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Abstract—We present DistillFlow, a knowledge distillation approach to learning optical flow. DistillFlow trains multiple teacher models

and a student model, where challenging transformations are applied to the input of the student model to generate hallucinated

occlusions as well as less confident predictions. Then, a self-supervised learning framework is constructed: confident predictions from

teacher models are served as annotations to guide the student model to learn optical flow for those less confident predictions. The self-

supervised learning framework enables us to effectively learn optical flow from unlabeled data, not only for non-occluded pixels, but

also for occluded pixels. DistillFlow achieves state-of-the-art unsupervised learning performance on both KITTI and Sintel datasets.

Our self-supervised pre-trained model also provides an excellent initialization for supervised fine-tuning, suggesting an alternate

training paradigm in contrast to current supervised learning methods that highly rely on pre-training on synthetic data. At the time of

writing, our fine-tuned models ranked 1st among all monocular methods on the KITTI 2015 benchmark, and outperform all published

methods on the Sintel Final benchmark. More importantly, we demonstrate the generalization capability of DistillFlow in three aspects:

framework generalization, correspondence generalization and cross-dataset generalization. Our code and models will be available on

https://github.com/ppliuboy/DistillFlow.

Index Terms—Optical flow, knowledge distillation, unsupervised learning, self-supervised learning, and stereo matching

Ç

1 INTRODUCTION

OPTICAL flow, which describes the dense pixel correspon-
dence between two adjacent images, has a wide range

of applications such as autonomous driving [1], object track-
ing [2] and video-related tasks [3], [4], [5], [6]. Traditional
variational approaches [7], [8], [9] formulate optical flow
estimation as an energy minimization problem, which are
usually computationally expensive [10] and not applicable
for real-time applications.

Benefited from the development of deep learning, convolu-
tional neural networks (CNNs) have been successfully applied
to optical flow estimation [11], [12], [13], which achieve compa-
rable or even better performance compared with traditional
methods, while running at real-time. Similar to other deep
learning tasks, a large amount of labeled training data is
required to train these fully supervised CNNs with high per-
formance. However, it is extremely difficult to obtain the
ground truth of optical flow for real-world image pairs, espe-
cially when there are occlusions. Due to lacking large-scale
real-world annotations, existing methods highly rely on pre-
training on synthetic labeled datasets [14], [15].However, there
usually exists a large domain gap between the distribution
of synthetic data and natural scenes. In order to train a flow

model stably, we have to carefully follow specific training
schedules across different datasets [11], [12], [13], [16], [17],
[18]. This raises our first question: can we simplify the training
procedure and remove the need of synthetic dataset for supervised
optical flow estimation?

Another promising direction is to develop unsupervised
methods [19], [20], [21], [22], [23], where unlimited image
sequences are readily available. The basic idea is based on
image warping, where the target image is warped toward
the reference image according to the estimated flow, then a
photometric loss is defined to minimize the difference
between the reference image and the warped target image.
However, brightness constancy assumption does not hold
for occluded regions. Therefore, such photometric loss only
works well for non-occluded pixels, but turns to provide
misleading information for occluded pixels. To alleviate the
above issue, recent methods propose to exclude occluded
pixels when computing the photometric loss or employ
additional spatial and temporal smoothness terms to regu-
larize the flow estimations [21], [22], [23]. However, all these
methods rely on hand-crafted energy terms to regularize
flow estimation, lacking the key capability to effectively
learn optical flow of occluded pixels. As a result, there is
still a large performance gap comparing these methods
with state-of-the-art fully supervised methods. This raises
our second question: can we effectively learn optical flow with
occlusions without relying on any labeled data and reduce the per-
formance gap?

In this paper, we address the above two questions with a
two-stage self-supervised learning approach based on knowl-
edge distillation. As shown in Fig. 1, the proposed framework
contains two kinds of models: teacher model and student
model, and two kinds of distillation: model distillation (stage
1) and data distillation (stage 2). In stage 1, we train teacher
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models following a similar training protocol as previousmeth-
ods [21], [22], [23] with occlusion handling, aiming at estimat-
ing accurate optical flow for those non-occluded pixels. We
employmodel distillation to ensemble predictions frommulti-
ple teacher models, which can reduce the variance of single
teacher model prediction. The confident predictions from
teacher models serve as annotations to guide the learning of
the student model in the second stage. For data distillation, we
create challenging transformations to the input image pairs,
which are used to generate hallucinated occlusions as well as
less confident predictions for self-supervision. As shown in
Fig. 2, we show occlusion hallucination techniques that gener-
ate hand-crafted occlusions, e.g., pixel p1 is non-occluded from
I1 to I2 but becomes occluded from eI1 to eI2. Then we can let
teacher models guide the student model to learn the optical
flow of these hand-crafted occluded pixels. As a result, the dis-
tillation scheme enables our student model to effectively learn
the optical flowof occluded pixels. The occlusion hallucination
techniques also create less confident predictions, e.g., although
p2 is non-occluded, the patch similarity of pixel p2 between eI1
and eI2 is smaller than the patch similarity between I1 and I2,
due to the partiallymissing regions. In this case, the distillation
scheme helps our student model learn optical flow of non-
occluded pixels more effectively. Apart from these occlusion

hallucination techniques, we create other challenging transfor-
mations, including geometric transformations (e.g., scaling)
and color transformations (e.g., overexposure and underex-
posure). Overall, our distillation scheme lets confident pre-
dictions from teacher models to supervise less confident
predictions from the student model, enabling the student
model to have the improved ability to learn optical flow of
both occluded and non-occluded pixels. Our method, termed
as DistillFlow, outperforms all previous unsupervised meth-
ods by a large margin on all datasets, and is comparable with
fully supervised methods, which significantly reduces the
performance gap. Hence, the problem in question 2 is success-
fully addressed.

More importantly, our self-supervised pre-trained model
provides an excellent initialization for supervised fine-tuning.
We can use self-supervised pre-training on unlabeled data to
replace pre-training on multiple synthetic datasets. We also
extend the distillation idea from unsupervised learning to
semi-supervised learning, which further improves the fine-
tuning performance. At the time of writing, our fine-tuned
models outperform all monocular methods on the KITTI 2015
benchmark, and outperform all published methods on the
Sintel Final benchmark. Hence, the problem in question 1 is
successfully addressed.

Furthermore, we demonstrate the generalization capabil-
ity of DistillFlow in three aspects: framework generalization,
correspondence generalization and cross-dataset generaliza-
tion. In framework generalization, we first show that our
knowledge distillation framework is applicable to different
network structures (e.g., PWC-Net [12], FlowNetS [14] and
FlowNetC [14]), then extend the knowledge distillation idea
to semi-supervised learning. For correspondence generaliza-
tion, we directly use our self-supervised flow model trained
on monocular videos to estimate stereo disparity. Surpris-
ingly, DistillFlow achieves comparable performance with
state-of-the-art unsupervised stereo matching methods on
KITTI datasets. For cross-data generalization, we evaluate
the performance of the model trained on another dataset

Fig. 1. Framework illustration. We distill confident optical flow estima-
tions from teacher models (stage 1) to guide the flow learning of the stu-
dent model (stage 2) under different challenging transformations.

Fig. 2. Occlusion hallucination scheme. The scheme creates hand-crafted occlusions, e.g., pixel p1 is non-occluded from I1 to I2 but becomes
occluded from eI1 to eI2 (p01 moves out of the image boundary for case (a) and is covered by noise for case (b)). The scheme also creates less confident
predictions, e.g., though pixel p2 is non-occluded, its patch similarity between eI1 and eI2 is smaller than patch similarity between I1 and I2 due to the
partially missing regions.
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(e.g., Sintel!KITTI and KITTI! Sintel), and show that Dis-
tillFlow still achieves comparable performance with previ-
ousmethods.

We summarize our main contributions as follows:

� We present a two-stage self-supervised learning app-
roach based on knowledge distillation to effectively
learn optical flow of both occluded and non-occluded
pixels from unlabeled data. Our method significantly
outperforms previous unsupervised methods, espe-
cially for occluded pixels.

� We improve the training protocol compared with our
previous works DDFlow [24], SelFlow [25] and Flow2-
Stereo [26] by adding spatial regularizer and model
distillation.

� Our self-supervised pre-trained models provide
excellent initializations for supervised fine-tuning,
which removes the reliance of pre-training on multi-
ple synthetic datasets. After fine-tuning, we achieve
state-of-the-art supervised learning performance.

� We demonstrate the generalization capability of
DistillFlow in three aspects: framework generali-
zation, correspondence generalization and cross-data-
set generalization.

2 RELATED WORK

Traditional Flow Methods. Traditional variational methods for-
mulate optical flow estimation as an energy minimization
problem based on brightness constancy and spatial smooth-
ness [7], [27]. These methods work well for small motion, but
usually fail when displacements are large. Later works [9],
[28] integrate feature matching to tackle this issue. Specifi-
cally, they first find sparse feature correspondences to initial-
ize flow estimation and then refine it in a coarse-to-fine
manner. The seminal work EpicFlow [29] interpolates dense
flow from sparse matches and has become a widely used
post-processing pipeline. There are also some works that use
temporal information over multiple frames to improve the
robustness and accuracy by adding temporal constraints,
such as constant velocity [30], [31], [32], constant accelera-
tion [33], [34] and so on. Recently, [10], [35] use convolutional
neural networks (CNNs) to learn a feature embedding for bet-
ter matching and have demonstrated superior performance.
However, thesemethods are often computationally expensive
and can not be trained end-to-end. In this paper, we use
CNNs to directly estimate optical flow in an end-to-end man-
ner, which is very efficient.

Supervised Flow Methods. Inspired by the development of
deep neural networks, CNNs have been successfully applied
to optical flow estimation. The pioneering work FlowNet [14]
proposes two types of CNN, FlowNetS and FlowNetC, which
take two consecutive images as input and output a dense opti-
cal flow map. The follow-up FlowNet 2.0 [11] stacks several
basic FlowNet models and refines the flow iteratively, which
significantly improves accuracy. SpyNet [36] proposes a light-
weight network architecture by employing image warping at
different scales in a coarse-to-fine manner. However, its per-
formance is behind the state-of-the-art. PWC-Net [12] and Lite-
FlowNet [13] propose towarpCNN features instead of images
at different scales and introduce cost volume construction,

achieving state-of-the-art performance with compact model
size. They were further improved by only using a single net-
work blockwith sharedweights to iteratively refineflowat dif-
ferent scales and adding occlusion reasoning [16]. VCN [37]
introduces efficient volumetric networks for dense 2D corre-
spondence matching by exploring high-dimensional invari-
ance during cost volume computation. MaskFlowNet [18]
proposes an asymmetric occlusion-aware feature matching
module, which masks out those occluded regions after feature
warping. ScopeFlow [17] introduces an improved training pro-
tocol by fully utilizing cropping randomly sized scene scopes.
However, due to lacking of real-world ground truth optical
flow, all above supervised learning methods highly rely on
pre-training on synthetic datasets (e.g., FlyingChiars [14] and
FlyingThings3D [15]) and follow specific training schedules.
In this paper, we propose to employ self-supervised pre-train-
ing on unlabeled image sequences to achieve excellent initiali-
zations, which remove the reliance of pre-training on synthetic
datasets.

Unsupervised Flow Methods. Due to lacking ground truth
optical flow for natural image sequences, recent studies turn
to formulate optical flow estimation as an unsupervised learn-
ing problem based on the brightness constancy and spatial
smoothness assumption [19], [20]. The basic idea is based on
image warping to achieve view synthesize, and then define a
photometric loss measure the difference between the refer-
ence image and the synthesized warped target image. How-
ever, brightness constancy does not hold for occluded pixels,
therefore [21], [22], [23] propose to detect occlusion and
exclude occluded pixels when computing photometric loss.
EpipolarFlow [38] proposes to incorporate global geometric
epipolar constraints into network learning to improve perfor-
mance. There are also works that propose to jointly learn flow
and depth from monocular videos [39], [40], [41], [42], [43] or
jointly learn flow and disparity from stereoscopic videos [44],
[45]. Despite promising progress, they still lack the key ability
to effectively learn optical flow of occluded pixels and their
performance is far behind state-of-the-art supervised learning
methods. In this paper, we propose a knowledge distillation
based self-supervised learningmethod to learn optical flow of
both occluded and non-occluded pixels in an unsupervised
manner.

Unsupervised Stereo Methods. Optical flow estimation and
stereo matching can be viewed as a unified problem: corre-
spondence matching. For rectified stereo image pairs, the
stereo disparity can be regarded as a special case of optical
flow in the horizontal direction. Therefore, our method is
also related to a large body of unsupervised stereo learning
methods, including image synthesis and warping with
depth estimation [46], left-right consistency [47], [48], [49],
employing additional semantic information [50], coopera-
tive learning [51], self-adaptive fine-tuning [52], [53], [54].
Different from all these methods that train stereo models on
stereo image pairs, we directly use our optical flow model
trained on monocular videos to estimate disparity (only
keep the horizontal component of flow). We demonstrate
that our self-supervised flow model has the strong generali-
zation capability to find correspondences.

Knowledge Distillation and Self-Supervised Learning.Ourwork
is closely related to the family of self-supervised learning
methods, where the supervision signal is purely generated
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from the data itself. It is widely used for learning feature repre-
sentations from unlabeled data [55]. A pretext task is usually
employed, such as image inpainting [56], image coloriza-
tion [57], solving Jigsaw puzzles [58]. Pathak et al. [59] propose
to explore low-level motion-based cues to learn feature repre-
sentations without manual supervision. Doersch et al. [60]
combine multiple self-supervised learning tasks to train a sin-
gle visual representation. To obtain more reliable supervision
signals, we employ model distillation [61] to ensemble predic-
tions of several teacher models. Then we make use of the
domain knowledge of optical flow and employ data distilla-
tion for self-supervision. Our data distillation is different from
[62], which ensembles predictions from a singlemodel applied
to multiple transformations of unlabeled image pairs as anno-
tations. Instead, we create challenging image transformations
to create hallucinatedocclusions and less confident predictions
to enable effective self-supervision.

3 METHOD

In this section, we illustrate our self-supervised learning
framework based on knowledge distillation. We train two
types of CNNs (multiple teacher models and a student
model) with the same network architecture. Only the stu-
dent model is needed during testing. The self-supervised
learning framework contains two stages: in stage 1, we train
teacher models to obtain confident flow predictions; in stage
2, we distill confident predictions from the teacher models
to guide the student model to learn optical flow of both
occluded and non-occluded pixels. We introduce two var-
iants in stage 2, where variant 1 is from the occlusion view
and variant 2 is from the confidence view. In principle, Dis-
tillFlow can use any backbone network to learn optical flow.
In our implementation, we adopt IRR-PWC [16], which is a
variant of PWC-Net [12] with weight sharing across differ-
ent levels. We additionally add dilated convolution to
increase the receptive field. Before describing our method in
detail, we first define our notations.

3.1 Notation

For our teacher models, we denote I1, I2 2 RH�W�3 for two
consecutive RGB images, where H and W are height and
width respectively. Our goal is to estimate the forward opti-
cal flow wf 2 RH�W�2 from I1 to I2. After obtaining wf , we
can warp I2 towards I1 to get the warped image Iw2!1. Here,
we also estimate the backward optical flow wb from I2 to I1
and a backward warped image Iw1!2. Since there are many
cases where one pixel is only visible in one image but not
visible in the other image, namely occlusion, we denote Of ,
Ob 2 RH�W�1 as the forward and backward occlusion map
respectively. The occlusion map is a binary mask, where
value 1 denotes that the pixel in that location is occluded
and value 0 denotes non-occluded.

After creating challenging transformations to the input
image pairs, the input images to the student model are
denoted as eI1, eI2 2 Rh�w�3. Similarly, optical flow, occlusion
map and confidence map from teacher models need to per-
form corresponding transformations as input images. We
use wT

f , w
T
b , O

T
f , O

T
b , M

T
f and MT

b to denote their trans-
formed results.

Our student model follows similar notations. The student
network takes eI1, eI2 as input, and produces optical flow ewf ,ewb, warped images eIw2!1,

eIw1!2, occlusion maps eOf , eOb.
For stage 2 variant 1, knowledge distillation is performed

from occlusion view. Therefore, we define another occlusion
mapO

0
f and O

0
b to denote hallucinated occlusions (i.e., hand-

crafted occlusions). Hallucinate occlusion map is computed
from the transformed occlusion mask OT (in our teacher
models) and occlusion mask eO (in our student model).

For stage 2 variant 2, knowledge distillation is performed
from the confidence view. Therefore, we define confidence
maps MT

f and MT
b to denote which pixels can be accurately

estimated by our teacher models after transformations. For
confidence maps, value 1 denotes that flow prediction of
that pixel is confident and value 0 denotes not confident.

3.2 Stage 1: Unsupervised Flow Learning

To train our teacher models in an unsupervised manner, we
swap the image pairs in our input to produce both forward
flow wf and backward flow wb. After that, we estimate an
occlusion map based on the forward-backward consistency
prior [21], [63]. That is, for non-occluded pixels, the forward
flow should be the inverse of the backward flow at the cor-
responding pixel in the second image. We consider pixels as
occluded when the mismatch between forward flow and
backward flow is too large. Take forward occlusion map as
an example, we first compute the reversed forward flow as
follow:

ŵfðpÞ ¼ wbðpþ wfðpÞÞ; (1)

where p is a pixel in the first image I1. A pixel is considered
occluded (i.e., OfðpÞ ¼ 1) when the following constraint is
violated:

jwfðpÞ þ ŵfðpÞj2 < a1ðjwfðpÞj2 þ jŵfðpÞj2Þ þ a2; (2)

where we set a1 = 0.01, a2 = 0.5 for all our experiments.
Backward occlusion mapwb is computed in the same way.

Unsupervised flow estimation is based on brightness
constancy and spatial smoothness assumption. We use pho-
tometric loss Lpho and edge-aware smoothness loss Lsmo for
the above two assumptions. Photometric loss measures the
difference between the reference image and the warped tar-
get image. Take forward flow wf as an example, we can use
wf to warp I2 to reconstruct I1:

Iw2!1ðpÞ ¼ I2ðpþwfðpÞÞ: (3)

Photometric loss Lpho only makes sense for non-occluded
pixels, which is defined as follows:

Lpho ¼
X

cðI1 � Iw2!1Þ � ð1�OfÞ=
X

ð1�OfÞ
þ
X

cðI2 � Iw1!2Þ � ð1�ObÞ=
X

ð1�ObÞ
(4)

where cðxÞ ¼ ðjxj þ �Þq is a robust loss function, � denotes
the element-wise multiplication. During our experiments,
we set � ¼ 0:01, q ¼ 0:4.

Photometric loss is not informative in homogeneous
regions, therefore existing unsupervised methods usually
add a smoothness loss to regularize the flow [21], [22].
Smoothness can be regarded as a regularizer for occluded
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pixels, since it makes the prediction of occluded pixels simi-
lar to the neighborhood pixels. Here we adopt an edge-
aware smoothness loss weighted by the image gradient:

Lsmo ¼ 1

H �W

X
p

je�brI1ðpÞjT � jrwfðpÞj

þ 1

H �W

X
p

je�brI2ðpÞjT � jrwbðpÞj;
(5)

wherer denotes gradient, T represents transpose and b is a
factor to control the smoothness effect on edges. We set b ¼
10 in our experiment.

The final loss to train teacher models in stage 1 is the
combination of Lpho and Lsmo:

L1 ¼ Lpho þ 0:1 � Lsmo: (6)

3.3 Stage 2: Self-Supervised Flow Learning with
Knowledge Distillation

Since photometric loss does not make sense for occluded pix-
els, prior unsupervised methods lack the key ability to effec-
tively learn optical flow of occluded pixels. To tackle this issue,
we distill confident predictions from our teacher models, and
use them to generate input/output data for our student model
by creating challenging transformations. Next, we first intro-
duce our occlusion hallucination techniques, then describe
challenging transformations employed in DistillFlow, finally
we explain two variants of knowledge distillation.

3.3.1 Occlusion Hallucination

Fig. 2 demonstrates two kinds of occlusion hallucination
techniques used in DistillFlow: random cropping and ran-
dom superpixel noise injection. In both Figs. 2a and 2b, sup-
pose pixel p1 is non-occluded from I1 to I2 and pixel p

0
1 in its

corresponding pixel. After creating challenging transforma-
tion to I1 and I2, p1 becomes occluded from eI1 to eI2, because
p
0
1 moves out of image boundary in (a) and is covered by

noise in (b). We call the above procedures of creating hand-
crafted occlusions as occlusion hallucination.

Even though p1 becomes occluded from eI1 to eI2, the location
of its corresponding pixel p

0
1 does not change. As a result, the

flowof p1 does not change during occlusion hallucination. This
is the basic assumption of our knowledge distillation idea.
Since p1 is non-occluded from I1 to I2, our teacher models can
accurately estimate its flow; however, p1 becomes occluded
from eI1 to eI2, therefore our student model cannot accurately
estimate its flow anymore. Luckily, we can distill confident
flow estimation of p1 from teachermodels to guide the student
model to learn the flow of p1 from eI1 to eI2. This explains why
our knowledge distillation approach enables our student
model to effectively learn optical flow of occluded pixels.

Strategy in (a) generates hallucinated occlusions near the
image boundary. However, for occlusion elsewhere (e.g.,
motion boundary of objects), it is not so effective. Strategy in
(b) can generate hallucinated occlusions in a wider range of
cases. This is because the shape of a superpixel is usually ran-
dom and superpixel edges are often part of object boundaries,
which is consistent with the real-world cases. We can choose
several superpixels at different locations to cover more occlu-
sion cases. The combination of (a) and (b) can generate a vari-
ety of hallucinated occlusions.

3.3.2 Challenging Transformations

In this part, we show that knowledge distillation also helps
learn the optical flow of non-occluded pixels. We introduce
three kinds of challenging transformations: occlusion hallu-
cination-based transformations, geometric transformations
and color transformations.

Occlusion-hallucination based transformations. When search-
ing pixel correspondences, we care about not only the color of
specific pixels, but also the color of their neighbors or context,
that is, image patch similarity. In Fig. 2, p2 is non-occluded
both from I1 to I2 and from eI1 to eI2, and p

0
2 is its corresponding

pixel. When considering the image patches around pixel p2
and p

0
2, patch similarity from eI1 to eI2 is obviously smaller than

patch similarity from I1 to I2, due to the partially missing
regions (part regions move out of the image boundary in (a)
and part regions are covered by noise in (b)). In this case, the
flow estimation of p2 by teacher models is more confident
than the student model. Then, we can use the confident pre-
dictions from teacher models to guide the student model to
learn the flow of p2. This explains why knowledge distillation
also improves the optical flow of non-occluded pixels with
occlusion hallucination based transformations.

Geometric Transformations. Geometric transformations
include cropping, scaling, rotation, translation and so on,
which are defined by 6 parameters as in the affine transforma-
tion from Spatial Transformer Network [64]. Cropping used
in occlusion hallucination is just one kind of geometric trans-
formation. Actually, other kinds of geometric transformations
are also effective as long as they can create challenging scenes,
where flow predictions become less confident after transfor-
mations. Take scaling as an example, suppose we downsam-
ple I1 and I2 as input to the student model. In general, image
information will lose during the downsampling operation,
which makes the student model difficult to predict flow.
Therefore, the flow prediction by the student model is less
confident than teachermodels.

Color Transformations. Color transformations represent
those transformations that change the appearance of
images, such as changing contrast, brightness, saturation,
hue, etc. Though such transformations do not create halluci-
nated occlusions, they can create challenging scenes. For
example, generating images with overexposure and under-
exposure changes the image appearance, and decreasing
image contrast makes pixels less distinguishable.

Overall, the purpose of creating challenging transforma-
tions is to create hallucinated occlusion or less confident
predictions, so that knowledge distillation can be effectively
employed. Fig. 3 shows a real-world example of different
transformations. The raw flow predictions from teacher
models have many erroneous pixels, but confident predic-
tions after forward-backward consistency check are mostly
correct ((d)! (e) in row 1). After creating challenging trans-
formations, many confident predictions become less confi-
dent (e.g., rectangle regions in (d) and (e)).

3.3.3 Knowledge Distillation

Knowledge distillation is performed at stage 2 to train our
student model in the self-supervision framework. We first
introduce two variants of knowledge distillation, then make
comparisons between them.
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Stage 2 Variant 1: From the Occlusion View. As illustrated
in the occlusion hallucination section, there exist new occlu-
sions after creating challenging transformations. Halluci-
nated occlusion maps O

0
f and O

0
b are computed as follows:

O
0
f ¼ minðmaxð eOf �OT

f ; 0Þ; 1Þ
O

0
b ¼ minðmaxð eOb �OT

b ; 0Þ; 1Þ:

(
(7)

Then the pixels in eI1, eI2 can be divided into three types: old
occluded pixels (pixels that are occluded from I1 to I2), hal-
lucinated occlusions (pixels that are non-occluded from I1
to I2 but become occluded from eI1 to eI2), and non-occluded
pixels both from I1 to I2 and from eI1 to eI2).

As shown in Fig. 2, we define the loss for occluded pixels
on hallucinated occlusions:

Locc ¼
X

cðwT
f � ewfÞ �O

0
f=

X
O

0
f

þ
X

cðwT
b � ewbÞ �O

0
b=

X
O

0
b;

(8)

where wT
f and wT

b are the transformed flow of wf and wb

from teacher models.
Photometric loss for non-occluded pixels and edge-

aware smoothness loss are computed in the same way as
the teacher models. The final loss to train our student model
in stage 2 variant 1 is the combination of Lpho, Locc and Lsmo:

L2 1 ¼ Lpho þ Locc þ 0:1 � Lsmo: (9)

Stage 2 variant 2: from the confidence view. In stage 1, forward-
backward consistency check is employed to detect whether
the pixel is occluded or not. However, this brings in errors
because many pixels are still non-occluded even when they
violate this principle, and vice versa. Instead, it would be
more proper to call those pixels confident if they pass the for-
ward-backward consistency check. From this point of view,
the key point of knowledge distillation is to let confident pre-
dictions to supervise those less confident predictions. We
define confidencemapM as the reverse of occlusionmapO:

MT
f ¼ 1�OT

f

MT
b ¼ 1�OT

b

�
(10)

When creating challenging transformations, both occluded
regions and non-occluded regions become more challeng-
ing. During the self-supervised learning stage, the student
model is able to handle more challenging conditions. As a
result, its performance improves not only for those occluded
pixels, but also for non-occluded pixels.

We define knowledge distillation loss Ldis as follows:

Ldis ¼
X

cðwT
f � ewfÞ �MT

f =
X

MT
f

þ
X

cðwT
b � ewbÞ �MT

b =
X

MT
b :

(11)

The final loss to train our student model in stage 2 variant 2
is the combination of Ldis and Lsmo:

L2 2 ¼ Ldis þ 0:1 � Lsmo: (12)

Comparison of two variants.
In our experiments, variant 1 and variant 2 achieve very

similar performances.However, it takesmore time to train var-
iant 1 than variant 2. This is because for variant 1, apart from
Locc, we still need to compute Lpho, which is time-consuming.
While for variant 2, we directly train it in a supervisedmanner
after pre-computing pseudo flow and confidence maps. As a
result, we set variant 2 as our default knowledge distillation
strategy.However, its performance is limited by the prediction
of the teacher model. To obtain more reliable predictions from
stage 1, we employmodel distillation to ensemble flowpredic-
tions frommultiple teachermodels.

In variant 2, challenging transformations create less confi-
dent predictions for both occluded and non-occluded pixels,
therefore knowledge distillation improves the flow learning
of both. However, variant 1 employsLocc andLpho to optimize
occluded and non-occluded pixels individually. It is surpris-
ing how variant 1 achieves performance improvement over
non-occluded pixels. We suspect the main reason is that for-
ward-backward consistency check cannot accurately detect
whether the pixel is occluded or not (e.g., some non-occluded
pixels are regarded as occluded by forward-backward consis-
tency check). In other words, distillation loss Locc still opti-
mizes a part of non-occluded pixels.

Fig. 3. Knowledge distillation examples. The redder the color in the error map, the greater the error. In the (d) of the first row, flow wf has many erro-
neous pixels; however the confident flow predictions after forward-backward consistency check in (c) are mostly reliable (as shown in (e)). After cre-
ating challenging transformations to the input (e.g., row 2-4), the flow predictions by the student model are usually less confident than the
transformed predictions wT

f from confident flow, e.g., rectangle regions in the error maps. We only use confident predictions in (c) of row 1 to guide
the learning of the student model. In general,wT

f shall be sparse as in (c) of row 1. For better visual comparison with ewf , we show transformed results
from (b) of row 1.
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3.4 Supervised Fine-Tuning

After pre-training on unlabeled datasets, we use real-world
annotated data for fine-tuning. Since there are only annota-
tions for forward flow wf , we do not swap input image
pairs. Suppose that the ground truth flow is wgt

f , and mask
V denotes whether the pixel has a label, where value 1
means that the pixel has a valid ground truth flow. Then we
can obtain the supervised fine-tuning loss as follow:

Lsup ¼
X

ðcðwgt
f �wfÞ � V Þ=

X
V : (13)

During fine-tuning, We first initialize the model with the
self-supervised pre-trained student on each dataset, then
optimize it using Lsup. Inspired by the knowledge distilla-
tion from unsupervised flow learning, we extend the idea of
distillation to semi-supervised learning. That is, after super-
vised fine-tuning, we can compute reliable flow and confi-
dence maps for unlabeled data, which are denoted as self-
annotated data. Then we mix the real annotated data and
self-annotated data and train our model in a supervised
manner. Note that the count of real annotated data is very
limited, therefore we make a balance between real anno-
tated data and self-annotated data. Suppose there are n1

real annotated image pairs, n2 self-annotated image pairs,
we will repeat real annotated image pairs n2

n1
times.

4 EXPERIMENT

We evaluate and compare our method with state-of-the-art
unsupervised and supervised learning methods on stan-
dard optical flow benchmarks, including KITTI 2012 [71],
KITTI 2015 [1] and MPI Sintel [72].

4.1 Implementation Details

Datasets. KITTI 2012 and KITTI 2015 datasets consist of real-
world road scenes with sparse ground truth flow. We use
the combination of their multi-view extensions raw datasets
for unsupervised training, similar to [20], [22]. To avoid the
mixture of training and testing data, we exclude the image
pairs with ground truth flow and their neighboring frames
(frame number 9-12) as in [20], [22]. For supervised fine-tun-
ing, we use the combination of their official training pairs.

MPI Sintel is a challenging optical flow dataset that con-
tains naturalistic video sequences. It includes a ‘clean’ ver-
sion and a ‘final’ version, where the ”final” version is more
realistic and challenging. We extract images from the Sintel
movie and manually split them into 145 scenes as the raw
dataset, resulting in 10,990 image pairs. For unsupervised
training, we first train our model on the raw dataset, then
fine-tune on the official Sintel training dataset (including
both ‘clean’ and ‘final’ versions). For supervised fine-tuning,
we use the combination of ‘clean’ and ‘final’ training pairs
with dense annotations.

Data Preprocessing. We rescale the pixel value from [0,
255] to [0, 1] for unsupervised training, while normalizing
each channel to be the standard normal distribution for
supervised fine-tuning. This is because normalizing the
image as input is more robust for illumination changing,
which is especially helpful for optical flow estimation. For
unsupervised training, we apply Census Transform [73] to

images when computing photometric loss, which has been
proved robust for optical flow estimation [21], [74].

We employ similar data augmentation strategies with
previous works [12], [13], [14], [18], including geometric
augmentations (e.g., random cropping, scaling, flipping,
rotation, translation) and color augmentations (e.g., random
contrast, brightness, hue, saturation, gamma) for both unsu-
pervised and supervised training. We decrease the degree
of augmentations on KITTI datasets. During training, we
crop 320 � 896 patches for KITTI and 384 � 768 patches for
Sintel in all experiments. During testing, we resize the
images to 384 � 1280 for KITTI and 448 � 1024 for Sintel.

Training procedures. As shown in Fig. 1, we train multiple
teacher models and ensemble their predictions as annotations
to obtainmore reliable predictions, whichwill be employed to
guide the learning of the student model. However, training
toomanymodels will cost a lot of computational resources. In
our experiments, we make a compromise and only train two
teacher models independently. For each teacher model, we
use the last five checkpoints to obtain five flow predictions.
As a result, our flow annotations from teacher models are the
average of ten predictions.

We train our model with Adam optimizer and set the
batch size to be 4 for all experiments. To avoid the trivial
solution that all pixels are regarded occluded, we pre-train
teacher models for 200k iterations before unsupervised
training, where photometric loss is applied to all pixels
(including both non-occluded pixels and occluded pixels).

For unsupervised training,we set the initial learning rate as
10�4 and disrupt the learning rate as suggested by [66] for a
better minimum. In stage 1, we train teacher models with L1,
the combination of photometric loss with occlusion handling
Lpho and edge-aware smoothness loss Lsmo for 600k iterations.
Then we generate the ensembled flow predictions and confi-
dencemaps using teachermodels and regard them as annota-
tions (just like KITTI with sparse annotations). In stage 2, we
initialize our student model with one of the pre-trained
teacher models, and then train the student model using the
knowledge distillation variant 2 (from the confidence view)
for another 600k iterations. Thanks to the simplicity of our
loss functions, there is no need to tune hyper-parameters.

For KITTI datasets, the unsupervised training is only per-
formed on the raw datasets and the pre-trained student
model serves as initialization for supervised fine-tuning.
For Sintel datasets, we conduct unsupervised training on
both the raw dataset and the official training set (as shown
in Table 8), where the former serves as initialization for
supervised fine-tuning and the latter is used for a fair com-
parison with previous unsupervised methods.

We extend our knowledge distillation idea from unsu-
pervised learning to semi-supervised learning, therefore
our supervised fine-tuning also contains two stages. In the
first stage, we train our student model on the official train-
ing image pairs for 1,000k iterations, where we disrupt the
learning rate in a similar way as [66]. Then we generate
flow predictions and confidence maps as self-annotations
for raw data. In stage 2, we train our model with the combi-
nation of official training pairs with ground truth and raw
data with self-annotations for 600k iterations.

Evaluation Metrics. We consider two widely-used metrics
to evaluate optical flow estimation: average endpoint error
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(EPE, lower is better), percentage of erroneous pixels (Fl,
lower is better). Fl is the ranking metric on KITTI bench-
marks, and EPE is the ranking metric on Sintel benchmarks.
We also report the results over non-occluded pixels (noc)
and occluded pixels (occ) respectively. Stereo matching is
the byproduct of our flow models, we use EPE and D1
(share the same definition as Fl) as evaluation metrics. The
harmonic average of the precision and recall (F-measure) is
used to evaluate the accuracy of occlusion estimation.

4.2 Main Results

To alleviate the variance of flow prediction from one single
model, we average the results of 10 models (2 independent
runs with the last 5 checkpoints for each run). We first run
each model to obtain results of different metrics, then aver-
age the metric results, which makes our results more reli-
able especially for ablation studies to analyze the effect of
different components. For submission to the benchmark, we
average the flow predictions from 2 independent runs.

KITTI. As shown in Table 1, DistillFlow achieves the best
unsupervised results on both KITTI 2012 and KITTI 2015
datasets and outperforms them by a large margin. Specifi-
cally, on the KITTI 2012 training set, DistillFlow achieves
EPE-all = 1.38 pixels, outperforming previous best unsuper-
vised monocular method EpipolarFlow [38] by 45 percent.

Note that EpipolarFlow [38] fine-tunes its model on the
KITTI 2012 training set, while DistillFlow is only trained on
the raw dataset. DistillFlow outperforms UnOS [45] by 16
percent, which utilizes stereo videos and additional con-
straints during training. On KTTI 2012 benchmark, Distill-
Flow achieves EPE-all = 1.6 pixels and Fl-all = 7.18 percent,
not only outperforms all previous unsupervised methods,
but also outperforms some famous fully supervised meth-
ods, including FlowNet2 [11], LiteFlowNet [13], PWC-
Net [12] and MFF [69]. On the KITTI 2015 dataset, the
improvement is also significant. DistillFlow achieves EPE-
all = 2.93 pixels on the training set, outperforming Back2Fu-
tureFlow [23] (utilizes multiple frames during the training)
by 56 percent, EpipolarFlow [38] and UnOS [45] by 42 per-
cent. On the benchmark, DistillFlow achieves Fl-all = 10.54
percent, which is a relative 38 percent improvement com-
pared with previous best EpipolarFlow [38] (Fl-all = 16.95
percent).

After fine-tuning, DistillFlow also achieves state-of-the-
art supervised learning performance on KITTI datasets. Spe-
cifically, on KITTI 2012, DistillFlow outperforms PWC-Net
+ [66], LiteFlowNet2 [65], HD3Flow [68], IRR-PWC [16] and
ScopeFlow [17], is only inferior to MaskFlowNet [18], which
incorporates an asymmetric feature matching module and
direct occlusion reasoning. On KITTI 2015, DistillFlow
achieves Fl-all = 5.94 percent, ranking 4th on the benchmark

TABLE 1
Quantitative Evaluation of Optical Flow Estimation on KITTI 2012 and KITTI 2015 Datasets

Missing entries (-) indicate that the results are not reported for the respective method. Bold fonts highlight the best results among unsupervised and supervised
methods. Parentheses mean that training and testing are performed on the same dataset. fg and bg denote results of foreground and background regions respec-
tively. (+Stereo) denotes stereo data is used during training, and * denotes using more than two frames to estimate flow.
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(the top three methods all use stereo data), outperforming
all monocular optical flow methods (including the most
recent MaskFlowNet [18] and ScopeFlow [17]). This is a
remarkable result, since we do not require pre-training our
model on any labeled synthetic dataset, while all other
state-of-the-art supervised learning methods rely on pre-
training on synthetic datasets and follow the specific train-
ing schedule (FlyingChairs [14]! FlyingThings3D [15]).

DistillFlow consistently outperforms our previous work
DDFlow [24], SelFlow [25] and Flow2Stereo [26] (uses stereo
data). Specifically, for unsupervised setting, DistillFlow out-
performs SelFlow [25] 23 percent on KITTI 2012 benchmark
and 26 percent on KITTI 2015 benchmark; for supervised
setting, DistillFlow outperforms SelFlow [25] 20 percent on
KITTI 2012 and 29 percent on KITTI 2015. The improve-
ments mostly come from edge-aware smoothness regular-
izer and model distillation.

MPI Sintel. Table 2 summarizes the comparison of Distill-
Flow with existing unsupervised and supervised learning
methods on Sintel. DistillFlow outperforms all previous
unsupervised methods for all metrics. On the Sintel Clean
benchmark, DistillFlow achieves EPE-all = 4.23 pixels, while
previous best method EpipolarFlow [38] achieves EPE-all =
7.00 pixels, around 40 percent relative improvement. On the
Sintel Final benchmark, DistillFlow achieves 21 percent rela-
tive improvement. Our initial data distillation method
DDFlow [24] even outperforms all other unsupervised
methods (including works that come out later than it, e.g.,
EpipolarFlow), demonstrating the effectiveness of our pro-
posed knowledge distillation framework. DistillFlow signif-
icantly reduces the gap between state-of-the-art supervised
learning methods and unsupervised methods.

After supervised fine-tuning, DistillFlow achieves EPE-
all = 4.095 pixels on Sintel Final, and outperforms all pub-
lished method on the benchmark, including our previous
winner entry SelFlow [25] and most recent publications e.g.,
ScopeFlow [17] and MaskFlowNet [18].

Similarly to KITTI, DistillFlow also achieves improve-
ments over our previous method DDFlow [24] and SelF-
low [25], with 32 percent relative improvement on Sintel
Clean and 12 percent relative improvement on Sintel Final.

Qualitative Results. Fig. 4 shows sample unsupervised
results from KITTI and Sintel datasets. DistillFlow can esti-
mate accurate flow and occlusion maps in a totally unsuper-
vised manner. Figs. 5 and 6 show the qualitative comparison
with state-of-the-art supervised learning methods on KITTI
2015 and Sintel Final benchmarks respectively. DistillFlow
achieves better flowprediction, especially for occluded pixels.

Occlusion Estimation. Following previous works [22], [23],
we evaluate our occlusion estimation performance on both
KITTI and Sintel datasets. Note KITTI datasets only have
sparse occlusion maps. As shown in Table 3, DistillFlow
achieves best occlusion estimation performance on Sintel
Clean and Sintel Final datasets over all competing methods.
On the KITTI datasets, the ground truth occlusion masks only
contain pixels moving out of the image boundary. However,
our method will also estimate the occlusions within the image
range. Under such settings, our method can achieve compara-
ble performance.DistillFlow consistently outperforms our pre-
vious method [24], [25], suggesting better occlusion reasoning

TABLE 2
Quantitative Evaluation of Optical Flow

Estimation on Sintel Dataset

Fig. 4. Sample unsupervised results of DistillFlow on KITTI (top 2) and Sintel (bottom 2) training datasets. DistillFlow estimates both accurate optical
flow and occlusion maps. Note that on KITTI datasets, the occlusion maps are sparse, which only contain pixels moving out of the image boundary.
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ability. This also explains why DistillFlow achieves perfor-
mance improvement.

4.3 Generalization

We demonstrate the generalization capability of DistillFlow
in three aspects: framework generalization, correspondence
generalization and cross-dataset generalization.

Framework Generalization. Our proposed knowledge distil-
lation based self-supervised learning framework is effective
for different network structures and is applicable to both

unsupervised setting and supervised setting. To verify the for-
mer one, apart from PWC-Net based network backbones (as
shown in Tables 7 and 8), we also apply our self-supervised
learning framework to FlowNetS and FlowNetC (Table 4).
With knowledge distillation, we achievemore than 30 percent
relative improvement on average on KITTI datasets for both
FlowNestS and FlowNetC, and 15 percent relative improve-
ment on Sintel Clean and Final datasets. More importantly,
FlowNetS and FlowNetC trained with knowledge distillation
achieve EPE-all = 6.33 pixels and 5.47 pixels on KITTI 2015
training dataset, EPE-all = 4.83 pixels and 4.17 pixels on Sintel
Final training dataset, which even outperform Back2Future-
Flow [23] based on PWC-Net. This also has the same conclu-
sion as [66]: model matters, so does training. Our knowledge
distillation approach enables more effective training. All the
above results demonstrate the generalization of our distilla-
tion framework to different network structures.

We also extend our knowledge distillation idea from
unsupervised learning to supervised fine-tuning, resulting
in a semi-supervised learning setting. The semi-supervised
setting enables us to utilize more data. As shown in Table 5,
we achieve improvement on both KITTI and Sintel datasets
with knowledge distillation.

Correspondence Generalization. Stereo disparity, which des-
cribes the pixel displacement between two stereo images, can

Fig. 5. Qualitative comparison with state-of-the-art unsupervised learning methods on the KITTI 2015 benchmark. For each case, the top row is opti-
cal flow and the bottom row is error map. The redder the color in the error map, the greater the error. More examples are available on KITTI 2015
benchmark.

Fig. 6. Qualitative comparison with state-of-the-art unsupervised learning methods on Sintel Final benchmark. For each case, the top row is optical
flow and the bottom row is error map. The whiter the color in the error map, the greater the error. More examples are available on the Sintel
benchmark.

TABLE 3
Comparison of Occlusion Estimation with F-Measure

Method KITTI KITTI Sintel Sintel

2012 2015 Clean Final

MODOF [75] – – – 0.48
OccAwareFlow [22] 0.95 0.88 (0.54) (0.48)
Back2Future [23]* – 0.91 (0.49) (0.44)

DDFlow [24] 0.94 0.86 (0.59) (0.52)
SelFlow [25]* 0.95 0.88 (0.59) (0.52)
DistillFlow 0.96 0.89 (0.59) (0.53)

Note that on KITTI datasets, occlusion only contains pixels moving out of the
image boundary and occlusion maps are sparse.
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be regarded as a special case of optical flow on the epipolar
line. They can both be regarded as a correspondence matching
problem. From this point of view, if a model can accurately
estimate optical flow, it shall have the ability to accurately esti-
mate stereo disparity as well. Then as a byproduct, we directly
use our flow model trained on monocular videos to estimate
disparity. Surprisingly, our flow model achieves comparable
stereo matching performance with current state-of-the-art
unsupervised stereo matching methods. As shown in Table 6,
DistillFlow achieves D1-all = 4.81 percent on KITTI 2012 train-
ing dataset and D1-all = 6.37 percent on KITTI 2015 dataset,
outperforming some famous stereo matching methods e.g.,
SeqStereo et al. [50] and Guo et al. [49]. On the KITTI 2012 and
2015 benchmarks, DistillFlow achieves D1-all 5.14 and 6.81
percent, which are comparable with previous state-of-the-art
methods UnOS [45] and our previous method Flow2-
Stereo [26]. The results on stereo matching demonstrate the
generalization of DistillFlow to find correspondences.

Cross-Dataset Generalization. Although deep learning based
optical flowmethods have outperformed classical methods on
challenging benchmarks, their generalization ability is very
poor due to limited annotated training data. Therefore, cur-
rently learning based methods still cannot apply to many
scenes.However, our proposedDistillFlow is a self-supervised
learning approach, which can utilize unlimited in-the-wild
videos and effectively learn optical flowwithout requiring any
annotations. Since a large collection of unlabeled image
sequences can be used, the learnedmodel shall have the strong
generalization capability. As shown in Table 1 (DistillFlow
(trained on Sintel)) and Table 2 (DistillFlow (trained

on KITTI)), we use models trained on Sintel to estimate flow
on KITTI and vice versa. Surprisingly, for Sintel! KITTI, Dis-
tillFlowachieves EPE= 2.33 pixels onKITTI 2012 trainingdata-
set, outperforming previous state-of-the-art unsupervised
learningmethodBack2FutureFlow [23]. OnKITTI 2015,Distill-
Flow outperforms OccAwareFlow [22] is also comparable

TABLE 4
Ablation Study for the Generalization Capability of Our Proposed Distillation Framework

to FlowNetS and FlowNetC on KITTI and Sintel Datasets

Default experimental settings: census transform (yes), occlusion handling (yes), edge-aware smoothness loss (yes).

TABLE 5
Ablation Study for the Generalization Capability of Our Proposed Distillation Framework

to Semi-Supervised Learning on KITTI and Sintel Datasets

Semi-Supervised KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Learning EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc Fl-all Fl-noc EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ

• 1.01 0.58 3.46% 1.69% 1.50 0.94 5.17% 3.54% 1.64 0.77 15.65 2.44 1.51 17.59
@ 0.95 0.57 3.35% 1.65% 1.44 0.94 4.96% 3.51% 1.56 0.72 15.21 2.38 1.47 17.16

In this experiment, we split KITTI and Sintel dataset into training and validation datasets and evaluate the performance the validation part.

TABLE 6
Quantitative Evaluation of Stereo Disparity on KITTI 2012 and KITTI 2015 Training Datasets (Apart From the Last Columns)

Method KITTI 2012 KITTI 2015

EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test) EPE-all EPE-noc EPE-occ D1-all D1-noc D1-all (test)

Joung et al. [76] – – – – – 13.88% – – – 13.92% – –
Godard et al. [47] ? 2.12 1.44 30.91 10.41% 8.33% – 1.96 1.53 24.66 10.86% 9.22% –
Zhou et al. [48] – – – – – – – – – 9.41% 8.35% –
OASM-Net [51] – – – 8.79% 6.69% 8.60% – – – – – 8.98%
SeqStereo et al. [50] ? 2.37 1.63 33.62 9.64% 7.89% – 1.84 1.46 26.07 8.79% 7.7% –
Liu et al. [43] ? 1.78 1.68 6.25 11.57% 10.61% – 1.52 1.48 4.23 9.57% 9.10% –
Guo et al. [49] ? 1.16 1.09 4.14 6.45% 5.82% – 1.71 1.67 4.06 7.06% 6.75% –
UnOS [45] – – – – – 5.93% – – – 5.94% – 6.67%

Flow2Stereo [26] 1.01 0.93 4.52 5.14% 4.59% 5.11% 1.34 1.31 2.56 6.13% 5.93% 6.61%
DistillFlow (no distillation) 1.25 1.03 10.57 6.67% 4.94% – 1.44 1.30 9.13 8.19% 6.90% –
DistillFlow 1.02 0.95 3.72 4.81% 4.40% 5.14% 1.23 1.21 2.78 6.37% 6.17% 6.81%

Our flow model trained on monocular videos achieves comparable performance with state-of-the-art unsupervised stereo learning methods. ? denotes that we use
their pre-trained model to compute the numbers, while other numbers are from their paper.
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with Back2FutureFlow [23]. For KITTI ! Sintel, DistillFlow
achieves EPE = 5.06 pixels on Sintel Final training dataset,
which outperforms Back2FutureFlow [23] and is comparable
with EpipolarFlow [38]. This is indeed a remarkable result,
since KITTI datasets only have street views while the Sintel
dataset contains many complex scenes. Our model trained
only onKITTI datasets achieves even better or comparable per-
formancewith state-of-the-art unsupervised learningmethods
fine-tuned on Sintel dataset. This fully demonstrates the cross-
dataset generalization capability of our model. Moreover,
since our knowledge distillation method can work well with-
out requiring any labeled data, we can actually train it on a
specific scene to achieve better performance. This makes Dis-
tillFlow effective for awider range of applications.

4.4 Ablation Study

We conduct a thorough ablation study to demonstrate the
effectiveness of different components proposed by Distill-
Flow. Fig. 7 shows visual comparisons.

Occlusion Handling.As shown in Table 7 (row 1 versus row
2) and Table 8 (row 1 versus row 2 and row 7 versus row 8),
occlusion handling can improve the flow estimation perfor-
mance on all datasets for all metrics. This is because that
brightness constancy assumption does not hold for occluded
pixels. Occlusion handling can reduce the misleading guid-
ance information provided by occluded pixels, which makes
themodel easier to learn good correspondence.

Edge-Aware Smoothness. As shown in Table 7 (row 2 versus
row 3) and Table 8 (row 2 versus row 3 and row 8 versus row
9), edge-aware smoothness regularizer can also consistently
improve the performance on all datasets. This is because pho-
tometric loss is not informative in homogeneous regions and
cannot handle occlusions. The spatial smooth assumption reg-
ularizes the flow to be locally similar, which helps predict flow
of those homogeneous or texture-less regions. Smoothness can
be regarded as a regularizer for some occluded pixels, since it
makes the prediction of occluded pixels similar to the neigh-
borhood of non-occluded pixels. However, it is just a very

weak regularizer, therefore we propose knowledge distillation
tomore effectively learn optical flow of occludedpixels.

Data Distillation. Our proposed knowledge distillation
approach contains both data distillation and model distilla-
tion. Among them, data distillation is the key point, where we
create challenging transformations and let confident predic-
tions to supervise less confident predictions. As shown in
Table 7 (row 3 versus row 5), we reduce EPE-all from 2.92 pix-
els to 1.46 pixels, from 6.45 pixels to 3.20 pixels on KITTI 2012
and KITTI 2015 datasets, with 50 percent relative improve-
ment on average. The improvement over occluded pixels is
even more significant, with 62 percent relative improvement
on average. This is because our proposed data distillation ena-
bles the model to have the ability to effectively learn optical
flow of occluded pixels for the first time.

As shown in Table 8 (row 3 versus row 5 and row 9 ver-
sus row 11), we also achieve great improvement on Sintel
datasets. Specifically, we achieve 9 percent average relative
improvement on both Sintel Clean and Sintel Final. All
these results demonstrate the effectiveness of our proposed
data distillation approach.

Model Distillation. Since flow predictions from one single
teacher model have large variance, we propose model distil-
lation to ensemble flow predictions of multiple teacher
models. Model distillation provides more reliable confident
flow predictions, which therefore improves the perfor-
mance. As shown in Table 7 (row 3 versus row 4) and
Table 8 (row 3 versus row 4 and row 9 versus row 10), the
average of multiple teacher models has higher accuracy
than one teacher model. Consequently, data distillation
equipped with model distillation further improves the per-
formance as show in Table 7 (row 5 versus row 6) and
Table 8 (row 5 versus row 6 and row 11 versus row 12).

Knowledge Distillation Strategies. In Section 3.3.2, we intro-
duce two variants for knowledge distillation: from occlusion
view and from confidence view, resulted in two knowledge
distillation strategies ‘v3’ and ‘v4’ in Table 9.We also provide
two knowledge distillation strategies as in our previous
work DDFlow [24] and SelFlow [25], denoted as ‘v1’ and

Fig. 7. Ablation study on KITTI 2015 (top 3) and Sintel Final training datasets (bottom 3). (b) and (c) are the results of without and with occlusion han-
dling. (d) shows that results with knowledge distillation and (f) is the supervised fine-tuned results. With knowledge distillation, the flow looks more
smooth. After fine-tuning, more details are preserved. Zoom in for details.
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‘v2’. Both ‘v1’ and ‘v2’ are from the occlusion view. As
shown in Table 9, all of these four kinds of knowledge distil-
lation strategies can greatly improve the performance, espe-
cially for occluded pixels. Comparing ‘v1’ and ‘v2’, we show
that superpixel occlusion hallucination can handle occlusion
in a wider range of cases. compared with ‘v2’, we add more
challenging transformations for ‘v3’, such as geometric
transformations and color transformations. As a result, we
achieve slight performance improvements. However, most
performance gains come from occlusion hallucination tech-
niques. Comparing ‘v3’ and ’v4’, we show that it does not
make much difference to distinguish occluded or non-
occluded pixels during the knowledge distillation stage.
This is because forward-backward consistency only predicts
confident or less confident flow predictions, but not
occluded or non-occluded pixels.

Photometric Losses. When computing photometric loss,
certain transformations are usually applied to the images
to make them more robust for illumination changes. As
a result, different papers employ different strategies, e.g.,
raw pixel intensity [22], [23], SSIM [41] and census trans-
form [21]. To analyze the effect of different photometric
loss, we make a comparison in Table 10, where SSIM is
better than the raw pixel intensity and census transform
achieves the best performance. This is because census
transform is specially designed to handle the change of
illumination. However, we believe census transform is
not the optimal transformation for optical flow estima-
tion. Exploring more robust transformations when com-
puting the photometric difference is a potential direction
for future research.

TABLE 7
Main Ablation Study on KITTI Training Datasets

Occlusion Edge-Aware Data Model KITTI 2012 KITTI 2015

Handling Smoothness Distillation Distillation EPE-all EPE-noc EPE-occ Fl-all Fl-noc EPE-all EPE-noc EPE-occ Fl-all Fl-noc

• • • • 7.33 1.30 47.26 16.27% 5.97% 12.49 3.59 68.82 23.07% 12.40%
@ • • • 3.22 0.98 18.07 13.57% 4.40% 6.57 2.88 29.87 19.90% 10.01%
@ @ • • 2.92 0.93 16.06 12.44% 3.94% 6.45 2.59 30.90 19.08% 9.48%
@ @ • @ 2.86 0.91 15.84 11.58% 3.85% 6.36 2.52 29.76 18.24% 9.32%
@ @ @ • 1.46 0.85 5.44 5.17% 3.38% 3.20 2.08 10.28 10.05% 8.03%
@ @ @ @ 1.38 0.83 4.98 4.99% 3.25% 2.93 1.96 9.04 9.79% 7.81%

In this experiment, we employ census transform when computing photometric loss. Note that when data distillation is not employed, model distillation (row 4)
denotes ensembling predictions of multiple teacher models.

TABLE 8
Main Ablation Study on Sintel Training Datasets

In this experiment, we employ census transform when computing photometric loss. Note that when data distillation is not employed, model distillation (row 4 and
row 10) denotes ensembling predictions of multiple teacher models.

TABLE 9
Ablation Study of Different Knowledge Distillation Strategies on KITTI and Sintel Datasets

Knowledge KITTI 2012 KITTI 2015 Sintel Clean Sintel Final

Distillation EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ EPE-all EPE-noc EPE-occ

no 2.92 0.93 16.06 6.45 2.59 30.90 (2.93) (1.24) (24.66) (4.17) (2.32) (27.83)
v1 1.62 0.87 6.21 3.88 2.19 15.24 (2.76) (1.16) (22.98) (3.94) (2.16) (25.72)
v2 1.54 0.87 5.77 3.57 2.10 12.88 (2.71) (1.18) (22.51) (3.87) (2.19) (25.38)
v3 1.41 0.85 5.12 3.12 2.01 9.48 (2.63) (1.12) (21.72) (3.74) (2.09) (24.81)
v4 1.38 0.83 4.98 2.93 1.96 9.04 (2.61) (1.12) (21.63) (3.70) (2.07) (24.60)

For ‘v1’, ‘v2’ and ‘v3’, we use knowledge distillation variant 1 (from occlusion view and split pixels in occluded and non-occluded), while for ‘v2’ we use variant 2
(from confidence view). ‘v1’ denotes distillation used in DDFlow [24], ‘v2’ denotes distillation used in SelFlow [25], ‘v3’ and ‘v4’ denotes distillation with more
challenging transformations as in Flow2Stereo [26]. Default experimental settings: census transform (yes), occlusion handling (yes), edge-aware smoothness loss
(yes).
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5 CONCLUSION

We have presented DistillFlow, a knowledge distillation
approach to effectively learning optical flow in a self-super-
vised manner. To this end, we train multiple teacher models
and a student model, where teachermodels are used to gener-
ate confident flowpredictions, whichwill then be employed to
guide the learning of the student model. To make the knowl-
edge distillation effective, we create three types of challenging
transformations: occlusion hallucination-based transforma-
tions, geometric transformations and color transformations.
We show that the key factors for performance gains are gener-
ating hallucinated occlusions as well as less confident predic-
tions. With knowledge distillation, DistillFlow achieves the
best performance on both KITTI and Sintel datasets and out-
performs previous unsupervised methods by a large margin,
especially for occluded pixels. More importantly, our self-
supervised pre-trained model provides an excellent initializa-
tion for supervised fine-tuning. We show that it is possible to
completely remove the reliance of pre-training on synthetic
labeled datasets, and achieve superior performance by self-
supervised pre-training on unlabeled data. Furthermore, we
demonstrate the generalization capability of DistillFlow in
three aspects: framework generalization, correspondence gen-
eralization and cross-dataset generalization. Going forward,
our results suggest that our knowledge distillation technique
may be a promising direction for advancing other vision tasks
like depth estimation or semantic segmentation.
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