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Regularization Parameter Estimation for
Feedforward Neural Networks

Ping Guo, Michael R. LyuSenior Member, IEEEand C. L. Philip ChenSenior Member, IEEE

Abstract—Under the framework of the Kullback-Leibler (KL)  [10], bootstrapping [11], and the Bayesian method [12].
distance, we show that a particular case of Gaussian probability Most work uses a validation set to select the regularization
fynctlon for.feedforward neyral networks (NNs) reduce; into the parameter [13]-[16]. This requires the splitting of a given data
first-order Tikhonov regularizer. The smooth parameter in kernel t into traini d validati ts. Th timal selecti f
density estimation plays the role of the regularization parameter. set into rallnln.g and validation sets. ? OP Imal selec |or.1 0
Under some approximations, an estimation formula is derived for the regularization parameter on the validation set sometimes
estimating regularization parameters based on training data sets. depends on how to partition the data set. For a small-number
The similarity and difference of the obtained results are compared data set, we usually use the leave-one-out cross-validation
with other's work. Experimental results show that the estimation  ethoqd. However, a recent study shows that cross-validation
formula works well in the sparse and small training sample cases. ; . . .

performance is not always good in the selection of linear

Index Terms—Regularization parameter estimation, small models [17].

training data set, Tikhonov regularizer. In this paper, under the framework of the Kullback-Leibler
(KL) distance [18], [19], we show that a particular case of
|. INTRODUCTION the system entropy reduces into the first-order Tikhonov

regularizer. The smoothing parameter in the kernel density
NNS) i ttol ¢ tati  the trai Sunction plays the role of the regularization parameter. Under
(NNs) is not to learn an exact representation of the traini me approximations, an estimation formula can be derived for

data itself, but rather to build a statistical model of the procegﬁtimating the regularization parameter based on the training

which generates the data. In practical applications of a feedfﬁf’:ita set. There has been a lot of research work conducted on

ward NN, if the network is over-fit to the noise on the tram'n%moothing parameter estimation of kernel density function

d"?“a’ espepially f.or. the small—number training Sa'f”p'.es Case’?i]—[ZS]; however, in this paper, we only focus on comparing
will memorize training data and give poor generalization. Co e obtained result with thenaximum a posteriori (MAP)

trolling an appropriate complexity of the network can improvﬁamework [12]. Experimental results show that the newly

generalization. '_I'here are two main approaches for th's_purpoagrived estimation formula works well in the sparse and small
1) model selection and 2) regularization. Model selection for,

feedforward NN requires choosing the number of hidden netl%mmg sample cases.
rons and thereof connection weights. The common statistical
approach to model selection is to estimate the generalization
error for each model and to choose the model minimizing thiswhen given a data seb = {x;,z;}~ ,, we consider that
error [1], [2]. Regularization involves constraining or penalizinghe data can be modeled by a probability function. In one
the solution of the estimation problem to improve network geparticular design, we can let kernel density of the given data set
eralization ability by smoothing the predictions [3], [4]. MostD beyp, (x, z), and on the other hand, the mapping architecture
common regularization methods include weight decay [5] an¢l denoted as a joint probability functiaf(x,z) on the data
the addition of artificial noise to the inputs during training [6]set D. The relative entropy or KL distance for this particular
[7]. system is denoted by(h, ®) cost function, where&® stands
The regulation method is widely used for smoothing outpfisr a parameter vector, then the quantity of interest is the
[8], [9]. A value of the regularization parameter is determinetlistance” of these two probability functions, which can be
by using the statistical techniques such as cross-validatigieasured as follows[18], [19]:

T is well known that the goal of training neural network

Il. SYSTEM PROBABILITY FUNCTION
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P(z|x,0) is a parameter conditional probability af(x) is lll. TIKHONOV REGULARIZER
a prior probability function.

We define When estimating network parameter by maximum likelihood

(ML) learning, we minimize the functio/(h, ©) to find the
- network paramete® with a fixed parametek. For a particular
Ji(h,©) = — // pr(x,2)In P(z|x,0)dxdz  (3) design, the conditional probability function can be written in the

form
//ph z) lnppo(x,2) dx dz
P(z|x,0) = P(z]| f(x,0)) (10)
ph X, Z
Pho(%,2) = Py(x) (4) where f(x, ©) is a function of input variable and parameter
o.
Ji(h,0) is related to network parameter vectér, and In the network parameter learning procedure, odlyis

smoothing parametér = {h,,h.}. Jo(h) can be considered involved becaused, does not contain the parameter
as the negative cross entropy of data distribution functions, andro evaluate the functiod, , one of the techniques is the well-

it is only related to the smoothing parameter known Monte Carlo integratior{27], [28]. In the Monte Carlo
Now, (1) becomes integration approximation, when substituting (7) and (10) into
(3), integration can be approximated by summation, and we
J(h,0) = Ji(h,0) + Jo(h). (5) obtain
We can assign a prefixed kernel functiol’(-) and Ji(h,©) = ZIHP i f(x:,0)) (11)

smoothing parameterk,, h, for nonparametric density esti-
mation [20], [21] ofp, (x, z) for a given discrete training datawhere
setD, where the kernel density function [21] is

xXi=x;+e, 7z =z +e,. 12)
pn, (X) = 1 Z Kp (x —x;) e,,e, are data points drawn from distributign (x,z). In
" N weD this case,J;(h, ©) is equivalent to a negative likelihood func-
1 X — X; tion of the system.
Ky, (x —x;) = h_dK< h ) (6) In the Monte Carlo integration approximation, we need to

generate a number of data sets, which is very computation-

whereN represents the number of samples in the dat@séis  intensive. _ o _
the dimension of a random variabteand the joint distribution ~ Another method, which we use in this paper, is the Taylor
Dh (X, Z) in this work is designed as expansion approximation for an integral

J1(h,©) //ph x,z)In P(z| f(x,0))dxdz. (13)

When we consider one special cade(z| f(x,0)) =
G(z,9(x, W), 0%1,.) is Gaussian density function
The kernel density function used the most is Gaussian kernel G (Z7 g(x, W), U2Id:)

1
pr(x,2z) = i Z Ky (x—x)Kn (z—2z;). (7)
x;,z2; €D

1
_ _ [ = 76)@[ Iz — g(x, W)||2}
Kp(r) = G(r,0,h1;) = W exp {— TR (8) e (2mo2)d-/2 202
In the kernel density functionl,; is ad x d dimensional
identity matrix. In this paper, we usl,, d.} to represent the //ph 2)InG (z,9(x, W), 0°1a.) dxdz
dimension of inpuk and outputz vector, respectively. )
According to the principle of minimum description length //ph X,2 { 512 = g9(x, W } dx dz

(MDL) [25], [26], the best model class for a set of observed
data is the one the representative of which permits the shortest -l- — In2r0? (14)
coding of the data, then the system should be optimized wj . . . .
optimal orideal code length. The parametérg, k. should be U\rlt}r]géelgyzrgc)-:‘éfozv:r’;l I{H\? sv?tlgilgudnecr?zguE)Onrsi);irgple’ n
chosen with minimized KL distance function based on the given
data set according to g, W) =SW. - S(Wy s - x)). (15)
W = {W.,, W, .} is a network weight parameter vector,
{hz,h.} = argmin,J(h,O") (9) Wy« is ad, x k matrix which connects the input spaég
and the hidden spadg,, andW. |, is ak x d. matrix which
where©* is the learned NN parameter andh, ©) is repre- connects the hidden spafg and the output spade.. S( - ) is

sented by (1). a sigmoidal function
In the following sections, we will discuss the regularization 1
problem with a finite training data sé?. S(x) = L+ex (16)
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Equation (14) will result in the traditional sum-square-errors = h,{||¢’'(x, W)||? — ||[z; — g(x:, W)]g" (xs, W)||}
function in the ML learning case at the limit &f — 0, when 1 "
we omit some factors irrelevant to the network weight parametg[/ X, Xi, hola, ) G (2, 2i, h-1a.) §(AZ) frAz| dxdz
w.

Considering that random noise is added to the inputdataonly = 7“&06[}”"] =d:h.. (23)
during training, Bishop [29] proven that in the ML estimation
case, (11) can be reduced to the first-order Tikhonov regularlze
[30] for feedforward NN with approximations. h,©® //ph X,z [_Qf(x%w)} dx dz

On the other hand, addition of random noise to the input data 2
is equivalent to smoothing in kernel density estimation, thus we

With the above results, the integration becomes

can also obtain the same result directly from (13). + 2 ln 2o

Let f(x,z,w) = ||z—g(x, W)||?, f(x,2,w) be ascale func- N , ) ,
tion of vector variables andz. When we expand (x, z, w) as 2N N Z{sz xi, W)II* + ha[llg"(x, W]
a Taylor series in powers dix = x — x;,Az = z — z; and
denotef’(x;, 2, w) = V. f(x;,2,w). When taking only up to — [I(zi <XZ7W)) (i, W}
the second-order term, then we obtain 1h d_ n %ln Imol. (24)

f(x,z,w) ~ f(xi:zhw) + (f:;)TAX

Because the terrh.d. /20 in the above equation is not im-

1 o . .

+ 5(Ax)ng’c’Ax +(Ax)T [ Az plicitly related to the network weight parametér, we can omit
1 this term in weight parameter learning. This also illustrates that
+ () Az + §(AZ)Tf2'AZ- (17) smoothing on output cannot improve network generalization,

thus we can lef,, — 0 without loss of generality. The last
term in (24) is irrelevant to the weight parameter, and can be
neglected as well [6] Now the equation becomes

Equation (14) becomes

1010 = [ [ mix) | gz x2.0)] axas

4% l2ro? B0 O) % oy Z{nm g(xi, W) 12 + b [llg’ (x, W)
= [I(z —.q(xuW)). "(x;, W]} (25)
N — G (x,%x;,h.14,) G (2,2, h. 14, . o
2N g2 ;// (%, hala, ) G (2,2 hela. ) Rewrite the equation in the form
[0 + (£ -+ (A7 S dat b (20)
where
+ ()T Az + (Ax)T [} Az
Js = 5= i — g(xi, W)|I?
+ %(AZ)T f;’Az} dx dz + %1112%02. (18) * T 3Ng? Z”Z 9(xi, Wl
Notice that for any density function, the integration in the _ 2
. J — onT -2 Z{Hg XL7 ||
whole space should be equal to 1, i.e. 2N
//G %, ho1,) G (2,20, 0.1y ) dxdz =1 (19) s o WD W) (@D
In the above equation,J, represents the traditional
// X, X, holy, ) G (2,2, h.14.) f(%i, 2, w) dx dz sum-square-error function, whilg. stands for a regularization
term.
= f(xi,zi,w) = ||z — g(xi, W) (20)  In (27), the second derivative term is the Hessian term. Reed

[31] described it as an approximate measure of the difference

For Gaussian-type function integrals [6], we can obtain ' ’
between the average surrounding values and the precise value

// X,X;, holg, ) G (2,2;,h.14) of the field at a point, and assumed it to be 0. Bishop [29], [32]
. . considered that when minimizing the cost function, the second
X [(fr)" Ax 4+ (f1)" Az]dxdz = 0 term in.J, involving the second derivatives of the network func-
tion g(x, W) vanishes taD(h.). For sufficiently small values
(%) }xI G (3] } zI .
// X Xis hola,) G (2,2i; he1a.) of the smooth parametér,, this leads to
) AZ] dxdz = 0. (21) Jl zJS + thr
N
G(x,%x4,h.1a,) G (2,2, h.14. 1
// Gxishala,) G 7,70, el = sz Sl — g, W+ llg/ i, WP (28)
1 1 i=1
X {5( )L AX} dx dz From the above, we can easily see that under some approx-
B . imation, one special casé(h,©) function is reduced to the
=~ trace[f;] (22) first-order Tikhonov regularizer in the sense of ML learning.
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Furthermore, from the above results, it is easy to see that thaVe can compute the partial derivativemf(x, z)
parameteh, controls the degree of smoothness of the network
mapping, just the same as the problem of controlling the degree 9

(X, Z
of smoothing in a nonparametric estimation. The optimumvalue 9h, an, Pn(x:2)

of h, is problem-dependent. Using the traditional sum-square- d, N
error function cannot select this parameter completely with a _ﬁph(x-/z) toNT2 > G (%%, hala,)
given data set. Instead, it needs to use separated training and * * Li=1
validation data sets, and to be optimized by the cross-validation )
method or another validation data set. x G (2,2 h:1a,) [|x — x| (33)

In the next section, we develop a formula to estimate this i
regularization coefficient based on the training data set. / w dx dz

le
IV. ESTIMATION OF REGULARIZATION PARAMETER — 2; pu(x,2) dx dz

Whenh # 0, according to the principle of MDL, the regular- * N
ization coefficienth can be estimated according to (9) with the + b // Z G (x, x4, holy,)
minimized KL distance. 2NhZ T

In implementation, we can give a fixeld, value, run an x G (2,2, h:14.) ||x — x;||% dx dz. (34)

optimizing algorithm such as back-propagation to obtain a
series of network paramet&*, then give anotheh, value, The first term in (34) is
and so on. We choosk® such that its corresponding value

of J(h%,h.,0%) is the smallest. This is an exhaustive search
method which is computation-expensive, but it can give an “2h, pi(x,z) dx dz
exact solution for regularization parameter. d N
From practical implementation consideration, next we will = Z //G(x7 Xi, hoXa,)
derive the formula which is approximately the estimation reg- 2Nhe i=1
ularization parameter based on training data in the network pa- x G(z,2z;,h.14,) dxdz
rameter learning processing. d,
For some problems, e.g., function mapping, in special cases =" 2h, (35)

we can assume thd (z) is a uniformly distributed function
and regard it as independent. With this assumption, from (1) As the second term is also Gaussian-type integration, it can
with respectt¢d/dh..).JJ(h,©®) = 0, we can obtain the formula be evaluated as
for estimating regularization parameter.
To find the minimization of (1) corresponding té,,
we conduct the following derivation. Considering (%, ©) 2NRZ | | ;G(X’ Xi, hola,) G (2,2, hala.)

approximation, from (5) we obtain
pproximat ©) w I x ||x — x;||? dx dz

) ) B _ e (36)
~ J. + 8}8 Ja(h). (29) Then we have
Ve
aph X Z d.r dz
From (4), whenJ,(h) is a continuous and differentiable func- // dx dz = " oh, + M, 0. (37)
tion, the last term of (29) becomes h h
[
With the above results, (30) reduces to
// On(Xo2) 1 (%, 2)] dx dz. (30) ! ve resuilts, (30) redu
th ahr o
ph X, Z
1 X,Z) dx dz. 38
Note it can be proven that 8hr // Ohy npn(x,2) (38)
That is
//8”’” dx dz = 0. @y

T Ja(h) = ——;x //m(x z) Inpp(x,2z) dx dz
. .
Proof: Because the joint kernel densipy,(x,z) in this N '
work is designed as Gaussian kernel function _ 1 )
N7 g //G(x,x“hmldm)

1> In pp(x, 2) dx dz.

(39)

N
x.7 —%Z (%1 X0, ) G (2,20, b1y ). (32) X G (22, hla.) [Ix = x;
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N
Output layer X In Z G (x,%xj, hola,) G (2,25, h.14.) dx dz}
=1
—InN. (44)

Applying SDA and considering small, we obtain

G (X, X, thdm) G (Z7 Z;, thd:)
]\T
Hidden layer X In Z G (x,x;,h,14,) G (2,2, h.14.)
j=1
~ G (X7 X, thdr) G (Z,Zi7 hZId:)
x In{G (x,x;, h.14,) G(2,2;,h. 14 )}
=G (x,%,h1q,) G (2,2, h.1,.)

Input layer X —”X_Xin - HZ_ZiHZ
2h 2h.,

dwl 2mh dzl 2mh (45)

Fig. 1. Three-layer NN architecture schematic map. T 9 n(2mhg) — ) n(2mhs) o -

With this approximation, (46) is reduced to

For parameter optimization, tlédearning rule with learning
factor being one becomes [33] // pr(X,2) Inpy(x,2z) dx dz
dJ(h,© o

ohy = —%. (40) ~ _%[1 +In(27h,)] — d2—2[1 +In(27h,)] —In N. (46)

When minimizing.J(h, ©) with respect tdh,, the following ~ The second term in (43) is reduced to

gradient descent equation can be obtained: . N
N h. [; // G(x,x;,h.14,) G (2,2, h.14.)

dy
p=—dot 2R, 41
Oh Jr + oh. (h) (41)
orletéh, = 0, we get x ||1x = x; || Inpy(x,2) | dxdz
hy = aLalh) (42) ;X
2J, N NI Z//G(x,xhhmldm)G(z7zi,hZIdz)
where 2T =1 , ,
x ||X— X‘||2 _||X_X’i|| _ ||Z — ZZH
E.(h) = //ph(x,z) Inpy(x,2) dxdz ¢ 2h,, 2h.
1 N G L 1G 1 - %ln(%rhm) - é—zln(2ﬂfzz)] dxdz —In N
- Nda:hz 2// (X7Xi7 Ly dw) (Z7Zi7 lz dz) ) d
b —d, — dy(dy — 1)* — =1 + In(27h,
x ||x — x;]|? Inpn(x, 2) dx dz. (43) >~ ds(d; —1) 2 [+ In2rhe )]

d.
This is a formula for estimating regularization parameter - 7[1 +In(2rh.)] —In N. (47)
based on training data. It can be used to optinizéeratively. Then, (43) becomes
The integration in the above equation can be evaluated by '

Monte Carlo integration. _  B(h) = //p}L(X7Z>1np}L(X7Z> dx dz
In practical implementation, especially for the small training .

data set case, we can use sparse data approximation (SDA) in 1 N
(43). That is, if data is not correlated with data for sparse N Z // G (x,Xi, hala, ) G (2,2, h.14.)
data distribution, we can consider integrationxaroundx;, z o 7?2=1
aroundz; only, and ignore other data. With this approximation, X [[x = %" Inpn(x, z) dx dz
i i [ i i dz d.
?eorvr;/qlzt us evaluate the integration k), (%), in which the first ~ =21 n(2mh, )] - 7[1 +In(27h.)] — In N

2
[ [ oiox2) api(x.) dx o - [—dz (e~ 1)~ 2 (1 + In(2rh,)]
d

— Z[1+1In(27h.)] - In N

N
1
- NE :{//G(x7xi,thdm)G(z,zi7thd:) f
=1

= d[1+ (da — 1)7] (48)
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Fig. 2. The NN input-output. Dots are training samples, while solid line is network output. (a) and (b) Sine function approximation probleminkfteistra
stopped, dynamically-estimatéd = 2.87 x 10—*. (c) and (d) Exponential function approximation problem. After the training is stopped, dynamically estimated
h, = 1.27 x 10—,

Notice that in ML estimation lent to the Tikhonov regularizer. Moreover, the starting point
N of deriving the regularization parameter estimation equation is

S22 1 Z 2 — g(xi, W)]|>. (49) different from the Mackey's Bayesian evidence or MAP for
N i—1 hyper-parameters [12], [35]. For example, Mackey assumes the

Rrior distribution of weight is Gaussian with hyper-parameter
s the regularization parameter, and the penalty term is in the
g{/\/eight decay form. While we use nonparametric kernel den-
sity distribution, a particular approximation is equivalent to the
) 5 Ef\;l lzi — g(xi, W)||? Tikhonov regularizer. The penalty term is the first derivation of
he = di[1 + (dz = 1)7] ZN g/ (i, W)|12 : ( sum-square-errors of a network mapping function. This form is
i=1 194 reduced to weight decay when the mapping function is in a gen-
This is an approximate estimation bf by using the sum- eralized linear network, (x, W) = Y/, w; ;z;. Therefore
square-error and penalty term, which is quite different from the
equation obtained in [24]. In implementation, we need to find N M
h., and weighfi¥ by some adaptive learning algorithms. For ex- S Ngx, MIP =N w; (51)
ample, we can first make some initial guess for a small nonzero i=1 j=1
value ofh,, and use this value to evaludfé by the well-known .
back-propagation algorithm [36], then periodically reestima%hereM represents the number of .network weight par'ameters
the value ofh,. by (50) in training processing. The advantage and@j IS an elemen.t of th.e matrii’ in a vector expression.
this result is that only applying training data can be sufficient in With the generalized linear network assumption, (50) be-
estimating regularization coefficients, ahg can be optimized comes
on-line with minimized generalization error.

From the above discussion, with (48) and (49), in the SD:
case, from (42) we can obtain the following equation for rou
estimation ofh,,

N
i1 12 — g(xi, W)

hl,zdi[l—k(dm—l)z]z T
N i wj

(52)
V. DISCUSSION

In fact, the equation with regularization resulting from KL Now let us see the similarity of MAP approximation with our
distance for feedforward networks is not completely equivaesult in estimating the regularization parameter.
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0.03 -1 f e S— —
7
0.025 L sl /
. J/
0.02bk6 A= — MSE //
> /l
0.015 »/
g T . */
0.01 -2.5 *///
0.005 A
._3 f */
/
0 2000 4000 6000 8000 10000 Z *
@) -10 -8 -6 -4 -2 0
003 S e logphy
0.025 Fig. 4. Training mean square error (MSE) on the training data set/ arh
the validation data set, plotted versus the smooth parametefhe network
0.02 || was trained by 30 samples which are drawn from the exponential function. We
33 use a validation data set with 30 data points to calculatealue again after the
0.015 1} training is stopped. For eadh, value, the network was trained until the total
| error J; [(28)] was minimized, measured by successive error difference being
0.01 \:’\\ less than 10% or over 1@ epoch being passed. The minimal indicates an
0,005 == optimallog,, . = —4. Dynamically-estimated.. value is1.27 x 10~* in
o T this case.
4000 6000 8000 10000 1

0 2000
(b)
Fig. 3. Training epoch for the exponential function approximation problem. 0.8
The upper line represents validation error, while the lower line depicts training
error. Without regularization, training error is small while validation error is
large. With regularization, validation error is reduced and training error is 06
increased a little, illustrating that over-fitting does not occur.

The cost function in Mackey's Bayesian inference is [12],
[35]

anl— g(xi, W)|1* + Zw (53) .
0.2 0.4 0.6 0.8

o

In minimizing this cost function to find the network weight
parametelV, the effective value of the regularization parameter
depends only on the rati®e/3, since an overall multiplicative
factor is unimportant. This mearis. should be equivalentto o¢.s :

a/ under some approximations.
In Mackey’s results [12], [35], a very rough approximation ¢

conditionisy = M andN > M
= - 54
Y ; py (54)

where{}; } denotes the eigenvaluesHf the Hessian of unreg-

ularized cost function
0 0.2 0.4
2 2
H=p3V.,Ep, Ep= Z 1z — g(xi,w)|[*>.  (55) (b)
Fig. 5. NN input-output. The dots are training samples, while the solid line
is the network output. Software reliability growth model approximation is

The matrixA is related to parametenn the following form:
applied to data set sysl. After training is stopped, dynamically estimated
= 1.17 x 10~8. Because the noise is very small, the difference with and

1

A=H+al (56) h.
. . without regularization is not obvious.
In order to compare with Mackey’s formula, we rewrite the
parameterse and3 from [12], [35] in the following: Consequently
N 1, _ . 2
§=Nj2Bp = N Z {7 —gxiw)}®  (67) o _ yZimim b)) (59)
B N Z] 1 w2
o= M/2Ey = M ] (58) Here, we can clearly note the similarity betweenin (52)
Zj‘il wf and «a/f in (59), where their difference is only the constant
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0.0014 VI. EXPERIMENTS
0.0012 Several experiments have been done with dynamically
0 001 adjusting regularization parametkg. The network structure
used in the experiments is shown in Fig. 1.
0.0008 In the implementation, we train the three-layer NN by
0.0006 lw back-propagation algorithm. The regularization term used in
0.0004f \_ \/\ training processing is (51) .W.Ith reguIar|;at|on paramétgr
' — At the beginning of the training processing a small value of
0.0002 = h. is initialized, then it is periodically reestimated by (52).
The training processing is stopped until the total erdor
0 2000 4000 6000 8000 10000  is minimized, measured by either successive error difference
(CY being less than I or over 1@ training epoch being passed.
0.0014 Followings are the pseudocode for the algorithm described
above.
0.0012
0.001
0.0008 // Initializing weight parameters W and h._x
// with small random values.
0.0006 // Set the BP learning factor Mu and an integer
0.0004 \_\ // value Icf for periodically re-estimating h_x.
0.0002 ‘\\ For t =1 to 10(4),
Net _output = S(W_z|y S(W_y|x X)),
0 2000 4000 6000 8000 10000 Net _error = ||Target_Z — Net_output|[2,
(b) Reg_term = N % Sum(w_i"2),

Fig. 6. Training epoch for the software reliability growth model data set sys1. Js(t) = Net_error/(2N),

The upper line represents validation error, while the lower line depicts training W(t) = W(t-1) — Mu* Grad w[J1(t-1)],
error. Without regularization, training error is small while validation erroris a  j1(t) = Js(t) + h_x * Reg_term/(2N),
bit large. With regularization, validation error is reduced. If t MOD Icf ==0

h_x = Net_error/Reg term,

coefficient. Inh, estimation, the constant coefficient is depen- gise continue.

dent on the dimension of input space, whilexf\3 estimation, If31Ct) — J1(t — 1)] < 10(—8),

the constant coefficient is the dimension of weight parameter 4o gng,

vector. This can be explained by the fact that Mackey's result gise continue.

is obtained in parameter space approximation, while our resyl,;

is in data space approximation. Compared to the approximay

tion condition, our approximation is based on the sparse data

set, which is a reasonable approximation for the small-number

training data set case. While in Mackey’s approximation, it re- Some results are drawn in Figs. 2—8. The results show that the

quiresN > M. In the following function mapping experi- optimal regularization parametér. can be found by seeking

ments, we design th&f = 30,d, = d. = 1, the hidden neuron the minimum of.J(h, ®) with the training data set only. We

number isk = 15, andM = (d, + 1) X k+ k x d, = 45. Be- also apply the minimal generalization error method to validate

cause the experimental condition does not satisfy Mackey’s vehe experimental results, and the same ordér.dfas been ob-

rough approximation conditioN > M, it cannot be successfultained (see Fig. 4). This confirms that the new parameter esti-

in estimating regularization parameter on-line with (59). In factation formula is a good approximation. Unlike early stopping

the conditionN > M means that training sample numbestrategy, this new regularization parameter formula can work for

should be large enough compared to network complexity. dizertrained network and does not need another validation set to

we have enough training samples, the generalization is also iguard when the training should stop.

proved without regularization [6]. The function mapping problem was considered in the exper-
As we know, there is no free lunch for the optimizationments, and the sine and exponential functions were applied. In

problem. To get the best regularization parameter valugder to represent sufficient network complexity, we used 15

the parameter numerical evaluation involves computatidridden neurons in a three-layer network. Only 30 training sam-

of Hessian matrix and log determinant &f—!, as well as ples were generated with Gaussian noise added to the output.

eigenvalues of Hessian in Mackey’s Bayesian inference. Whildith this kind of network architecture, if without regulariza-

in our approximation, it involves integration in data space. Tion, the phenomenon of over-fitting to noise can be observed as

save computational cost and on-line optimizing regularizati@imown in Fig. 2. In Figs. 2 and 3, it is shown that with regular-

parameter, a rough approximation is needed, but in this casation, the network output is smoothed and generalization per-

the parameter value may not be the best one, and generalizatmance is improved. Fig. 4 shows that the minimialvalue

error may not be the smallest with approximations. indicatesh,, value around 10%.
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- * Another data set is sys3, which contains 278 data points. In
-4 / the experiment, the number of training data is alitstof the
/ total data number. That is, it consists of 186 randomly-drawn
-5 ¥ - .
samples from the original data set. The remaining 92 samples

-6 form the validation set. Because this data set is a bit large and

7 e the noise is small, it makes no obvious difference in the obtained
I ey “* results with respect to dynamical regularization. The trained net-
M work output is shown in Fig. 8.
-9 R P Experiments have been done for the comparison of reg-
_1obx * oy x ok ox ularization parameter estimation formula (59) and (52)
-l4 -1z -10 153 h*6 -4 2 0 performance. From the results we observe that the estimator
10 4%

is problem-dependent, and it is hard to say that one estimator
Fig. 7. Training mean square error (MSE) on the training data sevamt 1S Petter in all cases. For the case wheén> M or N ~ M,
the validation data set, plotted versus the smooth pararieteFhe network MAP-approximation-based regularization parameter estima-

was trained by 37 samples which are drawn from the sys1 data set. We U$td formula performance is good, sometimes better than
validation data set with 17 data points to calculétesalue again after training ! .

is stopped. For each, value, the network was trained until the total erdar SDA-based formula. However, when we use many of hidden
yvgs minimized,‘mefsulred by C;;/ir41l9poch bgeirlljg |oaSS_»eoI|-| The_minirzal neurons, for the cas& < M, MAP-approximation-based
indicates an optimal value arouiek,, 2. =~ —9. Dynamically-estimated .,

value is1.17 x 10-% in this case. formula performance becomes poor.

r ' ' ' ' i VIl. CONCLUSION
0 In this paper, we show that one particular case of the
‘ system entropy with Gaussian probability density reduces into
the first-order Tikhonov regularizer for feedforward NNs in
0.61 1 the ML learning case, where the regularization parameter is
the smoothing parameter, in the kernel density function.
0.4t 1 Under the framework of KL distance, we derive the formula
for approximately estimating regularization parameter using
0.2 | training data. Experiments show that our estimated regular-
ization parameter is in the same order as that estimated by
ol validation method. However, our method requires much less

0 0.2 0.4 0.6 0.8 1 computational resource than the validation search method.

Fig. 8. NN input-output. The dots are training samples, while solid line
is the network output. For software reliability growth model data set sys3, ACKNOWLEDGMENT
regularization does not make a significant difference.
The authors would like to thank the anonymous referees for

; . their constructive comments on this paper.
Real-world data sets are used in the experiments as welt pap

The data sets are software failure data sysl and sys3, which

are contained in the attached compact disk of taadbook

of software Re“ab'“t}’ Engineering34]. The sysl data set 1] v. Le cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in

contains 54 data points. In order to validate the parameter Advanced in Neural Information Processing SystensS. Touretzky,

estimation results, we partition the sys1 data into two parts: 1)  Ed. San Mateo, CA: Morgan Kaufmann, 4992’ vol. 2, pp. 598—6|05_-

a training set and 2) a validation set. The training set consistd? L K Hansenand C. E. Rasmussen, “Pruning from adaptive regulariza-

. . tion,” Neural Comput.vol. 6, no. 6, pp. 1222-1231, 1994.

of 37 samples Wh|C_h_are randomly drawn from the O”_gm‘?‘l [3] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural

data set. The remaining 17 samples comprise the validation networks architecturesNeural Comput.vol. 7, pp. 219-269, 1995.

set. The data sets are normalized to the range of values [0, 1J4] L. Wu and J. Moody, *A smoothing regularizer for feedforward and re-

Normalization is a standard procedure for data preprocessing. ;‘;gg”t neural networksNeural Comput.vol. 8, no. 3, pp. 463491,

_m the_ software r_ellablhty m_vestlga_tlon problem, the _network [5] G. E. Hinton, “Learning translation invariant recognition in massively

input is successive normalized failure occurrence times, and parallel networks,” inProc. PARLE Conf. Parallel Architectures and

the network output is the accumulated failure numbers. During Ezngléagl?s EGUFODG‘\- J-ll\glgr;lan, JiV\i 3de Bakker, and P. C. Treleaven,

. : : : : s. Berlin, Germany, , pp. 1-13.

th,e training phase, e_aCh input sampjeat timet is a_SSOCIated [6] C. M. Bishop, Neural Networks for Pattern RecognitionLondon,

with the corresponding output valug at the same timeé. The U.K.: Oxford Univ. Press, 1995.

experimental results are shown in Figs. 5-7. From Fig. 6, it[7] Y. Grandvalet and S. Canu, “Noise injection: Theoretical prospects,”

can be observed that with regularization, the validation error  Neural Comput.vol. 9, no. 5, pp. 1093-1108, 1997. o

is less than that without regularization. Fig. 7 shows that thel® A= M. Thompson, J. C. Brown, J. W. Kay, and D. M. Titterington,
. L ) 3 10 A study of methods of choosing the smoothing paprameter in image

minimal .J; value indicates:,. in the range of 10° to 10" %, restoration by regularization,JEEE Trans. Pattern Anal. Machine

while dynamically-estimated,, value is1.17 x 1078, Intell., vol. 13, no. 4, pp. 326-339, 1991.
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