
23

Code Structure–Guided Transformer for Source Code

Summarization

SHUZHENG GAO and CUIYUN GAO, Harbin Institute of Technology, Shenzhen, China

YULAN HE, University of Warwick, UK

JICHUAN ZENG, The Chinese University of Hong Kong, Hong Kong, China

LUNYIU NIE, Tsinghua University, China

XIN XIA, Software Engineering Application Technology Lab, Huawei, China

MICHAEL LYU, The Chinese University of Hong Kong, Hong Kong, China

Code summaries help developers comprehend programs and reduce their time to infer the program func-

tionalities during software maintenance. Recent efforts resort to deep learning techniques such as sequence-

to-sequence models for generating accurate code summaries, among which Transformer-based approaches

have achieved promising performance. However, effectively integrating the code structure information into

the Transformer is under-explored in this task domain. In this article, we propose a novel approach named

SG-Trans to incorporate code structural properties into Transformer. Specifically, we inject the local symbolic

information (e.g., code tokens and statements) and global syntactic structure (e.g., dataflow graph) into the

self-attention module of Transformer as inductive bias. To further capture the hierarchical characteristics of

code, the local information and global structure are designed to distribute in the attention heads of lower

layers and high layers of Transformer. Extensive evaluation shows the superior performance of SG-Trans

over the state-of-the-art approaches. Compared with the best-performing baseline, SG-Trans still improves

1.4% and 2.0% on two benchmark datasets, respectively, in terms of METEOR score, a metric widely used for

measuring generation quality.

CCS Concepts: • Software and its engineering → Software creation and management; Software de-

velopment techniques;

Additional Key Words and Phrases: Code summary, Transformer, multi-head attention, code structure

This research was supported by the National Natural Science Foundation of China under grant no. 62002084, the Stable

Support Plan for Colleges and Universities in Shenzhen under grant no. GXWD20201230155427003-20200730101839009,

and the Research Grants Council of the Hong Kong Special Administrative Region, China (grant no. CUHK 14210920 of

the General Research Fund). This research was also partly funded by the UK Engineering and Physical Sciences Research

Council (grant no. EP/V048597/1, EP/T017112/1). Yulan He is supported by a Turing AI Fellowship funded by the UK

Research and Innovation (grant no. EP/V020579/1).

Authors’ address: S. Gao and C. Gao (corresponding author), Harbin Institute of Technology, Guangdong Province,

518055, China; email: szgao98@gmail.com; Y. He, University of Warwick, Coventry, Warwickshire, CV4 7AL, China; email:

yulan.he@warwick.ac.uk; J. Zeng and M. Lyu, The Chinese University of Hong Kong, Hong Kong, SAR, 999077, China;

emails: jczeng@cse.cuhk.edu.hk, lyu@cse.cuhk.edu.hk; L. Nie, Tsinghua University, 30 ShuangQing Street, Beijing, 100084;

email: nlx20@mails.tsinghua.edu.cn; X. Xia, Software Engineering Application Technology Lab, Huawei Base Bantian,

ShenZhen City, Guangdong Province, 518129, China; email: xin.xia@acm.org.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1049-331X/2023/02-ART23 $15.00

https://doi.org/10.1145/3522674

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

https://orcid.org/0000-0002-8102-480X
https://orcid.org/0000-0003-4774-2434
https://orcid.org/0000-0003-3948-5845
https://orcid.org/0000-0003-4073-1214
https://orcid.org/0000-0002-6721-4578
https://orcid.org/0000-0002-6302-3256
https://orcid.org/0000-0002-3666-5798
mailto:permissions@acm.org
https://doi.org/10.1145/3522674
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3522674&domain=pdf&date_stamp=2023-02-13

23:2 S. Gao et al.

ACM Reference format:

Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng, Lunyiu Nie, Xin Xia, and Michael Lyu. 2023. Code Struc-

ture–Guided Transformer for Source Code Summarization. ACM Trans. Softw. Eng. Methodol. 32, 1, Article 23

(February 2023), 32 pages.

https://doi.org/10.1145/3522674

1 INTRODUCTION

Program comprehension is crucial for developers during software development and maintenance.
However, existing studies [42, 64] have shown that program comprehension is a very time-
consuming activity that occupies over 50% of the total time in software maintenance. To allevi-
ate the developers’ cognitive efforts in comprehending programs, a text summary accompanying
the source code has been proved to be useful [9, 17, 27]. However, human-provided comments
are often incomplete or outdated because of the huge effort needed and the rapid update of soft-
ware [13, 49]. The source code summarization task aims at automatically generating a concise
comment on a program. Many studies [11, 39, 53, 61] have demonstrated that machine-generated
summaries are helpful for code comprehension. A recent empirical study [29] also shows that 80%
of practitioners believe code summarization tools can help them improve development efficiency
and productivity.

Existing leading approaches have demonstrated the benefits of integrating code structural prop-
erties such as Abstract Syntax Trees (ASTs) [4, 27] into deep learning techniques for the task. An
example of an AST is shown in Figure 1(b). The modality of the code structure can be either se-
quences of tokens traversed from the syntactic structure of ASTs [4, 27] or sequences of small
statement trees split from large ASTs [50, 68]. The sequences are usually fed into a Recurrent
Neural Network (RNN)–based sequence-to-sequence network for generating a natural language
summary [27, 36]. However, due to the deep nature of ASTs, the associated RNN-based models
may fail to capture the long-range dependencies between code tokens [1]. To mitigate this issue,
some works represent the code structure as graphs and adopt Graph Neural Networks (GNNs) for
summary generation [16, 35]. Although these GNN-based approaches can capture the long-range
relations between code tokens, they are shown sensitive to local information and ineffective in
capturing the global structure [30]. Taking the AST in Figure 1(b) as an example, token nodes “int”
and “num” (highlighted with red boxes) are in the same statement but separated by five hops; thus,
GNN-based approaches tend to ignore the relations between the two token nodes. In addition, the
message passing on GNNs is limited by the predefined graph, reducing its scalability to learn other
dependency relations.

A recent study [1] shows that the Transformer model [55] outperforms other deep learning
approaches for the task. The self-attention mechanism in Transformer can be viewed as a fully
connected graph [22], which can ensure the long-range message passing between tokens and the
flexibility to learn any dependency relation from data. However, it is hard for the Transformer to
learn all important dependency relations from limited training data. In addition, an issue of Trans-
former is that its attention is purely data driven [23]. Without the incorporation of explicit con-
straints, the multi-head attentions in Transformer may suffer from attention collapse or attention
redundancy, with different attention heads extracting similar attention features, which hinders the
model’s representation learning ability [5, 56]. To solve these problems, we incorporate code struc-
ture into the Transformer as prior information to eliminate its dependency on data. However, how
to effectively integrate the code structure information into Transformer is still under-explored.
One major challenge is that since the position encoding in the Transformer already learns the de-
pendency relations between code tokens, trivial integration of the structure information may not
improve performance of the task [1].

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

https://doi.org/10.1145/3522674

Code Structure–Guided Transformer for Source Code Summarization 23:3

Fig. 1. An example of Java code snippet (a), with the corresponding AST (b) and DFG (c) illustrated. En-
tities in gray ellipse in (b) mean unexpanded branches. The arrows in the DFG represent the relations of
sending/receiving messages between the variables (highlighted in gray in the code).

To overcome the challenges in this article, we propose a novel model named SG-Trans, that is,
code Structure Guided Transformer. SG-Trans exploits the code structural properties to introduce
explicit constraints to the multi-head self-attention module. Specifically, we extract the pairwise
relations between code tokens based on the local symbolic structure, such as code tokens and state-
ments, and the global syntactic structure, that is, dataflow graph (DFG), then represent them as
adjacency matrices before injecting them into the multi-head attention mechanism as inductive
bias. Furthermore, following the principle of compositionality in language: the high-level seman-
tics is the composition of low-level terms [23, 54]. We propose a hierarchical structure-variant
attention approach to guide the attention heads at the lower layers attending more to the lo-
cal structure and those at the higher layers attending more to the global structure. In this way,
our model can take advantage of both local and global (long-range dependencies) information
of source code. Experiments on benchmark datasets demonstrate that SG-Trans can outperform
the state-of-the-art models by at least 1.4% and 2.0% on two Java and Python benchmark datasets,
respectively, in terms of METEOR.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:4 S. Gao et al.

In summary, our work makes the following contributions:

• We are the first to explore the integration of both local and global code structural properties
into Transformer for source code summarization.
• A novel model is proposed to hierarchically incorporate both the local and global structure

of code into the multi-head attentions in Transformer as inductive bias.
• Extensive experiments show that SG-Trans outperforms the state-of-the-art models. We

have publicly released the replication repository — including source code, datasets, predic-
tion logs, online questionnaire, and results of human evaluation — on GitHub.1

Article Structure. Section 2 provides the background knowledge of the work. Section 3 con-
tains our proposed methodology for source code summarization. Section 4 introduces the exper-
imental setup. Section 5 describes the evaluation results, followed by discussions in Section 6.
Section 7 discusses related work. We present our conclusions and plans for future work in
Section 8.

2 BACKGROUND

In this section, we introduce the background knowledge of the proposed approach, including the
vanilla Transformer model architecture and the copy mechanism.

2.1 Vanilla Transformer

Transformer [55] is a kind of deep self-attention network that has demonstrated its powerful text
representation capability in many NLP applications, for example, machine translation and dia-
logue generation [51, 69]. Recently, a lot of research in code summarization also leverages Trans-
former as the backbone for better source code representations [1, 15]. Some work [26, 58, 70] also
improves the Transformer to make it better adapt to source code or structured data. Unlike con-
ventional neural networks, such as Convolutional Neural Network (CNNs) and Recurrent Neural
Network (RNNs), it is solely based on attention mechanism and multi-layer perceptrons (MLPs).
Transformer follows the sequence-to-sequence [10] architecture with stacked encoders and de-
coders. Each encoder block and decoder block consists of a multi-head self-attention sub-layer
and a feed-forward sub-layer. Residual connection [25] and layer normalization [6] are also em-
ployed between the sub-layers. Since the two sub-layers play an essential role in Transformer, we
introduce them in more detail next.

2.1.1 Multi-Head Self-Attention. Multi-head attention is the key component of Transformer.
Given an input sequence X = (x1,x2, . . . ,xi , . . . ,xn) where n is the sequence length and each
input token xi is represented by a d-dimension vector, self-attention first calculates the Query
vector, the Key vector, and the Value vector for each input token by multiplying the input vector
with three matrices W q , W k , and W v . Then, it calculates the attention weight of sequence X by
scoring the query vector Q against the key vector K of the input sentence. The scoring process
is conducted by the scaled dot product, as shown in Equation (2), where the dimension d in the
denominator is used to scale the dot product. Softmax is then used to normalize the attention
score and, finally, the output vector is computed as a weighted sum of the input vectors. Instead of
performing a single self-attention function, Transformer adopts multi-head self-attention (MHSA),
which performs the self-attention function with different parameters in parallel and ensembles the
output of each head by concatenating their outputs. The MHSA allows the model to jointly attend
to information from different representation subspaces at different positions. Formally, the MHSA

1https://github.com/gszsectan/SG-Trans.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

https://github.com/gszsectan/SG-Trans

Code Structure–Guided Transformer for Source Code Summarization 23:5

is computed as follows:

Qi = XW
q
i , Ki = XW k

i , Vi = XW v
i , (1)

headi = softmax ��
QiK

T
i√
d

��Vi , (2)

MHSA(X) =
[
headl

1 ◦ headl
2 ◦ · · ·headl

i ◦ · · ·headl
h

]
W O , (3)

where h denotes the number of attention heads at l-th each layer, the symbol ◦ indicates the con-
catenation of h different heads, andW

q
i ,W k

i ,W v
i , andW O are trainable parameters.

2.1.2 Feed-Forward Network. The feed-forward network is the only nonlinear part in Trans-
former. It consists of two linear transformation layers and a ReLU activation function between the
two linear layers:

FFN (X) = ReLU (XW1 + b1)W2 + b2, (4)

whereW1,W2, b1, and b2 are trainable parameters shared across input positions.

2.2 Copy Mechanism

The copy mechanism [19] has been widely equipped in text generation models for extracting words
from a source sequence as part of outputs in a target sequence during text generation. It has been
demonstrated that the copy mechanism can alleviate the out-of-vocabulary issue in the code sum-
marization task [1, 67, 70]. Copying some variable name can also help generate a more precise
summary. In this work, we adopt the pointer generator [48], a more popular form of copy mech-
anism, for the task. Figure 2 illustrates the architecture of the pointer generator model. Given an
input sequence X = (x1,x2, . . . ,xn), a decoder input wt , a decoder hidden state st , and a context
vector ct computed by the attention mechanism in timestep t , the pointer generator first calculates
a constant Pдen that is later used as a soft switch for determining whether to generate a token from
the vocabulary or to copy a token from the input sequence X :

Pдen = sigmoid
(
ωT

s st + ω
T
wwt + ω

T
c ct + bдen

)
, (5)

Pvocab (wt) = softmax(Wast +Vact) (6)

P (wt) = PдenPvocab (wt) + (1 − Pдen)Pcopy (wt), (7)

where vectorsωs ,ωw ,ωc ,Wa ,Va , and scalar bдen are learnable parameters. P (wt) is the probability
distribution over the entire vocabulary. Copy distribution Pcopy (wt) determines where to attend
to in timestep t , computed as

Pcopy (wt) =
∑

i :xi=w

αt,i , (8)

where αt indicates the attention weights and i : xi = w indicates the indices of input words in the
vocabulary.

3 PROPOSED APPROACH

In this section, we explicate the detailed architecture of SG-Trans. LetD denote a dataset containing
a set of programsC and their associated summaries Z , given source code c = (x1,x2, . . . ,xn) from
C , where n denotes the code sequence length. SG-Trans is designed to generate the summary
consisting of a sequence of tokens ẑ = (y1,y2, . . . ,ym) by maximizing the conditional likelihood:
ẑ = arg maxz P (z |c) (z is the corresponding summary in Z).

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:6 S. Gao et al.

Fig. 2. Architecture of copy mechanism.

The framework of SG-Trans is mostly consistent with the vanilla Transformer, but consists of
two major improvements: structure-guided self-attention and hierarchical structure-variant atten-

tion. Figure 3 depicts the overall architecture. SG-Trans first parses the input source code for cap-
turing both local and global structure. The structure information is then represented as adjacency
matrices and incorporated into the self-attention mechanism as inductive biases (introduced in
Section 3.1). Following the principle of compositionality in language, different inductive biases
are integrated into the Transformer at different levels in a hierarchical manner (introduced in
Section 3.2).

3.1 Structure-Guided Self-Attention

In the standard multi-head self-attention model [55], every node in the adjacent layer is allowed to
attend to all of the input nodes, as shown in Figure 3(a). In this work, we propose to use the struc-
tural relations in source code to introduce explicit constraints to the multi-head self-attention. In
order to capture the hierarchical structure of source code, we utilize three main types of structural
relations between code tokens, including local structures — whether the two split sub-tokens origi-
nally belong to the same (1) token or (2) statement, and global structure — whether there exists a
(3) dataflow between two tokens. For each structure type, we design the corresponding head
attention, named as token-guided self-attention, statement-guided self-attention, and dataflow-

guided self-attention, respectively.
Token-Guided Self-Attention. Semantic relations between the sub-tokens are relatively

stronger than the relations between the other tokens. For example, the method name “IsPrime”
in the code example shown in Figure 1(a) is split as a sequence of sub-tokens containing “Is” and

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:7

Fig. 3. Overall framework of the proposed SG-Trans. The “Structure-Guide Self-Attention” part of the figure
illustrates different self-attention mechanisms between adjacent layers.

“Prime.” Moreover, the semantic relation between them is stronger than the relation between “Is”
and “num” in the same statement. Therefore, the attention can be built upon the extracted token-
level structure, that is, whether two sub-tokens are originally from the same source code token.
We use an adjacency matrix Tn×n to model the relationship, where ti j = 0 if the i-th and j-th ele-
ments are sub-tokens of the same token in the code. Otherwise, ti j = −∞. The matrix is designed
to restrict the attention head to attend only to the sub-tokens belonging to the same code token
in self-attention, as shown in Figure 3(b). Given the input token representation X ∈ Rn×dh , where
n is the sequence length, d is the input dimension of each head, and h is the number of attention
heads, let Q, K, and V denote the query, key, and value matrix, respectively. The token-guided
single-head self-attention headt can be calculated as:

headt = softmax

(
QKᵀ
√
d
+ T

)
V, (9)

where
√
d is a scaling factor to prevent the effect of large values.

Statement-Guided Self-Attention. Tokens in the same statement tend to possess stronger
semantic relations than those from different statements. For the code example given in Figure 1(a),
the token “flag” in the third statement is more relevant to the tokens “bool” and “False” in the
same statement than to the token “break” in the 7-th statement. Thus, we design another adjacency
matrix S to represent the pairwise token relations capturing whether the two tokens are from the
same statement. In the matrix S, si j = 0 if the i-th and j-th input tokens are in the same statement;
otherwise, si j = −∞. The design is to restrict the attention head to attend to only the tokens from
the same statement, as illustrated in Figure 3(c). The statement-guided single-head self-attention
heads is defined here, similar to the token-guided head attention:

heads = softmax

(
QKᵀ
√
d
+ S

)
V. (10)

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:8 S. Gao et al.

Fig. 4. A diagram of hierarchical-variant attention. Different red boxes illustrate different scales.

Dataflow-Guided Self-Attention. To facilitate the model to learn the global semantic infor-
mation from code, we employ the DFGs for capturing the global semantic structure feature [21].
We do not involve ASTs as input since they are deeper in nature and contain more redundant
information [3] than DFGs. DFGs, denoted as V = {v1,v2, . . .}, can model the data dependencies
between variables in the code, including message sending/receiving. Figure 1(c) shows an example
of the extracted DFG. Variables with the same name (e.g., i2 and i5) are associated with different
semantics in the DFG. Each variable is a node in the DFG and the direct edge 〈vi ,vj 〉 from vi to
vj indicates that the value of the j-th variable comes from the i-th variable. We find the semantic
relations among “i2”, “i3”, “i4” and “i5” that represent the data sending/receiving in a loop. Based
on the DFGs, we build the adjacency matrix D, where di j = 1 if there exists a message passing
from the j-th token to the i-th token; otherwise, di j = 0. Note that if two variables have a data
dependency, then their constituent sub-tokens also possess the dependency relation. Figure 3(d)
illustrates the dataflow-guided single-head self-attention. To address the sparseness of the matrix
D and to highlight the relations of data dependencies, we propose the following dataflow-guided
self-attention headf :

headf = softmax

(
QKᵀ + μ ∗ QKᵀD

√
d

)
V, (11)

where μ is the control factor for adjusting the integration degree of the dataflow structure.

3.2 Hierarchical Structure-Variant Attention

Inspired by the principle of compositionality in logic semantics: high-level semantics is the compo-
sition of low-level terms [23, 54]. We propose a hierarchical structure-variant attention such that
our model would focus on local structures at the lower layers and global structure at the higher lay-
ers. A diagram of hierarchical structure-variant attention is provided in Figure 4. Specifically, the
token-guided head attention headt and the statement-guided head attention heads are used more
in the heads of lower layers, whereas the dataflow-guided head attention headf is more spread in
the heads of higher layers.

Let L denote the number of layers in the proposed SG-Trans, let h indicate the number of
heads in each layer, and let k be a hyper-parameter to control the distribution of four types of
head attentions, including headt , heads , headf , and heado , where heado indicates the standard
head attention without constraints, and the distribution for each type of head attention at the
l-th layer is denoted as Ωl = [ωl

t ,ω
l
s ,ω

l
f
,ωl

o], where ωl
t , ωl

s , ωl
f
, and ωl

o represent the numbers

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:9

of headt , heads , headf , and heado , respectively at the l-th layer. We define the distribution as
follows:

ωl
t = ωl

s =

⌊
h ∗ k − l

2 ∗ k − l

⌋
, (12)

ωl
f =

⌊
h ∗ l

2 ∗ k − l

⌋
, (13)

ωl
o = h −

(
ωl

t + ω
l
s + ω

l
f

)
, (14)

where k is a positive integer hyper-parameter and
·� denotes rounding the value down to the next
lowest integer. The design is intended to enable more heads attending to the global structure with
the growth of l , that is, ωl

f
will get larger at a higher layer l , whereas a few heads can catch the

local structure, that is, ωl
t and ωl

s will become smaller. heado is involved to enable the model to be

adapted to arbitrary numbers of layers and heads. With the increase of layer l , ωl
t and ωl

s might

drop to zero. In the case ofωl
t ≤ 0, no constraints will be introduced to the corresponding attention

layer since the standard self-attention already captures long-range dependency information, which
fits our purpose of attending to global structure at higher layers. Otherwise, the head attentions
will follow the defined distribution Ωl .

The hierarchical structure-variant attention (HSVA) at the l-th layer is computed as

HSVAl =
[
headl

1 ◦ · · · ◦ headl
h

]
WO , (15)

where ◦ denotes the concatenation of h different heads, and WO ∈ Rdh×dh is a parameter matrix.

3.3 Copy Attention

The OOV issue is important for effective code summarization [34]. We adopt the copy mechanism
introduced in Section 2.2 in SG-Trans to calculate whether to generate words from the vocabu-
lary or to copy from the input source code. Following Ahmad et al. [1], an additional attention
layer is added to learn the copy distribution on top of the decoder [46]. The mechanism enables
the proposed SG-Trans to copy low-frequency words, for example, API names, from source code,
mitigating the OOV issue.

4 EXPERIMENTAL SETUP

In this section, we introduce the evaluation datasets and metrics, comparison baselines, and pa-
rameter settings.

4.1 Benchmark Datasets

We conduct experiments on two benchmark datasets that contain Java and Python source code, re-
spectively following the previous work [1, 67]. The Java dataset publicly released by Hu et al. [27]
comprises 87, 136 〈Java method, comment〉 pairs collected from 9, 714 GitHub repositories. The
Python dataset consists of 92, 545 functions and corresponding documentation as originally col-
lected by Barone et al. [8] and later processed by Wei et al. [61]. We list the statistics of the datasets
in Table 1.

For fair comparison, we directly use the benchmarks open sourced by the previous related stud-
ies [1, 28, 60], in which the datasets are split into training set, validation set, and test set in a
proportion of 8 : 1 : 1 and 6 : 2 : 2 for Java and Python, respectively. We follow the commonly
used dataset split strategy with no modification to avoid any bias introduced by dataset split.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:10 S. Gao et al.

Table 1. Statistics of the Benchmark Datasets

Java Python

Training Set 69,708 55,538
Validation Set 8,714 18,505
Test Set 8,714 18,502

Total 87,136 92,545

We apply CamelCase and snake_case tokenizers [1] to get sub-tokens for both datasets. As for
the code statements, we apply a simple rule to extract the statements of code snippets. For the
extraction of statements from the Java dataset, we split each code snippet into statements with
separators including ’{’, ’}’ and ’;’. The token sequence between two adjacent separators is consid-
ered as a statement. For the example shown in Figure 1(a), each line except for the separators is
one statement. For the Python dataset, we define a statement by the row, which means that the
tokens in the same row are considered as belonging to the same statement. For the extraction of
dataflow from the Java dataset, we use the tool in GSC [12] to first generate augmented ASTs and
then extract DFGs. Regarding the Python dataset, we follow the setup in the work of Allamanis
et al. [3] and extract four kinds of edge (LastRead, LastWrite, LastLexicalUse, ComputeFrom) from
code.

4.2 Evaluation Metrics

To verify the superiority of SG-Trans over the baselines, we employ the most commonly used
automatic evaluation metrics, BLEU-4 [47], METEOR [7], and ROUGE-L [37].

BLEU is a metric widely used in natural language processing and software engineering fields
to evaluate generative tasks (e.g., dialogue generation, code commit message generation, and pull
request description generation) [33, 40, 45, 66]. BLEU uses n-gram for matching and calculates the
ratio of N groups of word similarity between generated comments and reference comments. The
score is computed as

BLEU − N = BP × exp ��
N∑

n=1

τn log Pn
�� , (16)

where Pn is the ratio of the subsequences with length n in the candidate that are also in the refer-
ence. BP is the brevity penalty for short generated sequences and τn is the uniform weight 1/N .
We use corpus-level BLEU-4, that is, N = 4, as our evaluation metric since it is demonstrated to be
more correlated with human judgments than other evaluation metrics [38].

METEOR is a recall-oriented metric that measures how well our model captures content from
the reference text in our generated text. It evaluates generated text by aligning it to reference text
and calculating sentence-level similarity scores:

METEOR = (1 − γ · fragβ) · P · R
α · P + (1 − α) · R , (17)

where P and R are the unigram precision and recall, and frag is the fragmentation fraction. α , β ,
and γ are three penalty parameters whose default values are 0.9, 3.0, and 0.5, respectively.

ROUGE-L is widely used in text summarization tasks in the natural language processing field to
evaluate to what extent the reference text is recovered or captured by the generated text. ROUGE-
L is based on the Longest Common Subsequence (LCS) between two texts and the F-measure is
used as its value. Given a generated text X and the reference text Y whose lengths are m and n,

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:11

respectively, ROUGE-L is computed as

Plcs =
LCS (X ,Y)

n
,Rlcs =

LCS (X ,Y)

m
, Flcs =

(1 + β2)PlcsRlcs

Rlcs + β2Plcs
, (18)

where β = Plcs/Rlcs and Flcs is the computed ROUGE-L value.

4.3 Baselines

We compare SG-Trans with the following baseline approaches.
CODE-NN [31], the first deep-learning-based work in code summarization, generates source

code summaries with a long short-term memory (LSTM) network. To utilize code structure
information, Tree2seq [14] encodes source code with a tree-LSTM architecture. Code2seq [4]

represents the code snippets by sampling paths from the AST. RL+Hybrid2Seq [57] incorporates

ASTs and code sequences into a deep reinforcement learning framework, while DeepCom [27] en-

codes the node sequences traversed from ASTs to capture structural information. API+Code [28]
involves API knowledge in the code summarization procedure. Dual model [61] adopts a dual
learning framework to exploit the duality of code summarization and code generation tasks. One
of the most recent approaches, NeuralCodeSum [1], integrates the vanilla Transformer [55]
with relative position encoding (RPE) and copy attention. Another recent approach,
Transformer+GNN [11], applies graph convolution to obtain structurally encoded node
representations and passes sequences of the graph-convolutioned AST nodes into Transformer.

We also compare our approach with relational Transformers [26, 70], which involve structural
information for code representation learning. GREAT [26] biases vanilla Transformers with rela-
tional information from graph edge types. CodeTransformer [70] focuses on multilingual code
summarization and proposes to build upon language-agnostic features such as source code– and
AST-based features.

During implementation, we either directly copy the results claimed in the original papers or re-
produce the results strictly following the released repositories for most baselines except for GREAT
and CodeTransformer. For GREAT [26], 12 types of information, including control flow graph and
syntactic features, are adopted for model training, as no replication package is available. Due to
the difficulty of complete replication, we follow the strategy in the work of Zügner et al. [70] by
employing the same structural information as SG-Trans during replication. For CodeTransformer,
although a replication package is provided by the authors, not all of the benchmark data can be
successfully preprocessed. For Java, only 61,250 of 69,708 code snippets in the training set, 7,621 of
8,714 in the validation set, and 7,643 of 8,714 in the test set pass the preprocessing step, whereas for
Python, all of the code snippets can be well preprocessed. To ensure the consistency of evaluation
data, we compare SG-Trans with CodeTransformer on the Java dataset separately. We use the same
model settings for implementing CodeTransformer, including the layer number, head number, and
so on.

4.4 Parameter Settings

SG-Trans is composed of 8 layers and 8 heads in its Transformer architecture and the hidden size of
the model is 512. We use Adam optimizer with the initial learning rate set to 10−4, batch size set to
32, and dropout rate set to 0.2 during the training. We train our model for at most 200 epochs and
select the checkpoint with the best performance on the validation set for further evaluation on the
test set. We report the performance of SG-Trans and each ablation experiment by running three
times and taking the average. To avoid over-fitting, we stop the training early if the performance
on the validations set does not increase for 20 epochs. For the control factors of head distribution
and dataflow, we set them to 1 and 5, respectively. We will discuss optimal parameters selection

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:12 S. Gao et al.

Table 2. Comparison Results with Baseline Models

Approach
Java Python

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

CODE-NN [31] 27.60 12.61 41.10 17.36 09.29 37.81
Tree2Seq [14] 37.88 22.55 51.50 20.07 08.96 35.64
RL+Hybrid2Seq [57] 38.22 22.75 51.91 19.28 09.75 39.34
DeepCom [27] 39.75 23.06 52.67 20.78 09.98 37.35
API+Code [28] 41.31 23.73 52.25 15.36 08.57 33.65
Dual Model [60] 42.39 25.77 53.61 21.80 11.14 39.45
Code2seq [4] 12.19 08.83 25.61 18.69 13.81 34.51

Vanilla Transformer [55] 44.20 26.83 53.45 31.34 18.92 44.39
NeuralCodeSum [1] 45.15 27.46 54.84 32.19 19.96 46.32
GREAT [26] 44.97 27.15 54.42 32.11 19.75 46.01
CodeTransformer [70] – – – 27.63 14.29 39.27
Transformer+GNN [11] 45.49 27.17 54.82 32.82 20.12 46.81

SG-Trans 45.89* 27.85* 55.79* 33.04* 20.52* 47.01*

The bold figures indicate the best results. *denotes statistical significance in comparison with the baseline models we

reproduced (i.e., two-sided t -test with p-value < 0.01).

in Section 5.3. Our experiments are conducted on a single Tesla V100 GPU for about 30 hours, and
we train our model from scratch.

5 EXPERIMENTAL RESULTS

In this section, we elaborate on the comparison results with the baselines to evaluate SG-Trans’s
capability in accurately generating code summaries. Our experiments are aimed at answering the
following research questions:

RQ1: What is the performance of SG-Trans in code summary generation?
RQ2: What is the impact of the involved code structural properties and the design of hierarchi-

cal attentions on the model performance?
RQ3: How accurate is SG-Trans under different parameter settings?

5.1 Answer to RQ1: Comparison with the Baselines

The experimental results on the benchmark datasets are provided in Table 2. For vanilla Trans-
former and NeuralCodeSum [1], we reproduce their experiments under the same hyper-parameter
settings as the Transformer in SG-Trans to ensure fair comparison. We compare SG-Trans with
CodeTransformer [70] on the Java dataset separately, in which both approaches are trained and
evaluated on the same dataset, with results provided in Table 3. Based on Tables 2 and 3, we present
the following findings:

Code Structural Properties are Beneficial for Source Code Summarization. Comparing
Tree2Seq/DeepCom with CODE-NN, we find that the structure information facilitates a great im-
provement in the performance. For example, both Tree2Seq and DeepCom outperform CODE-
NN by at least 37.2%, 78.8%, and 25.3%, respectively, regarding the three metrics on the Java
dataset. Although no consistent improvement across all metrics is observed on the Python dataset,
Tree2Seq/DeepCom still shows an obvious increase on the BLEU-4 metric.

Transformer-Based Approaches Perform Better than RNN-Based Approaches. The four
Transformer-based approaches [1, 4, 11, 26, 55] outperform all of the other baselines, with Neu-
ralCodeSum [1] giving better performance compared with the vanilla Transformer. The vanilla

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:13

Table 3. Comparison Results with CodeTransformer on the
Dataset Preprocessed by CodeTransformer

Approach
Java

BLEU-4 METEOR ROUGE-L

CodeTransformer [70] 39.81 24.22 51.96
SG-Trans 44.59* 27.32* 54.41*

The bold figures indicate the best results. *denotes statistical significance in

comparison with the baseline models (i.e., two-sided t -test with p-value

< 0.01).

Table 4. Ablation Study on Different Parts of Our Model

Approach
Java Python

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

SG-Trans w/o token info 44.92 27.35 54.69 32.18 19.87 46.14
SG-Trans w/o statement info 44.61 27.08 54.04 32.26 19.66 46.08
SG-Trans w/o dataflow info 45.52 27.65 55.40 32.58 20.16 46.57
SG-Trans w/o hierarchical attention 45.53 27.72 55.48 32.93 20.38 46.73
SG-Trans w/o copy attention 45.24 27.49 55.01 31.89 19.26 45.31
SG-Transsoft 45.37 27.65 55.09 32.77 19.96 46.74
SG-Trans 45.89* 27.85* 55.79* 33.04* 20.52* 47.01*

The bold figures indicate the best results. *denotes statistical significance in comparison with the baseline models we

reproduced (i.e., two-sided t -test with p-value < 0.01).

Transformer already achieves better performance than the top seven RNN-based approaches with
various types of structural information being incorporated, showing the efficacy of Transformer
for the task. On the Python dataset, NeuralCodeSum outperforms the best RNN-based baseline,
Dual Model [61], by 47.7% and 17.4% in terms of the BLEU-4 and ROUGE-L metrics, respectively.

The Proposed SG-Trans is Effective in Code Summarization. Comparing SG-Trans with
NeuralCodeSum and Transformer+GNN, SG-Trans achieves the best results on both benchmark
datasets, yet without introducing any extra model parameters. SG-Trans improves the best baseline
by 1.7% and 0.4% in terms of ROUGE-L score on the Java and Python dataset, respectively.

The Combination of the Structural Information in SG-Trans is Effective. By com-
paring SG-Trans with other Transformer models with structural information involved such as
GREAT [26], CodeTransformer [70], and Transformer+GNN [11], SG-Trans achieves the best re-
sults on both benchmark datasets. SG-Trans improves the best baseline by 2.5% and 2.0% in terms
of METEOR score on the Java and Python dataset, respectively.

5.2 Answer to RQ2: Ablation Study

We further perform ablation studies to validate the impact of the involved code structural proper-
ties and the hierarchical structure-variant attention approach. In addition, to evaluate the efficacy
of the hard mask attention mechanism for combining token-level and statement-level information
in SG-Trans, we create a comparative approach, SG-Transsoft, by changing the hard mask into a
soft mask. For SG-Transsoft, we follow NeuralCodeSum [1] and add the relative position embed-
ding for subtoken pairs xi and x j only if they are in the same token or statement. The results are
shown in Table 4.

Analysis of the Involved Code Structure. We find that all three structure types — code to-
ken, statement, and dataflow — contribute to model performance improvement but with varied de-
grees. Local syntactic structures play a more important role than the global dataflow structure. For

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:14 S. Gao et al.

Fig. 5. Influence of the hyper-parameters μ and k on model performance.

example, removing the statement information leads to a significant performance drop at around
2.8% and 2.4% regarding the BLEU-4 score. This suggests the importance of modeling the semantic
relations among tokens of the same statement for code summarization. With the dataflow infor-
mation eliminated, SG-Trans also suffers from a performance drop, which may indicate that it is
difficult for Transformer to learn data dependency relations implicitly.

Analysis of the Hierarchical Structure-Variant Attention Mechanism. We replace the
hierarchical structure-variant attention with uniformly distributed attention, that is, Ωl =

[ωl
t ,ω

l
s ,ω

l
f
,ωl

o] = [2, 2, 2, 2], for the ablation analysis. As can be found in Table 2, without the

hierarchical structure design, the model’s performance decreases on all metrics for both datasets.
The results demonstrate the positive impact of the hierarchical structure-variant attention
mechanism.

Analysis of the Copy Attention. As shown in Table 2, excluding the copy attention results
in a significant drop in SG-Trans’s performance, similar to what has been observed in the work
of Ahmad et al. [1]. This shows that copy attention is useful for alleviating the OOV issue and
facilitating better code summarization.

Analysis of the Hard Mask Attention Mechanism. As shown in Table 4, we find that SG-
Trans performs constantly better than SG-Transsoft on both Java and Python datasets with respect
to all metrics. For example, on Java dataset, replacing hard masks with soft masks leads to a per-
formance drop of 1.1% and 1.3% in terms of the BLEU-4 and ROUGE-L metrics, respectively, which
indicates that the hard mask attention is effective at capturing the local information.

5.3 Answer to RQ3: Parameter Sensitivity Analysis

In this section, we analyze the impact of two key hyper-parameters on model performance, the
control factor μ for adjusting the integration degree of the dataflow structure and the parameter k
to control head distribution.

The Parameter μ. Figure 5(a) shows the performance variation with the changes of μ while
keeping other hyper-parameters fixed. For the Java dataset, the model achieves the best scores
when μ = 5. Lower or higher parameter values do not give better results. For the Python dataset,
a similar trend is observed for the BLEU-4 and ROUGE-L metrics—the model performs best when
μ equals 3 and 5, respectively. In this work, we set μ to 5 since the model can produce relatively
better results on both datasets.

The Parameter k . We observe the performance changes when the control factor k of the head
distribution takes values centered on layers of SG-Trans L. Figure 5(b) illustrates the results. We can
find that SG-Trans can balance the distribution of local and global structure-guided head attention
well when k = L or k = L + 1. As k gets larger, SG-Trans would be more biased by the local
structure and tend to generate an inaccurate code summary. In our work here, we set k = L.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:15

Fig. 6. An example of questions in our questionnaire. The two-dot symbols indicate the simplified rating
schemes for Summaries 2, 3, and 4.

5.4 Human Evaluation

In this section, we perform human evaluation to qualitatively evaluate the summaries generated
by four Transformer-based baselines, including vanilla Transformer, NeuralCodeSum, GREAT,
and CodeTransformer, along with our model SG-Trans. We do not involve the baseline Trans-
former+GN due to the lack of replication package. The human evaluation is conducted through
online questionnaire. In total, 10 software developers are invited to participate in evaluation. All
participants have at least 4 years of programming experience in software development and none is
a coauthor of this article. Each participant is invited to read 60 code snippets and judge the quality
of summaries generated by vanilla Transformer, NeuralCodeSum, CodeTransformer, GREAT, and
SG-Trans. Each will be paid 30 USD upon completing the questionnaire.

5.4.1 Survey Design. We randomly selected 200 code snippets, with 100 in Java and 100 in
Python, for evaluation. As shown in Figure 6, in the questionnaire, each question comprises a
code snippet and summaries generated by the five models. Each participant will be given 60 ques-
tions and each question will be evaluated by three different participants. For each question, the
summaries generated by the models are randomly shuffled to eliminate order bias.

The quality of the generated summaries is evaluated in terms of Adequacy, Conciseness, and
Fluency with the 1 to 5 Likert scale (5 for excellent, 4 for good, 3 for acceptable, 2 for mar-
ginal, and 1 for poor). We explained the meaning of the three evaluation metrics at the beginning
of the questionnaire: The metric “adequacy” measures how much the functional meaning of the
code is preserved after summarization; the metric “conciseness” measures the ability to express
the function of code snippet without unnecessary words; and the metric “fluency” measures the
quality of the generated language, such as the correctness of grammar.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:16 S. Gao et al.

Table 5. Human Evaluation Results

Dataset Metrics Transformer CodeTransformer NeuralCodeSum GREAT SG-Trans

Java

Adequacy 3.35 2.67 3.28 3.44 3.65

Conciseness 4.20 3.49 4.32 4.36 4.50

Fluency 4.32 3.25 4.36 4.50 4.59

Python

Adequacy 2.61 1.92 3.04 2.83 3.21

Conciseness 3.84 2.62 4.01 4.05 4.21

Fluency 4.06 2.39 4.21 4.26 4.33

The bold figures indicate the best results.

5.4.2 Survey Design. We received 600 sets of scores with 3 sets of scores for each code-summary
pair from the human evaluation. On average, the participants spent 2 hours on completing the
questionnaire, with the median completion time at 1.67 hours. The inter-annotator agreement
of the two sets is evaluated with the widely used metric Cohen’s kappa. The average Cohen’s
kappa scores for the Java and Python datasets are 0.66 and 0.58, respectively, indicating that the
participants achieved at least moderate agreement on both datasets.

The evaluation results are provided in Table 5 and Figure 7. We find that the summaries gener-
ated by SG-Trans receive the highest scores on both datasets and with respect to all of the metrics.
For the Java dataset, as shown in Table 5, SG-Trans improves the baseline models by at least 6.1%,
3.2%, and 2.0% with respect to the adequacy, conciseness, and fluency metrics, respectively. As can
be observed from Figures 7(a), 7(c) and 7(e), summaries generated by SG-Trans receive the most
5-star ratings and fewest 1/2-star ratings from the participants compared with the summaries pro-
duced by other models for each metric. Regarding the fluency metric, only 1.3% of the participants
gave 1/2-star ratings to the summaries generated by SG-Trans, while other approaches receive
at least 6.0% 1/2-star ratings and CodeTransformer receives 24.0%. The score distributions indi-
cate that SG-Trans better captures the functionality of given code snippets and generates a higher
quality of natural language comments.

For the Python dataset, as shown in Table 5, NeuralCodeSum and GREAT significantly outper-
form the vanilla Transformer and CodeTransformer, whereas SG-Trans is more powerful, further
boosting the best baseline approach by 5.6%, 4.0%, and 1.6% in terms of the adequacy, conciseness,
and fluency, respectively. As can be observed from Figures 7(b), 7(d) and 7(f), summaries gener-
ated by SG-Trans receive the most 5-star ratings and fewest 1/2-star ratings from the annotators.
Specifically, regarding the adequacy metric, 18.0% of the participants gave 5-star ratings to the
summaries generated by SG-Trans, with only 4.6% for the CodeTransformer approach and 12.3%
for the strongest baseline NeuralCodeSum. For the conciseness metric, 51.7% of the participants
gave 5-star ratings to the summaries generated by SG-Trans and the two best baseline approaches
NeuralCodeSum and GREAT receive only 42.3% and 44.0% 5-star ratings, respectively. The score
distributions indicate that the summaries generated by SG-Trans can better describe the function
of code snippets and have a more concise and accurate expression.

5.5 Further Evaluation on Generated Summaries

To further investigate the quality of auto-generated summaries, we invite participants to summa-
rize the code without access to the reference summary and then ask the annotators to score the
summaries. During manual code summarization, we invite four postgraduate students with more
than 5 years of development experience as well as internship experience in technology compa-
nies to participate. To ease the pressure of annotation, we randomly select 80 code snippets with
code lengths fewer than 250 characters. Each participant is asked to write summaries for 20 code
snippets, 10 in Java and 10 in Python. Each will be paid 15 USD upon completing the questionnaire.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:17

Fig. 7. Distribution of the rating scores in human evaluation on the two datasets. The “Transformer” on the
horizontal axis denotes the “vanilla Transformer” approach.

We receive annotations of 78/80 code snippets in total. For the remaining two code snippets, as
shown in Table 7, the annotators found the functionalities difficult to understand without corre-
sponding prior knowledge. For the example in Table 7 (Example 1), the unclear meanings of “K.zero”
and “f [(–1)]” hinder program comprehension. We measure the quality of summaries generated by
SG-Trans and humans using the same metrics introduced in Section 4.2. The results are shown in
Table 6. From the table, we find that compared with human-generated summaries, auto-generated
summaries are much more similar to the reference summaries. For example, the BLEU-4 scores
of the auto-generated summaries are 77.06 and 75.09 on Java and Python, respectively, while the
human-generated summaries are only 19.04 and 23.63 on Java and Python, respectively. To deter-
mine the reason for the large difference between human-generated summaries and reference sum-
maries, we manually check all of the annotated data. The two main reasons are summarized here.

• Lack of contextual knowledge. Some code snippets use external APIs or inner elements
of a class, and the details of the APIs and elements cannot be accessed. Thus, the annotators
can only infer the functions of code snippets based on the function/variable names, resulting
in poorly written summaries. For example, as shown in Table 8 (Example 1), since the detail
of the external API “string_literal” is unknown, humans can only guess its meaning from the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:18 S. Gao et al.

Table 6. The Quality of Summaries Generated by SG-Trans and Humans

Predicted Summary Test
Java Python

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

Auto-generated Reference 77.06 51.67 89.95 75.09 49.04 87.56
Human-generated Reference 19.04 13.33 32.83 23.63 19.82 38.95

The term “auto-generated” indicates the summaries output by SG-Trans.

Table 7. The Code Snippets That Cannot be Understood by the Annotators

Example (1) in Python:

def poly_TC(f, K):
if (not f):

return K.zero
else:

return f[(-1)]
Human-generated: cannot understand

SG-Trans: return trailing coefficient of f
Ground truth: return trailing coefficient of f

Example (2) in Java:

@SuppressWarnings(STRING)
public PropagationImp(Stack<CompositeTransaction>lineage, boolean serial, long timeout){

serial_ = serial;
lineage_ = (Stack<CompositeTransaction>)lineage.clone();
timeout_ = timeout;}

Human-generated: cannot understand

SG-Trans: create a new instance
Ground truth: create a new instance

name. In Table 8 (Example 2), “acl” is an inner element of the class “bucket” but the definition
is missing, which makes it hard for humans to comprehend the function. Our model has been
provided with the knowledge that “acl” stands for “access control list” during training; thus,
it can output a more accurate summary.
• Limitation of the evaluation metrics. As shown in Table 8 (Examples 3 and 4), although

the summaries generated by humans can accurately reflect the functions of the code snip-
pets, they are significantly different from the reference summaries, leading to low metric
scores. For Example 4 in Table 8, both the human-generated summary and reference sum-
mary explain the meaning of the code snippet well. However, under the existing metrics
based on n-gram matching, the metric scores between them are very low since they have
only one overlapping word: “parse.”

We then qualitatively inspect the quality of human-generated summaries and auto-generated
summaries. We invite another three annotators, who have not joined the manual code summariza-
tion part, for the inspection. The results are provided in Table 9. The Cohen’s kappa scores of the
annotation results are 0.69 and 0.71 on Java and Python, respectively, indicating a substantial inter-
rater reliability on both datasets. As shown in Table 9, the quality of human-generated summaries
is better than that of the auto-generated summaries with respect to all metrics. Specifically, the
conciseness and fluency scores of human-written summaries are nearly 5 on both datasets. More-
over, the adequacy scores of human-written summaries outperform the auto-generated summaries
by 21.0% and 35.5% on Java and Python datasets, respectively. The results further explain the huge
difference between human-generated summaries and reference summaries under automatic eval-
uation, as shown in Table 6, reflecting the limitation of automatic metrics.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:19

Table 8. Examples Illustrating the Difference Between Summaries
Generated by SG-Trans and Written by Humans

Example (1) in Python:

def Thing2Literal(o, d):
return string_literal(o, d)

Human-generated: return the literalness of a string
SG-Trans: convert something into a string representation
Ground truth: convert something into an sql string literal

Example (2) in Python:

def print_bucket_acl_for_user(bucket_name, user_email):
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
bucket.acl.reload()
roles = bucket.acl.user(user_email).get_roles()
print roles

Human-generated: print the bucket acl for user
SG-Trans: prints out a buckets access control list for a given user
Ground truth: prints out a buckets access control list for a given user

Example (3) in Java:

public ActivityResolveInfo(ResolveInfo resolveInfo){
this.resolveInfo = resolveInfo;}

Human-generated: assign a value to resolveinfo attribute
SG-Trans: creates a new activity
Ground truth: creates a new instance

Example (4) in Java:

public static Date parseText(String dateStr){
try {return mSimpleTextFormat.parse(dateStr);}
catch(ParseException e){

e.printStackTrace();
throw new RuntimeException(STRING);}}

Human-generated: parse the dateStr as a date instance
SG-Trans: parse string to datetime
Ground truth: parse string to datetime

Table 9. Human Evaluation on Summaries Generated by
SG-Trans and Human-Written Summaries

Dataset Metrics Human-written SG-Trans

Java

Adequacy 4.38 3.62
Conciseness 4.82 4.48

Fluency 4.94 4.58

Python

Adequacy 4.39 3.24
Conciseness 4.86 4.23

Fluency 4.95 4.34

6 DISCUSSION

In this section, we mainly discuss the key properties of the proposed SG-Trans, the impact
of duplicate data in the benchmark dataset on model performance, and the limitations of our
study.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:20 S. Gao et al.

Fig. 8. Heat map visualization of self-attention scores of the three types of heads in the encoder for the first
case in Table 10. The rectangles with red edges, green edges, and blue edges indicate the tokens belonging
to the same original token, the same statement, or containing dataflow relation, respectively.

6.1 Why Does Our Model Work?

We further conduct an analysis to gain insights into the proposed SG-Trans in generating high-
quality code summaries. Through qualitative analysis, we have identified two properties of SG-
Trans that may explain its effectiveness in the task.

Observation 1: SG-Trans can better capture the semantic relations among tokens. From
Example (1) in Table 10, we observe that SG-Trans produces the summaries most similar to the
ground truth among all of the approaches, whereas the CodeTransformer gives the worst result.
We then visualize the heat map of the self-attention scores of the three types of heads in Figure 8
for a further analysis. As can be seen in Figures 8(a) and 8(b), SG-Trans can focus on local relations
among code tokens through its token-guided self-attention and statement-guided self-attention.
For example, SG-Trans can learn that the two tokens “is” and “File” possess a strong relation, ac-
cording to Figure 8(a). As depicted in Figure 8(b), we find that SG-Trans captures that the token
“path” is strongly related to the corresponding statement, which may be the reason the token “path”
appears in the summary. Figure 8(c) shows that the dataflow-guided head attention focuses more
on the global information and can capture the strong relation between the tokens “path” and “f.”
Based on the analysis of Example 1, we speculate that the model can capture the token relations
locally and globally well for code summary generation. As for the heat map of other baseline mod-
els such as NeuralCodeSum, we can see that they are very different with the heat map of SG-Trans.
As shown in Figure 9, NeuralCodeSum does not capture the token, statement, and data flow in-
formation in any layer while SG-Trans can pay more attention to the token pairs with syntactic
or semantic relations. A similar conclusion can be drawn from Example 2 in Table 10. All of the
approaches successfully comprehend that the token “acl” indicates “access control list.” However,
the vanilla Transformer fails to capture the semantic relations between “print” and “acl” and Neu-
ralCodeSum misunderstands the relations between “user” and “acl.” Instead, SG-Trans accurately
predicates both relations through the local self-attention and global self-attention.

Observation 2: Structural information-guided self-attention can facilitate the copy

mechanism to copy important tokens. In Example 3 in Table 10, SG-Trans successfully identi-
fied the important token “urlsafe” in the given code while generating the summary. However, both
vanilla Transformer and NeuralCodeSum ignored the token and output less accurate summaries.
The important token being successfully copied by SG-Trans may be attributed to the structural
information-guided self-attention, which helps focus on the source tokens more accurately.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:21

Table 10. Examples Illustrating Summaries Generated by Different Approaches Given the Code Snippets

Example (1) in Java:

public static boolean isFile(String path){
File f = new File(path);
return f.isFile();

}
Vanilla Transformer: checks if the given path is a file object, is a directory it can be read. no distinction is
considered exceptions
CodeTransformer: checks if the given file is a file
NeuralCodeSum: checks if file exists
GREAT: checks if the given path is a file
SG-Trans: checks if the given path is a file
Ground truth: checks if the given path is a file

Example (2) in Python:

def print_bucket_acl_for_user(bucket_name, user_email):
storage_client = storage.Client()
bucket = storage_client.bucket(bucket_name)
bucket.acl.reload()
roles = bucket.acl.user(user_email).get_roles()
print roles

Vanilla Transformer: removes a user from the access control list
CodeTransformer: sets a the user from to to.
NeuralCodeSum: prints out a user access control list
GREAT: prints out a user access control list
SG-Trans: prints out a buckets access control list for a given user
Ground truth: prints out a buckets access control list for a given user

Example (3) in Python:

def token_urlsafe(nbytes=None):
tok = token_bytes(nbytes)
return base64.urlsafe_b64encode(tok).rstrip(‘=’).decode(‘ascii’)

Vanilla Transformer: generates a token
CodeTransformer: decodes a unicode string string string if
NeuralCodeSum: construct a random text string.
GREAT: generates a token identifier
SG-Trans: return a random url-safe string.
Ground truth: return a random url-safe text string.

The following examples are only from the test set and do not exist in the training set.

6.2 Duplicate Data in the Java Dataset

During our experimentation, we find that there are duplicate data in the Java dataset, which may
adversely affect the model performance [2]. As for the Python dataset, there is no duplication
across different training, validation, and test set. As shown in Table 11, there are 23.3% and 23.6%
duplicate data in the validation set and the test set, respectively. To evaluate the impact of the data
duplication on the proposed model, we remove the duplicate data across the training, validation,
and test sets. We choose the two strongest baselines, NeuralCodeSum and GREAT, for comparison.
The results after deduplication are shown in Table 12. As can be seen, all models present a dra-
matic decrease on the deduplicated dataset. Nevertheless, the proposed SG-Trans still outperforms
GREAT on the BLEU-4, ROUGE-L, and METEOR metrics, by 3.3%, 2.7%, and 3.3%, respectively.

6.3 Analysis of the Hierarchical Structure-Variant Attention Mechanism

The hierarchical structure-variant attention mechanism in SG-Trans aims at rendering the model
focus on local structures at shallow layers and global structure at deep layers. In this section, we

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:22 S. Gao et al.

Fig. 9. Heat map visualization of self-attention scores of NeuralCodeSum. The rectangles with red edges,
green edges, and blue edges indicate the tokens belonging to the same original token, the same statement,
or containing dataflow relation, respectively.

Table 11. Duplicate Data in the Java Dataset

Validation Set Test set

Total data 8,714 8,714
Duplicate data 2,028 (23.3%) 2,059 (23.6%)

analyze whether the mechanism can assist SG-Trans in learning the hierarchical information. We
visualize the distributions of attention scores corresponding to the relative token distances for the
shallow layer – Layer one, middle layer – Layer four, and one deep layer – Layer seven, respectively.
For each relative token distance ι, its attention distribution Yι is computed as Equation (19).

Yι =

∑N
i=1 attention(i, i + ι) + attention(i, i − ι)∑S

j=1

∑N
i=1 attention(i, i + j) + attention(i, i − j)

, (19)

where N denotes the number of tokens and S denotes the longest relative distance for analysis
(S = 10 in our analysis). The attention(i, j) denotes the attention score of token xi to x j (1 ≤ j ≤ N).
The attention scores reflect whether the model focuses on local information or global information.
We choose the relational Transformer GREAT for comparison since it also involves structural in-
formation but is not designed hierarchically. The visualization is depicted in Figure 10. For GREAT,
as shown in Figure 10(a), we find that the attention distributions across different layers present
similar trends, that is, they all tend to focus on different token distances uniformly. For SG-Trans,
as shown in Figure 10(b), we observe that the three layers pay various attentions to tokens of dif-
ferent relative distances. The shallow layer (Layer one) focuses more on tokens with short relative
distances. In the middle layer (Layer four), the attention distribution among different distances is
more balanced, which indicates that the model pays increasingly more attention to global tokens
with the layer depth being increased. For the deep layer (Layer seven), the attention scores for
tokens of long distances are larger than those of short distances, meaning that the model tends
to focus on long-range relations in the deep layer. The results demonstrate that the hierarchical
attention mechanism in SG-Trans is beneficial for the model to capture the hierarchical structural
information that cannot be easily learned by the relational Transformer.

6.4 Difference with Relational Transformers

There are two main differences between SG-Trans and the relational Transformers [26, 70]:

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:23

Table 12. Comparison Results on the De-Duplicated Java Dataset

Approach BLEU-4 ROUGE-L METEOR

NeuralCodeSum 29.37 (↓34.95%) 41.62 (↓24.11%) 19.98 (↓27.24%)
GREAT 29.49 (↓34.52%) 41.84 (↓23.12%) 20.15 (↓25.79%)
SG-Trans 30.46 (↓33.74%) 42.97 (↓23.07%) 20.82 (↓25.32%)

Data listed within brackets are computed drop rates compared with the results on original

Java dataset.

Fig. 10. Attention distributions regarding relative token distance for (a) GREAT and (b) SG-Trans. The hori-
zontal axis represents the relative distance to the current token, and the vertical axis denotes the normalized
attention scores along with relative distances in one layer.

(1) Strategy in incorporating structural information. Compared with GREAT [26] and
CodeTransformer [70], which use learnable bias and sinusoidal encoding function to encode
the structure information, respectively, SG-Trans incorporates the local and global structure
information with different strategies, for example, introducing the local information with a
hard mask. The results in Tables 2 and 4 show the effectiveness of the structural incorpora-
tion strategy in SG-Trans.

(2) Design of hierarchical structure-variant attention mechanism. In SG-Trans, a hier-
archical attention mechanism is designed to assist the model in learning the hierarchical
information, whereas the relational Transformers do not have such a design. Both the abla-
tion study in Section 5.2 and the discussion in Section 6.3 demonstrate the benefits of this
design.

6.5 Difference with GraphCodeBERT

SG-Trans takes dataflow information, which is similar to GraphCodeBERT [21]. However, the two
methods are different as follows.

(1) Role of dataflow. GraphCodeBERT mainly uses the dataflow in two ways: (1) filtering the
irrelevant signals in the variable sequence and (2) guiding the two pretraining tasks, in-
cluding edge prediction and node alignment. Nevertheless, SG-Trans directly uses dataflow
information to help the attention mechanism better capture the data dependency relations
in source code.

(2) Incorporation way of dataflow. We integrate the dataflow information in a different
way from GraphCodeBERT. GraphCodeBERT utilizes a sparse masking mechanism to mask
the attention relations between the tokens without data dependency. SG-Trans retains the

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:24 S. Gao et al.

Table 13. Comparison of the Cost of Different Models

GPU memory usage Training time Preprocessing time

NeuralCodeSum 8,729 M 30.4 h -
CodeTransformer 8,573 M 211.5 h 66.1 ms
SG-Trans 8,509 M 29.9 h 3.8 ms
CodeBERT 17,959 M - -

The “_” under the preprocessing time of NeuralCodeSum and CodeBERT denotes that the approaches do not

need preprocessing. The “_” under the training time of CodeBERT denotes that we do not reproduce the

pretraining stage due to the limitation of computing resources.

attention relations for the tokens without data dependency and also highlights the dataflow
dependency through our designed dataflow-guided self-attention.

(3) Targets of the proposed model. The targets of the two models are different. GraphCode-
BERT is proposed to utilize the inherent structure of code to facilitate the pretraining stage.
SG-Trans mainly focuses on the task without large amounts of source code available and
uses the incorporated code structure to alleviate dependency on the training data.

6.6 Analysis of the Complexity of SG-Trans

SG-Trans incorporates structural information based on three types of relations between code to-
kens. Compared with the baseline approaches, such as NeuralCodeSum, SG-Trans involves more
types of relations, which could lead to an increase in the model complexity and subsequently im-
pacting its applicability to other programming languages. To investigate to what extent SG-Trans
introduces extra complexity, we conduct analysis of the cost of SG-Trans.

We first compare the cost of SG-Trans with Transformer-based baselines, including Neural-
CodeSum and CodeTransformer, and a pretraining model CodeBERT, in terms of the GPU memory
usage, training time cost, and preprocessing time cost. The comparison is implemented on the same
server with a single Tesla V100 GPU by training on the Java dataset with 32 batch size. The results
are shown in Table 13. As can be seen, the GPU memory usage and training time cost of SG-Trans
are the lowest among all the approaches. Since SG-Trans does not involve the relative positive em-
bedding, both its GPU memory usage and training time cost are even lower than NeuralCodeSum.
Table 13 also shows that CodeBERT requires the highest memory usage, restricting its application
to low-resource devices. With respect to the preprocessing time cost for one sample, since SG-
Trans does not need to calculate the complex features used in CodeTransformer, such as shortest
path length and personalized PageRank, it takes only about 3.8 ms, which is significantly faster
than CodeTransformer. The results indicate that the code structure properties used in SG-Trans
do not incura a larger cost than the baselines.

For the application of SG-Trans to other programming languages, the main barrier lies in the
dataflow extraction procedure. In this work, we follow the main idea of Wang et al. [59] and con-
sider only the common dataflow information, which is generally similar for different program-
ming languages. The common dataflow information includes sequential dataflow relations and
three types of non-sequential dataflow relations, such as “if ” statements and “for” and “while”
loops. The sequential dataflow relations can be easily extracted by identifying the variables for
any programming language. For the non-sequential dataflow relations, the extraction procedure
of different programming languages is also similar because the AST parser tree-sitter2 can parse
the dataflow relations of different languages into almost the same tree structure. Thus, it is conve-
nient to extend SG-Trans to other popular languages.

2https://github.com/tree-sitter/tree-sitter.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

https://github.com/tree-sitter/tree-sitter

Code Structure–Guided Transformer for Source Code Summarization 23:25

Table 14. Comparison Results with CodeBERT

Approach
Java Python

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

CodeBERT [15] 14.93 9.23 30.43 16.70 9.68 30.31
CodeBERT+fine-tune [15] 44.40 28.33 55.56 32.04 20.77 47.45

SG-Trans 45.89 27.85 55.79 33.04 20.52 47.01
SG-Translarge 46.27 28.37 56.30 33.53 20.87 47.42

“CodeBERT” represents the CodeBERT approach without fine-tuning. “SG-Translarge” represents SG-Trans with the

same model settings as CodeBERT, 10 encoder layers and hidden size of 768.

6.7 Comparison with CodeBERT

Many pretraining models [15, 21] have been proposed recently, which can be adopted for source
code summarization. Thus, we also compare the performance of SG-Trans with the most typical
pretraining model, CodeBERT. We also train SG-Trans under the same model size as CodeBERT
and denote it as SG-Translarge for further comparison.

As shown in Table 14, without fine-tuning, CodeBERT shows the worst performance among all
of the approaches. After enough fine-tuning, CodeBERT improves a lot and even outperforms SG-
Trans on some metrics, for example., the METEOR score on the Java dataset. However, it should be
noted that the encoder layer number and hidden size of CodeBERT are much larger than SG-Trans.
The numbers of encoder layers and hidden size of CodeBERT are 10 and 768, respectively, whereas
SG-Trans has only 8 encoder layers and a hidden size of 512. For fair comparison, we also train SG-
Trans with the same model settings as CodeBERT, denoted as SG-Translarge. As shown in Table 14,
SG-Translarge obtains the best performance for almost all of the metrics. On the Java dataset, SG-
Translarge outperforms CodeBERT+fine-tune by 4.2% and 1.3% in terms of BLEU-4 and ROUGE-L,
respectively. On the Python dataset, SG-Translarge is only slightly lower than CodeBERT+fine-tune
on ROUGE-L but obviously outperforms CodeBERT+fine-tune by 4.7% in terms of the BLEU-4
score. The results demonstrate that SG-Trans is more effective than CodeBERT, even with accessing
limited data.

6.8 Threats to Validity

There are three main threats to the validity of our study.

(1) The generalizability of our results. We use two large public datasets, which include
87,136 Java and 92,545 Python code-summary pairs, following the prior research [1, 60, 67].
The limited types of programming languages may hinder the scalability of the proposed SG-
Trans. In our future work, we will experiment with more large-scale datasets with different
programming languages.

(2) More code structure information could be considered. SG-Trans takes only the token-
level and statement-level syntactic structure and dataflow structure into consideration since
it has been previously demonstrated that the dataflow information is more effective than
AST and CFG during code representation learning [21]. Nevertheless, other code structural
properties, such as AST and CFG, could be potentially useful for boosting the model perfor-
mance. In the future, we will explore the use of more structural properties in SG-Trans.

(3) Biases in human evaluation. We invited 10 participants to evaluate the quality of 200 ran-
domly selected code-summary pairs. The results of human annotations can be impacted by
the participants’ programming experience and their understanding of the evaluation metrics.
To mitigate the bias of human evaluation, we ensure that the 10 participants are all software
developers with at least 4 years of programming experience, and each code-summary pair

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:26 S. Gao et al.

was evaluated by 3 participants. Summaries generated by different approaches were also
randomly shuffled in order to eliminate order bias. In the future, we will expand the pool of
human participants and will increase the size of the evaluation set.

7 RELATED WORK

In this section, we elaborate on two threads of related work: source code summarization and code
representation learning.

7.1 Source Code Summarization

There has been extensive research in source code summarization, including template-based ap-
proaches [41, 43, 52], information retrieval–based approaches [24, 44, 62] and deep learning–based
approaches [4, 27, 31]. Among these categories, deep learning–based methods have achieved the
greatest success and have become the most popular in recent years. These methods specifically
formulate the code summarization task as a neural machine translation (NMT) problem and adopt
state-of-the-art NMT frameworks to improve performance. In this section, we focus on deep learn-
ing–based methods and introduce them by category. We also list an overview of the category of
related works in Table 15.

RNN-Based Models: Iyer et al. [31] first propose CODE-NN, a Long Short Term Memory
(LSTM) network with attention to generate code summaries from code snippets. In order to achieve
more accurate code modeling, later researchers then introduced more structural and syntactic in-
formation to the deep learning models. Hu et al. [27] propose a structure-based traversal (SBT)
method to traverse AST and process the AST nodes into sequences that can be fed into an RNN
encoder. The authors of [28] hold the view that code API carries vital information about the func-
tionality of the source code and incorporates the API knowledge by adding an API Sequences
Encoder.

Tree/GNN-Based Models: To leverage the tree structures of AST, a multi-way Tree-LSTM [50]
is proposed to directly model the code structures. For more fine-grained intra-code relationship
exploitation, many works also incorporate code-related graphs and GNN to boost performance.
Fernandes et al. [16] build a graph from source code and extract nodes features with a gated GNN
while LeClair et al. [35] directly obtain code representation from AST with convolutional GNNs.
To help the model capture more global interactions among nodes, a recent work [39] proposes a
hybrid GNN that fuses the information from static and dynamic graphs via hybrid message passing.

Transformer-Based Models: With the rise of Transformer in the NMT task domain, Ah-
mad et al. [1] equip Transformer with copy attention and relative position embedding for bet-
ter mapping of the source code to their corresponding natural language summaries. To leverage
the code structure information into Transformer, Hellendoorn et al. [26] propose GREAT, which
encodes structural information into self-attention with adding a learnable edge-type related bias.
Another work proposed by Zügner et al. [70] focuses on multilingual code summarization and pro-
poses to build upon language-agnostic features such as source code and AST-based features. Wu
et al. [63] propose Structure-induced Self-Attention to incorporate multi-view structure informa-
tion into self-attention mechanism. To capture both the sequential and structural information, a
recent work [11] applies graph convolution to obtain structurally encoded node representations
and passes sequences of the graph-convolutioned AST nodes into Transformer. Another recent
work [18] proposes to utilize AST relative positions to augment the structural correlations be-
tween code tokens.

Information Retrieval Auxiliary Methods: Information retrieval auxiliary methods utilize
information retrieval and large-scale code repositories to help the model generate high-quality
summaries. Zhang et al. [67] propose to improve code summarization with the help of two retrieved

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:27

Table 15. An Overview of Existing Works Related to Code Summarization

Approach Input code property RNN Tree/GNN Transformer IR MT

CODE-NN [31] – �
DeepCom [27] AST �
Code2Seq [4] AST �
API+Code [28] API Information �
Dual Model [60] – � �
Rencos [67] – � �
Re2Com [61] – � �
Tree-LSTM [50] AST �
Code+GNN [35] AST �
HGNN [39] CPG � �
NeuralCodeSum [1] – �
DMACOS [65] – � �
GREAT [26] Multi relations in code �
CodeTransformer [70] AST �
Transformer+GNN [11] AST � �

The “IR” and “MT” denote information retrieval auxiliary methods and multi-task learning strategy, respectively.

codes using syntactic and semantic similarity. To help the model generate more important but low-
frequency tokens, Wei et al. [61] further use the existing comments of retrieved code snippets as
exemplars to guide the summarization.

Multi-Task Learning Strategy: Some researchers try to exploit commonalities and differences
across code-related tasks to further improve code summarization. Wei et al. [60] use a dual learning
framework to apply the relations between code summarization and code generation and improve
the performance of both tasks. A recent work [65] used method name prediction as an auxiliary
task and designed a multi-task learning approach to improve code summarization performance.

Compared with existing work, our proposed model focuses on improving the Transformer archi-
tecture for source code to make it better incorporate both local and global code structures. Other
improvement methods —such as information retrieval and multi-task learning, which are orthog-
onal to our work — are not the research target of this article.

7.2 Code Representation Learning

Learning high-quality code representations is of vital importance for deep learning–based code
summarization. Apart from the practices for code summarization discussed earlier, there also exist
other code representation learning methods that lie in similar task domains, such as source code
classification, code clone detection, and commit message generation. For example, the ASTNN
model proposed by Zhang et al. [68] splits large ASTs into sequences of small statement trees,
which are further encoded into vectors as source code representations. This model is further ap-
plied on code classification and code clone detection. Alon et al. [4] present CODE2SEQ, which
represents the code snippets by sampling certain paths from the ASTs. Gu et al. [20] propose to en-
code statement-level dependency relations through the Program Dependency Graph (PDG). Com-
paratively, this research on the model architecture improvement for code representation learning
is relevant to us but mainly focuses on other code-related tasks, such as code classification and
code clone detection.

Recently, inspired by the successes of pretraining techniques in the natural language process-
ing field, Feng et al. [15] and Guo et al. [21] also apply pretraining models on learning source code
and achieve empirical improvements on a variety of tasks. To extend the code representations to

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:28 S. Gao et al.

characterize programs’ functionalities, the authors of [32] further enrich the pretraining tasks to
learn task-agnostic semantic code representations from textually divergent variants of source pro-
grams via contrastive learning. Their target of the research about pretraining differs significantly
from ours; they mainly focus on learning from a large-scale dataset in a self-supervised way. Our
research concentrates on improving the quality of generated summaries with limited training data
in a supervised way.

8 CONCLUSION

In this article, we present SG-Trans, a Transformer-based architecture with structure-guided self-
attention and hierarchical structure-variant attention. SG-Trans can attain better modeling of code
structural information, including local structure at token level and statement level, and global
structure, that is, dataflow. The evaluation on two popular benchmarks suggests that SG-Trans
outperforms competitive baselines and achieves state-of-the-art performance on code summariza-
tion. For future work, we plan to extend the use of our model to other task domain and possibly
build up more accurate code representations for general usage.

REFERENCES

[1] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2020. A transformer-based approach for

source code summarization. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

(ACL’20), Online, July 5–10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault (Eds.). Association

for Computational Linguistics, 4998–5007.

[2] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings

of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software, Onward! 2019, Athens, Greece, October 23–24, 2019, Hidehiko Masuhara and Tomas Petricek (Eds.). ACM,

143–153.

[3] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to represent programs with graphs.

In 6th International Conference on Learning Representations (ICLR’18), Vancouver, BC, Canada, April 30 - May 3, 2018,

Conference Track Proceedings. OpenReview.net.

[4] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. 2019. code2seq: Generating sequences from structured repre-

sentations of code. In 7th International Conference on Learning Representations (ICLR’19), New Orleans, LA, May 6–9,

2019. OpenReview.net.

[5] Bang An, Jie Lyu, Zhenyi Wang, Chunyuan Li, Changwei Hu, Fei Tan, Ruiyi Zhang, Yifan Hu, and Changyou Chen.

2020. Repulsive attention: Rethinking multi-head attention as Bayesian inference. In Proceedings of the 2020 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP’20), Online, November 16–20, 2020, Bonnie Webber,

Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 236–255.

[6] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer normalization. CoRR abs/1607.06450 (2016).

[7] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correla-

tion with human judgments. In Proceedings of the Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization@ACL 2005, Ann Arbor, Mi, June 29, 2005, Jade Goldstein, Alon Lavie, Chin-Yew Lin,

and Clare R. Voss (Eds.). Association for Computational Linguistics, 65–72.

[8] Antonio Valerio Miceli Barone and Rico Sennrich. 2017. A parallel corpus of Python functions and documentation

strings for automated code documentation and code generation. arXiv preprint arXiv:1707.02275 (2017).

[9] Jie-Cherng Chen and Sun-Jen Huang. 2009. An empirical analysis of the impact of software development problem

factors on software maintainability. J. Syst. Softw. 82, 6 (2009), 981–992.

[10] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical machine translation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP’14), October 25–

29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, Alessandro Moschitti, Bo Pang, and

Walter Daelemans (Eds.). ACL, 1724–1734.

[11] YunSeok Choi, JinYeong Bak, CheolWon Na, and Jee-Hyong Lee. 2021. Learning sequential and structural informa-

tion for source code summarization. In Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021,

Online Event, August 1–6, 2021 (Findings of ACL’21), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.),

Vol. ACL/IJCNLP 2021. Association for Computational Linguistics, 2842–2851.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:29

[12] Milan Cvitkovic, Badal Singh, and Animashree Anandkumar. 2019. Open vocabulary learning on source code with a

graph-structured cache. In Proceedings of the 36th International Conference on Machine Learning (ICML’19), 9–15 June

2019, Long Beach, CA (Proceedings of Machine Learning Research), Kamalika Chaudhuri and Ruslan Salakhutdinov

(Eds.), Vol. 97. PMLR, 1475–1485.

[13] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia Marçal de Oliveira. 2005. A study of the documentation

essential to software maintenance. In Proceedings of the 23rd Annual International Conference on Design of Communi-

cation: Documenting & Designing for Pervasive Information (SIGDOC’05), Coventry, UK, September 21–23, 2005, Scott R.

Tilley and Robert M. Newman (Eds.). ACM, 68–75.

[14] Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. 2016. Tree-to-sequence attentional neural machine

translation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL’16), August

7–12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 823–833.

[15] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,

Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A pre-trained model for programming and natural languages. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings (EMNLP’20), Online

Event, 16–20 November 2020, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics,

1536–1547.

[16] Patrick Fernandes, Miltiadis Allamanis, and Marc Brockschmidt. 2019. Structured neural summarization. In 7th In-

ternational Conference on Learning Representations (ICLR’19), New Orleans, LA, May 6–9, 2019. OpenReview.net.

[17] Golara Garousi, Vahid Garousi-Yusifoglu, Günther Ruhe, Junji Zhi, Mahmood Moussavi, and Brian Smith. 2015. Us-

age and usefulness of technical software documentation: An industrial case study. Inf. Softw. Technol. 57 (2015),

664–682.

[18] Zi Gong, Cuiyun Gao, Yasheng Wang, Wenchao Gu, Yun Peng, and Zenglin Xu. 2022. Source code summarization

with structural relative position guided transformer. CoRR abs/2202.06521 (2022).

[19] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. 2016. Incorporating copying mechanism in sequence-to-

sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL’16),

August 7–12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics, 1631–1640.

[20] Wenchao Gu, Zongjie Li, Cuiyun Gao, Chaozheng Wang, Hongyu Zhang, Zenglin Xu, and Michael R. Lyu. 2021.

CRaDLe: Deep code retrieval based on semantic dependency learning. Neural Networks 141 (2021), 385–394.

[21] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,

Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin

Jiang, and Ming Zhou. 2020. GraphCodeBERT: Pre-training code representations with data flow. CoRR abs/2009.08366

(2020).

[22] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng Zhang. 2019. Star-transformer. In

Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, June 2–7, 2019, Volume 1 (Long and Short Papers),

Jill Burstein, Christy Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics, 1315–1325.

[23] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Xiangyang Xue, and Zheng Zhang. 2020. Multi-scale self-attention for text

classification. In 34th AAAI Conference on Artificial Intelligence (AAAI’20), 32nd Innovative Applications of Artificial

Intelligence Conference (IAAI’20), 10th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI’20),

New York, NY, February 7–12, 2020. AAAI Press, 7847–7854.

[24] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program comprehension with source code sum-

marization. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 2 (ICSE’10),

Cape Town, South Africa, 1–8 May 2010, Jeff Kramer, Judith Bishop, Premkumar T. Devanbu, and Sebastián Uchitel

(Eds.). ACM, 223–226.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR’16), Las Vegas, NV, June 27–30, 2016. IEEE

Computer Society, 770–778.

[26] Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. 2020. Global relational

models of source code. In 8th International Conference on Learning Representations (ICLR’20), Addis Ababa, Ethiopia,

April 26–30, 2020. OpenReview.net.

[27] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment generation. In Proceedings of the 26th

Conference on Program Comprehension (ICPC’18), Gothenburg, Sweden, May 27–28, 2018, Foutse Khomh, Chanchal K.

Roy, and Janet Siegmund (Eds.). ACM, 200–210.

[28] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing source code with transferred API

knowledge. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’18), July 13–19,

2018, Stockholm, Sweden, Jérôme Lang (Ed.). ijcai.org, 2269–2275.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

23:30 S. Gao et al.

[29] Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Tom Zimmermann. 2022. Practitioners’ expectations

on automated code comment generation. In Proceedings of the 44th ACM/IEEE International Conference on Software

Engineering (ICSE’22).

[30] Chidubem Iddianozie and Gavin McArdle. 2020. Improved graph neural networks for spatial networks using

structure-aware sampling. ISPRS Int. J. Geo Inf. 9, 11 (2020), 674.

[31] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016. Summarizing source code using a neural

attention model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL’16),

August 7–12, 2016, Berlin, Germany, Volume 1: Long Papers. The Association for Computer Linguistics.

[32] Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonzalez, and Ion Stoica. 2020. Contrastive code

representation learning. CoRR abs/2007.04973 (2020).

[33] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generating commit messages from diffs using

neural machine translation. In Proceedings of the 32nd IEEE/ACM International Conference on Automated Software

Engineering (ASE’17), Urbana, IL, October 30 - November 03, 2017, Grigore Rosu, Massimiliano Di Penta, and Tien N.

Nguyen (Eds.). IEEE Computer Society, 135–146.

[34] Rafael-Michael Karampatsis, Hlib Babii, Romain Robbes, Charles Sutton, and Andrea Janes. 2020. Big code != big

vocabulary: Open-vocabulary models for source code. In 42nd International Conference on Software Engineering

(ICSE’20), Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1073–1085.

[35] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved code summarization via a graph

neural network. In 28th International Conference on Program Comprehension (ICPC ’20), Seoul, Republic of Korea, July

13–15, 2020. ACM, 184–195.

[36] Yuding Liang and Kenny Qili Zhu. 2018. Automatic generation of text descriptive comments for code blocks. In

Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, LA, February 2–7, 2018, Sheila A.

McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 5229–5236.

[37] Chin-Yew Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out.

Association for Computational Linguistics, Barcelona, Spain, 74–81.

[38] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Michael Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How NOT

to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response

generation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP’16),

Austin, TX, November 1–4, 2016, Jian Su, Xavier Carreras, and Kevin Duh (Eds.). The Association for Computational

Linguistics, 2122–2132.

[39] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2021. Retrieval-augmented generation for code

summarization via hybrid GNN. In 9th International Conference on Learning Representations (ICLR’21), Virtual Event,

Austria, May 3–7, 2021. OpenReview.net.

[40] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Automatic generation of pull request

descriptions. In 34th IEEE/ACM International Conference on Automated Software Engineering (ASE’19), San Diego, CA,

November 11–15, 2019. IEEE, 176–188.

[41] Paul W. McBurney and Collin McMillan. 2016. Automatic source code summarization of context for Java methods.

IEEE Trans. Software Eng. 42, 2 (2016), 103–119.

[42] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what you did last summer: An investigation of how

developers spend their time. In Proceedings of the 2015 IEEE 23rd International Conference on Program Comprehension

(ICPC’15), Florence, Italy, May 16–24, 2015, Andrea De Lucia, Christian Bird, and Rocco Oliveto (Eds.). IEEE Computer

Society, 25–35.

[43] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori L. Pollock, and K. Vijay-Shanker. 2013. Au-

tomatic generation of natural language summaries for Java classes. In IEEE 21st International Conference on Program

Comprehension (ICPC’13), San Francisco, CA, 20–21 May, 2013. IEEE Computer Society, 23–32.

[44] Dana Movshovitz-Attias and William W. Cohen. 2013. Natural language models for predicting programming com-

ments. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL’13), 4–9 August

2013, Sofia, Bulgaria, Volume 2: Short Papers. The Association for Computer Linguistics, 35–40.

[45] Lun Yiu Nie, Cuiyun Gao, Zhicong Zhong, Wai Lam, Yang Liu, and Zenglin Xu. 2020. Contextualized code represen-

tation learning for commit message generation. CoRR abs/2007.06934 (2020).

[46] Kyosuke Nishida, Itsumi Saito, Kosuke Nishida, Kazutoshi Shinoda, Atsushi Otsuka, Hisako Asano, and Junji Tomita.

2019. Multi-style generative reading comprehension. In Proceedings of the 57th Conference of the Association for Com-

putational Linguistics (ACL’19), Florence, Italy, July 28-August 2, 2019, Volume 1: Long Papers, Anna Korhonen, David R.

Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, 2273–2284.

[47] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: A method for automatic evaluation of

machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July

6–12, 2002, Philadelphia, PA. ACL, 311–318.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

Code Structure–Guided Transformer for Source Code Summarization 23:31

[48] Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer-generator

networks. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL’17), Van-

couver, Canada, July 30-August 4, Volume 1: Long Papers, Regina Barzilay and Min-Yen Kan (Eds.). Association for

Computational Linguistics, 1073–1083.

[49] Lin Shi, Hao Zhong, Tao Xie, and Mingshu Li. 2011. An empirical study on evolution of API documentation. In

Fundamental Approaches to Software Engineering - 14th International Conference (FASE’11), Held as Part of the Joint

European Conferences on Theory and Practice of Software (ETAPS’11), Saarbrücken, Germany, March 26-April 3, 2011.

Proceedings (Lecture Notes in Computer Science), Dimitra Giannakopoulou and Fernando Orejas (Eds.), Vol. 6603.

Springer, 416–431.

[50] Yusuke Shido, Yasuaki Kobayashi, Akihiro Yamamoto, Atsushi Miyamoto, and Tadayuki Matsumura. 2019. Auto-

matic source code summarization with extended tree-LSTM. In International Joint Conference on Neural Networks

(IJCNN’19), Budapest, Hungary, July 14–19, 2019. IEEE, 1–8.

[51] Kai Song, Kun Wang, Heng Yu, Yue Zhang, Zhongqiang Huang, Weihua Luo, Xiangyu Duan, and Min Zhang. 2020.

Alignment-enhanced transformer for constraining NMT with pre-specified translations. In 34th AAAI Conference on

Artificial Intelligence (AAAI’20), 32nd Innovative Applications of Artificial Intelligence Conference (IAAI’20), 10th AAAI

Symposium on Educational Advances in Artificial Intelligence (EAAI’20), New York, NY, February 7–12, 2020. AAAI

Press, 8886–8893.

[52] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori L. Pollock, and K. Vijay-Shanker. 2010. Towards automat-

ically generating summary comments for Java methods. In 25th IEEE/ACM International Conference on Automated

Software Engineering (ASE’10), Antwerp, Belgium, September 20–24, 2010, Charles Pecheur, Jamie Andrews, and Elis-

abetta Di Nitto (Eds.). ACM, 43–52.

[53] Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart, Westley Weimer, Kevin Leach, and Yu

Huang. 2020. A human study of comprehension and code summarization. In 28th International Conference on Program

Comprehension (ICPC ’20), Seoul, Republic of Korea, July 13–15, 2020. ACM, 2–13.

[54] Zoltán Gendler Szabó. 2020. Compositionality. In The Stanford Encyclopedia of Philosophy, Edward N. Zalta (Ed.),

Metaphysics Research Lab, Stanford University.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and

Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems 30: Annual

Conference on Neural Information Processing Systems 2017, December 4–9, 2017, Long Beach, CA, Isabelle Guyon, Ulrike

von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (Eds.). 5998–

6008.

[56] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. 2019. Analyzing multi-head self-attention:

Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings of the 57th Conference of the Association

for Computational Linguistics (ACL’19), Florence, Italy, July 28 - August 2, 2019, Volume 1: Long Papers, Anna Korhonen,

David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics, 5797–5808.

[57] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu, and Philip S. Yu. 2018. Improving automatic

source code summarization via deep reinforcement learning. In Proceedings of the 33rd ACM/IEEE International Con-

ference on Automated Software Engineering (ASE’18), Montpellier, France, September 3–7, 2018, Marianne Huchard,

Christian Kästner, and Gordon Fraser (Eds.). ACM, 397–407.

[58] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL: Relation-

aware schema encoding and linking for text-to-SQL parsers. In Proceedings of the 58th Annual Meeting of the Associ-

ation for Computational Linguistics (ACL’20), Online, July 5–10, 2020, Dan Jurafsky, Joyce Chai, Natalie Schluter, and

Joel R. Tetreault (Eds.). Association for Computational Linguistics, 7567–7578.

[59] Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. 2020. Detecting code clones with graph neural network and flow-

augmented abstract syntax tree. In 27th IEEE International Conference on Software Analysis, Evolution and Reengineer-

ing, SANER 2020, London, ON, Canada, February 18-21, 2020. IEEE, 261–271.

[60] Bolin Wei, Ge Li, Xin Xia, Zhiyi Fu, and Zhi Jin. 2019. Code generation as a dual task of code summarization. In Ad-

vances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019

(NeurIPS’19), December 8–14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer,

Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 6559–6569.

[61] Bolin Wei, Yongmin Li, Ge Li, Xin Xia, and Zhi Jin. 2020. Retrieve and refine: Exemplar-based neural comment gener-

ation. In 35th IEEE/ACM International Conference on Automated Software Engineering (ASE’20), Melbourne, Australia,

September 21–25, 2020. IEEE, 349–360. https://doi.org/10.1145/3324884.3416578

[62] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. CloCom: Mining existing source code for automatic comment gener-

ation. In 22nd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER’15), Montreal,

QC, Canada, March 2–6, 2015, Yann-Gaël Guéhéneuc, Bram Adams, and Alexander Serebrenik (Eds.). IEEE Computer

Society, 380–389.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

https://doi.org/10.1145/3324884.3416578

23:32 S. Gao et al.

[63] Hongqiu Wu, Hai Zhao, and Min Zhang. 2021. Code summarization with structure-induced transformer. In Find-

ings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1–6, 2021 (Findings of

ACL’21), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.), Vol. ACL/IJCNLP 2021. Association for

Computational Linguistics, 1078–1090.

[64] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shanping Li. 2018. Measuring program

comprehension: A large-scale field study with professionals. IEEE Trans. Software Eng. 44, 10 (2018), 951–976.

[65] Rui Xie, Wei Ye, Jinan Sun, and Shikun Zhang. 2021. Exploiting method names to improve code summarization: A

deliberation multi-task learning approach. In 29th IEEE/ACM International Conference on Program Comprehension

(ICPC’21), Madrid, Spain, May 20–21, 2021. IEEE, 138–148.

[66] Jingyi Zhang, Masao Utiyama, Eiichiro Sumita, Graham Neubig, and Satoshi Nakamura. 2018. Guiding neural ma-

chine translation with retrieved translation pieces. In Proceedings of the 2018 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT’18), New Orleans, LA,

June 1–6, 2018, Volume 1 (Long Papers). 1325–1335.

[67] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. 2020. Retrieval-based neural source code

summarization. In 42nd International Conference on Software Engineering (ICSE’20), Seoul, South Korea, 27 June–19

July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1385–1397.

[68] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong Liu. 2019. A novel neural source

code representation based on abstract syntax tree. In Proceedings of the 41st International Conference on Software

Engineering (ICSE’19), Montreal, QC, Canada, May 25-31, 2019, Joanne M. Atlee, Tevfik Bultan, and Jon Whittle (Eds.).

IEEE / ACM, 783–794.

[69] Xiangyu Zhao, Longbiao Wang, Ruifang He, Ting Yang, Jinxin Chang, and Ruifang Wang. 2020. Multiple knowledge

syncretic transformer for natural dialogue generation. In The Web Conference 2020 (WWW’20), Taipei, Taiwan, April

20–24, 2020, Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 752–762.

[70] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann. 2021. Language-

agnostic representation learning of source code from structure and context. In 9th International Conference on Learn-

ing Representations (ICLR’21) Virtual Event, Austria, May 3-7, 2021. OpenReview.net.

Received 6 June 2021; revised 19 February 2022; accepted 24 February 2022

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 1, Article 23. Pub. date: February 2023.

