some new properties
not covered in prior work, e.g., the non-uniformness exists at different time scales.

Data sparsity is a big concern in previous temporal models. Figure 2a demonstrates a
user’s check-in pattern in a day. We observe that the user always has many check-ins in
the morning and evening, which verifies the periodicity. The check-in activity repeats in the
morning and evening. Figure 2b shows the consecutive hour pair similarity,1 i.e., the check-in
similarity between time t and t − 1 (t means the hour 1, 2, . . . , 24). We observe that the user
check-in preference has high similarity at some consecutive hours, e.g., between 5 o’clock
and 4 o’clock, 8 o’clock and 7 o’clock. However, we also find that at some time (e.g., 9:00),
the user has few check-ins and the similarity is zero. Therefore, the sparse data make it
too hard to model the periodicity and consecutiveness via a counting method (e.g., Pearson
correlation or cosine similarity). As shown in Fig. 2b, most of the similarities are zero. So the
consecutiveness cannot be modeled at most of the time. The dilemma of counting methods
in face of sparse data motivates us to exploit a latent factor learning model. In our model,
we use a time latent factor to represent the temporal effect of a time slot, not modeling the
temporal effect from the user or POI perspective. Further, the temporal factor is learned from
all users’ check-ins at the time slot. Therefore, it overcomes the sparsity problem in counting
methods.

We observe that the non-uniformness (e.g., the check-in change characteristics) exists at
different time scales in users’ check-in data. Following [4], we demonstrate an example of
a random user’s aggregated check-in activities on his/her top 5 most visited POIs in Fig. 3.
Figure 3a verifies the non-uniformness: a user’s check-in preference changes at different
hours of a day [4]. As shown in Fig. 3a, the most visited POI changes at different hours. For

1 We use cosine similarity here; other measures like Pearson correlation are also applicable.
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Fig. 2 Sparsity demonstration. a A user’s check-in pattern in a day, b consecutive hour pair similarity

Fig. 3 Demonstration of non-uniformness at different time scales. a Non-uniformness in hour of a day,
b non-uniformness in day of week, c non-uniformness in month

example, the most visited POI is POI 1 at 1:00 while the most visited POI is POI 4 at 5:00.
Besides, we discover there are other change characteristics. As shown in Fig. 3b, c, a user’s
check-in preference changes at different months of a year, and among different days of a
week as well. The change of check-ins at different time scales depicts the user preference
from different perspectives: (1) A user may check-in at POIs around his/her home in the
morning, visit places around the office in the day time, and have fun in bars at night. (2)
A user may visit more locations around his/her home or office on weekdays. On weekends,
he/shemay check-inmore at some shoppingmalls or vocation places. (3) At differentmonths,
a user may have different customs. For instance, he/she would visit ice cream shops in the
months of summer and hot pot restaurants in the months of winter. Hence, only modeling
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Fig. 4 Time labeling scheme
demonstration

the non-uniformness at a single scale, we cannot capture all temporal features, which need
to be formulated at different scales.

3.2 Time Labeling Scheme

Time labeling is a prerequisite of our ATTF model. We use a time latent factor to represent
the temporal effect at a specific time, and then learn from a latent factor model. Time labeling
scheme determines how to assign a latent factor to specific time. Before diving to the model,
we describe the time labeling scheme first.

Figure 4 demonstrates the time labeling scheme. In order to capture temporal features
at different time scales, we represent a time spot with several parts and then aggregate
their contributions together. According to the empirical data analysis, we consider temporal
features in three time scales: month of a year, day of a week, and hour of a day. Now the
temporal effect is formulated by three latent time factors. As shown in Fig. 4, we leverage
three slices to denote a time spot: month of year, day of week, and hour of day. Further they
are depicted by three kinds of different temporal latent vectors respectively. So a time spot t is
labeled by a tuple (t1, t2, t3),which satisfies that t1 ∈ {0, 1, · · · , 12}, t2 ∈ {0, 1, · · · , 6}, t3 ∈
{0, 1, · · · , 23} (we have 12 months in a year, 7days in aweek, and 24h in a day). Furthermore,
we define T1 ⊂ R12×d , T2 ⊂ R7×d , and T3 ⊂ R24×d to denote the corresponding temporal
latent factor matrices, where d is the latent vector dimension.

To aggregate several temporal factors, we define an operator A(·) : Rd × Rd × Rd → Rd

to combine different temporal features. Take “2011-04-05 18:10:23” as an example, its label
ids at month, day of week, and hour are 3 (April), 2 (Tuesday), 18 (after 18:00). Hence its
temporal latent factor is formulated as A(T1,3, T2,2, T3,18). It is important to note that our
scheme is flexible: we are able to ignore one feature by taking away a slice, or introduce a
new feature by adding a new slice.

Memory Reducing Trick We reduce the input data size through a binary coding trick. We
employ one label id instead of three to represent the three slices. In detail, we use 4 bits to
represent the month, 3 bits to represent the day of week, and 5 bits to represent the hour
slot. So the time label id can be represented by an integer of 16 bits. For instance, “2011-
04-05 18:10:23” could be coded as “0011 010 10010”, and its label id is 850. When we
learn the model, we transform the label id into binary representation and find corresponding
label to each slice. After labeling the time, we are able to model the temporal effect from a
user-time-POI latent factorization model; see details in Sect. 4.
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4 Methods

In this section, we first demonstrate the ATTF model. Then we give the detailed model
inference and learning procedure. Finally, we summarize the model discussion.

4.1 Aggregated Temporal Tensor Factorization Model

Denote that U is the set of users and L is the set of POIs. In addition, T1, T2, and T3 are
the set of months, days of week, and hours respectively. Further we define T as the set of
time label tuples, consisting of elements t := (t1, t2, t3), namely the temporal representation
at different scales. The ATTF model estimates the preference of a user u at a POI l given a
specific time label t through a score function f (u, t, l), where u ∈ U is user id, t ∈ T is a
time label tuple, and l ∈ L is POI id.

We are typically given N training examples (ui , ti , li ) ∈ {1, . . . , |U |} × {1, . . . , |T |} ×
{1, . . . , |L|}, i = 1, 2, . . . , N , and correspondingly outputs yi ∈ R, i = 1, 2, . . . , N . Here,
(ui , ti , li ) is the indexof a particular element of a user-time-POI tensor, and yi is the preference
score of the user at the POI given the time label. One could simply collate the training data
to build a suitable tensor, so the training task turns to fill in the blank entries of the tensor.

We exploit the Pairwise Interaction Tensor Factorization (PITF) [26] model to decompose
the user-time-POI tensor. PITF model that turns out to be successful in the ECML/PKDD
Discovery Challenge, runs much faster than other tensor factorization methods and has better
performance in a large scale prediction task [26]. Thus the score of a POI l given user u
and time t is factorized into three interactions: user-time, user-POI, and time-POI, where
each interaction is modeled through the latent vector product. Further, we inference the
model via Bayesian Personalized Ranking (BPR) criteria [24] that is a general framework
to train a recommendation system from implicit feedback. Because prior work [14,37,38]
indicates that treating the check-ins as implicit feedback is better than explicit ways for POI
recommendation. Since we recommend POIs for users at specific time, any candidate POI
has the same user-time interaction. As a result, the preference score is independent of the
user-time interaction. Then the score function for a given time label t , user u, and a target
POI l could be formulated as :

f (u, t, l) = 〈U (L)
u , L(U )

l 〉 + 〈A(T (L)
1,t1

, T (L)
2,t2

, T (L)
3,t3

), L(T )
l 〉, (1)

where 〈·〉 denotes the vector inner product, A(·) is the aggregate operator. Suppose that
d is the latent vector dimension, U (L)

u ∈ Rd is user u’s latent vector for POI interaction,
L(U )
l , L(T )

l ∈ Rd are POI l’s latent vectors for user interaction and time interaction, T (L)
1,t1

,

T (L)
2,t2

, T (L)
3,t3

∈ Rd are time t’s latent vector representations in three aspects: month, day of
week, and hour.

Aggregate operator combines the several temporal features together. In this paper, we
propose a linear convex combination operator. It is formulated as follows,

A(·) = α1 · T (L)
1,t1

+ α2 · T (L)
2,t2

+ α3 · T (L)
3,t3

, (2)

where α1, α2, and α3 denote theweights of each temporal factor, which satisfy α1+α2+α3 =
1, and α1, α2, α3 >= 0.
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4.2 Learning

We infer the model via BPR criteria [24], which treats the check-in activity as a kind of
implicit feedback. Namely, we assume the user prefers the visited POIs than the unvisited.
We treat the visited POIs as positive and the unvisited as negative. Then, we suppose that the
score of f (u, t, l) at positive observations is higher than the negative POIs, given u and t .
Further, we formulate the relation that user u prefers a positive POI li than a negative one l j
at time t as follows

li >u,t l j . (3)

Based on the pairwise preference defined above, we suffice to extract the set of preference
constraints from the training examples

DS := {(u, t, li , l j )|li >u,t l j , u ∈ U, t ∈ T , li , l j ∈ L}. (4)

For simplicity, we denote yu,t,l = f (u, t, l). Then for any quadruple in DS , it satisfies
yu,t,li > yu,t,l j . Using a logistic function to model this relation, we get

p(li >u,t l j ) := σ(yu,t,li − yu,t,l j ), (5)

which measures the probability of li is a positive observation and l j is a negative observation
for user u at time t . In Eq. (5), σ is the logistic function σ(x) = 1

1+e−x .
Suppose the quadruples in DS are independent of each other, then learning the ATTF

model is to maximize the likelihood of all the pair orders

argmax
Θ

∏

(u,t,li ,l j )∈DS

p(li >u,t l j ), (6)

where Θ is the parameters to learn, namely U (L), L(U ), L(T ), T (L)
1 , T (L)

2 , and T (L)
3 . The

objective function is equivalent to minimizing the negative log likelihood. To avoid the risk
of overfitting, we add a Frobenius norm term to regularize the parameters. Then the objective
function is

argmin
Θ

∑

(u,t,li ,l j )∈DS

− ln(σ (yu,t,li − yu,t,l j )) + λΘ ||Θ||2F , (7)

where λΘ is the regularization parameter.
We leverage the Stochastic Gradient Decent (SGD) algorithm to learn the objective func-

tion for efficacy. First, we define yu,t,l p,ln = yu,t,l p − yu,t,ln , which models the pairwise
relation in DS . Further we denote a common part in gradient decent values for all param-
eters as δ = 1 − σ(yu,t,l p,ln ). As T

(L)
1,t1

, T (L)
2,t2

, and T (L)
3,t3

are symmetric, they have the same

gradient form. For simplicity, we use T (L)
t ∈ {T (L)

1,t1
, T (L)

2,t2
, T (L)

3,t3
} to represent any of them,

α ∈ {α1, α2, α3} to denote corresponding weight, and A(·) to denote A(T (L)
1,t1

, T (L)
2,t2

, T (L)
3,t3

).
Then the updating rule for the parameters is as follows,
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Input: Training tuples {(ui , ti , li )}i=1,...,N

Output: U (L), T (L)
1 , T (L)

2 , T (L)
3 , L(U ), L(T )

Initialize U (L), T (L)
1 , T (L)

2 , T (L)
3 , L(U ), L(T )

Uniformly sample �100 ∗ √|U |
 check-in tuples from DS to generate De for loss calculation
for iterations do

//S is the number of sampled check-ins
for i ∈ [1, S] do

Draw (u, t, l p) uniformly from training tuples
// k is the number of negative samples
for n = 1, 2, . . . , k do

Draw (u, t, l p, ln) uniformly
yu,t,l p ,ln ← yu,t,l p − yu,t,ln
δ ← 1 − σ(yu,t,l p ,ln )

Update parameters according to Eq. (8)
end

end
Estimate the loss defined on De

end

Return U (L), T (L)
1 , T (L)

2 , T (L)
3 , L(U ), L(T )

Algorithm 1: ATTF model learning algorithm

U (L)
u ← U (L)

u + γ ·
(
δ ·

(
L(U )
l p

− L(U )
ln

)
− λ ·U (L)

u

)
,

L(U )
l p

← L(U )
l p

+ γ ·
(
δ ·U (L)

u − λ · L(U )
p

)
,

L(T )
l p

← L(T )
l p

+ γ ·
(
δ · A(·) − λ · L(T )

l p

)
,

L(U )
ln

← L(U )
ln

− γ ·
(
δ ·U (L)

u + λ · L(U )
n

)
,

L(T )
ln

← L(T )
ln

− γ ·
(
δ · A(·) + λ · L(T )

ln

)
,

T (L)
t ← T (L)

t + γ ·
(
δ · α ·

(
L(T )
l p

− L(T )
ln

)
− λ · T (L)

t

)
,

(8)

where γ is the learning rate, λ is the regularization parameter. To train the model, we use
the bootstrap skill to draw the quadruple from DS , following [24]. Algorithm 1 gives the
detailed procedure to learn the ATTF model. We aim to learn the latent representations of
user, temporal features, and POIs, namelyU (L), T (L)

1 , T (L)
2 , T (L)

3 , L(U ), L(T ). Let |U | denote
the number of users, then we generate about �100 ∗ √|U |
 tuples from DS to generate a set
De for the loss estimation, namely the negative log likelihood value. We follow [24] to set
the number of samples for loss estimation as �100 ∗ √|U |
. In each iteration, we sample S
check-ins and then generate negative samples to learn the model. After that, we calculate
the loss value over De:

∑
(u,t,li ,l j )∈De

−ln(σ (yu,t,li − yu,t,l j )) + λΘ ||Θ||2F . The convergent
condition is satisfied when the loss value for the fixed sampled tuples does not decrease.

ComplexityThe runtime for predicting a triple (u, t, l) is in O(d), where d is the number of
latent vector dimension. The updating procedure is also in O(d). Hence training an quadruple
is in O(d), then training an example (u, t, l) is in O(k ·d),where k is the number of sampled
negative POIs. For each iteration, we sample S training examples. The calculation cost for
loss estimation is less than the parameter updating procedure. Therefore, training the model
costs O(I · S · k · d), where I is the number of iterations. In practical, I is always small
for different datasets, in the range of [5, 30]. We usually treat the number of iterations as a
constant, so the complexity of the model training is in O(S · k · d).
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4.3 Model Discussion

The ATTF model can be treated as a linear combination of two matrix factorization models
which learn user preference and temporal effect respectively, as shown in Eq. (1). The first
term depicts the user-POI interaction, which is similar as the low rankmatrix factorization for
the user-POI matrix through collaborative filtering technique. The second term depicts the
time-POI interaction, which acts like leveraging a latent factor model to describe the relations
between time labels and POIs. Further the aggregate operator A(·) combines several temporal
factors together.

Two points are important to note for our model: (1) The ATTFmodel and the time labeling
scheme are a general framework to subsume several temporal characteristics together. We
take three common ones in this work, but it is easy to add others, e.g., different days in a
month, workdays and vocations in a year. (2) Even though the model equation for ATTF
in POI recommendation suffices to be expressed by a combination of two MF models, it is
different from a simple ensemble of two MF model recommendation results because in our
case the model parameters are learned jointly. Thus the learned parameters jointly represent
the user preference and temporal effect. It better reflects the fact that user check-in behavior
is a complex decision under many conditions.

The ATTF model can also be interpreted from the embedding neural network perspective.
The embedding network, e.g., word2vec framework [20], has turned out to be a successful
semi-supervised learning method in natural language processing [10,22], network embed-
ding [7,23,28], and recommendation systems [27,29].Moreover, recent studies [11,12] show
that the neural word embeddings can be treated as a kind of matrix factorization method [9].
This equivalence between neural embeddings and the latent factor models inspires us to
understand our ATTF model from the embedding neural network perspective. Figure 5
demonstrates the equivalent embedding neural network for the ATTF model. The input layer
is the one-hot representation for user, POI, and temporal information. The second layer is
the embedding layer, which projects the one-hot vector as a continuous latent vector in the
Euclidean subspace. Next, we exploit the product and sum operation to represent the check-in
preference as 〈U (L)

u , L(U )
l 〉 + 〈A(T (L)

1,t1
, T (L)

2,t2
, T (L)

3,t3
), L(T )

l 〉, equivalent to Eq. (1). Finally, we
construct a BPR loss layer to learn the embedding representations.

5 Experiments

We conduct systematical experiments to seek the answers of the following questions: (1) how
the proposed ATTFmodel performs comparing with state-of-the-art models? (2) whether the
ATTF model is better than single temporal factor models? (3) how the parameters affect the
model performance?

5.1 Data Description and Experiment Setting

Two real-world data sets are used in the experiment: one is Foursquare data from January 1,
2011 to July 31, 2011 provided in [6] and the other is Gowalla data from January 1, 2011
to September 31, 2011 in [35]. We filter the POIs checked-in by less than 5 users and then
choose users who check-in more than 10 times as our samples. After the preprocessing, the
data sets contain the statistical properties as shown in Table 1. We randomly choose 80% of
each user’s check-ins as training data, and the remaining 20% for test data. Moreover, we
use each check-in (u, t, l) in training data to learn the latent features of user, time, and POI.
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Fig. 5 Embedding neural Network for ATTF model

Table 1 Statistics of data sets Source Foursquare Gowalla

#users 10,180 3,318

#POIs 16,561 33,665

#check-ins 867,107 635,600

Avg. #check-ins each user 85.2 191.6

Avg. #POIs each user 24.3 104.1

Avg. #users each POI 14.9 10.3

Density 0.0015 0.003

Density means the fraction of
checked-in entries over all entries
in user-POI matrix

Then given the (u, t), we estimate the score value of different candidate POIs, select the top
N candidates, and compare them with check-in tuples in test data.

5.2 Performance Metrics

In this work, we leverage three metrics to evaluate the model performance–precision, recall,
and F-score. The precision and recall in the top-K recommendation system are denoted as
P@K and R@K respectively. P@K measures the ratio of recovered POIs to the K recom-
mended POIs, and R@K means the ratio of recovered POIs to the set of POIs in the testing
data. For each user u ∈ U , LT (u) denotes the set of correspondingly visited POIs in the test
data, and LR(u) denotes the set of recommended POIs. Then the definitions of P@K and
R@K are formulated as follows

P@K = 1

|U |
∑

u∈U

|LR(u) ∩ LT (u)|
K

, (9)
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R@K = 1

|U |
∑

u∈U

|LR(u) ∩ LT (u)|
|LT (u)| . (10)

Further, F-score is the harmonic mean of precision and recall. So the F-score is defined as

F-score@K = 2 ∗ P@K ∗ R@K

P@K + R@K
. (11)

5.3 Baselines

We compare our ATTF model with state-of-the-art collaborative filtering (CF) methods and
POI recommendation methods incorporating temporal effect. Prior work [37,38] indicates
that treating the check-ins as implicit feedback is better to recommend POIs. Hence we
exploit Weighted Regularized Matrix Factorization (WRMF) [8,21] and Bayesian Personal-
ized Ranking Matrix Factorization (BPR-MF) [24] as comparative CF methods. To illustrate
the efficacy of our ATTF model, we compare it with LRT [4] and FPMC-LR [2] which are
state-of-the-art POI recommendation methods incorporating temporal effect.

– WRMF The WRMF model is designed for processing large scale implicit feedback data
sets. We define the weight mapping of user ui at POI l j as wi, j = (1 + 10 · Ci, j )

0.5,
where Ci, j is the check-in counts, following the setting in [18].

– BPR-MF The BPR-MF model is a popular MF-based recommendation method to learn
the pairwise relation, in which users prefer the observed items than the unobserved.

– LRT The LRT model is designed to modeling the “non-uniformnes” and “consecutive-
ness” in a matrix factorization model for POI recommendation.

– FPMC-LR The FPMC-LR model adds the Local Region constraint (i.e., geographical
information) in the Factorized Personalized Markov Chain (FPMC) model [25]. FPMC-
LR incorporates the geographical information and temporal consecutiveness through a
local region constraint and the FPMC model respectively.

Moreover, to demonstrate the advantage of ATTF in aggregating several temporal latent
factors, we also compare with three single temporal latent factor models: TTFM, TTFW,
and TTFH. They are typically PITF model, that correspondingly considering the month, day
of week, and hour as a temporal latent factor. Because these three models are the subset of
our ATTF model, we attain their results by setting the corresponding weight as 1, and others
as 0 in ATTF.

5.4 Experimental Results

5.4.1 Performance Comparison

In the following, we demonstrate the performance comparison on precision, recall and F-
score. We set the latent factor dimension as 60 for all compared models. We leverage grid
search method to find the best weights in ATTF model. α1, α2, and α3 are constrained in
the range of [0, 1]. In the grid search method, we first change α1 from zero to one with
step size 0.1. Then, for each α1 value, for instance α1 = 0.1, we change α2 from zero to
1− α1 with step size 0.1. α3 can be calculated by 1− α1 − α2. The grid search method tries
all value combinations with step size 0.1 satisfying the constraints α1 + α2 + α3 = 1, and
α1, α2, α3 >= 0. As a result, the ATTF model on Foursquare data achieves the best result
when α1 = 0.7, α2 = 0.1, and α3 = 0.2, while the ATTF model on Gowalla data achieves
the best when α1 = 0.2, α2 = 0.1, and α3 = 0.7.
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Fig. 6 Precision on Foursquare and Gowalla. a Foursquare, b Gowalla

Fig. 7 Recall on Foursquare and Gowalla. a Foursquare, b Gowalla

Fig. 8 F-score Foursquare and Gowalla. a Foursquare, b Gowalla

Figures 6, 7, and 8 show the experimental results for Foursquare and Gowalla data on
measurement precision, recall, and F-score respectively. We see that (1) Our proposed ATTF
model outperforms state-of-the-art CFmethods and POI recommendationmodels. Compared
with the best state-of-the-art competitor in POI recommendation area (e.g., FPMC-LR),
the ATTF model gains more than 20% enhancement on Foursquare data, and more than
36% enhancement on Gowalla data for all three measures, Precision@5, Recall@5, and F-
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Fig. 9 The effect of regularization parameter λ. a Foursquare, b Gowalla

score@5.Weobserve thatmodels performbetter onFoursquare data set thanGowalla data set,
even though it is sparser. The reason lies in that Gowalla data contain much more POIs and a
large candidate POI set makes the recommendation harder. (2) The ATTFmodel outperforms
single temporal factor models. Compared with best single temporal factor model, the ATTF
model gains about 3% enhancement on Foursquare data, and about 10% improvement on
Gowalla data in a top-5 POI recommender system. So when data are denser, the ATTF
model gets advantages. Because the ATTF model uses a tuple to represent a time spot,
which gives more precise information. Dense data strengthen this precise labeling scheme.
In addition, different weight assignments on both data give us two interesting insights: (i)
When data are sparse, the temporal feature on month dominates the POI recommendation
performance. Because check-ins on hour or day ofweek are sparse as shown in Fig. 3, then the
corresponding characteristics are not easily caught. The Foursquare data set has high weight
on month temporal factor. However, when data are denser, check-ins on hour are not so
sparse. So the temporal characteristic on hour of day becomes prominent. (ii) We usually pay
much attention on temporal characteristics on hour of day and day of week. Our experimental
results indicate that the temporal characteristic on month is important, especially for sparse
data. (3) Our proposed ATTF model, single temporal factorization models (e.g., TTFM,
TTFW, and TTFH), and FPMC-LR perform much better than other competitors, especially
at recall measure. They try to recommend POIs at more specific situations, which is the key
point to improve performance. Our models recommend a user POIs at some specific time,
and FPMC-LR recommends POIs given a user’s recent checked-in POIs; while, the other
three models give general recommendations.

5.4.2 Parameter Effect

The regularization parameter and latent vector dimension are two important factors affecting
the model performance. We explore how they affect the proposed model in the condition of
other parameters fixed.

Figure 9 demonstrates the effect of regularization parameter on model performance. For
simplicity, we set the same parameter λ for all latent vectors. The regularization part does
not significantly affect the model. The model achieves best performance at 0.001. With the
increasing of λ, the performance decreases.
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Fig. 10 The effect of latent factor dimension. a Foursquare, b Gowalla

Figure 10 demonstrates how the latent vector dimension affects the model. The perfor-
mance of ATTF steadily rises with the increase of latent vector dimension. For the trade-off
of high performance and low computation cost, we suggest to set dimension d = 60.

6 Conclusion and Future Work

In this paper, we propose the ATTF model for POI recommendation. The proposed model
introduces time factor to model the temporal effect in POI recommendation, subsuming all
the three temporal properties: periodicity, consecutiveness, and non-uniformness. Moreover,
the ATTF model captures the temporal influence at different time scales through aggregating
several time factors’ contributions. Experimental results on two real-world data sets show that
the ATTF model outperforms state-of-the-art models. Our model is a general framework to
aggregate several temporal characteristics at different scales. In this work, we only consider
three temporal characteristics: hour, week, day, and month. In the future, we may add more
in this model, e.g., splitting 1day into several slots rather than in hour. In addition, we may
try nonlinear aggregate operators, e.g., max, in our future work.
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