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Ping Guoa,b,∗, Yunde Jiaa, Michael R. Lyuc

aSchool of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, PR China
bLaboratory of Image Processing and Pattern Recognition, Beijing Normal University, Beijing, 100875, PR China

cDepartment of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China

Received 6 December 2005; received in revised form 24 January 2008; accepted 2 February 2008

Abstract

In classifying high-dimensional patterns such as stellar spectra by a Gaussian classifier, the covariance matrix estimated with a small-number
sample set becomes unstable, leading to degraded classification accuracy. In this paper, we investigate the covariance matrix estimation problem
for small-number samples with high dimension setting based on minimum description length (MDL) principle. A new covariance matrix
estimator is developed, and a formula for fast estimation of regularization parameters is derived. Experiments on spectrum pattern recognition
are conducted to investigate the classification accuracy with the developed covariance matrix estimator. Higher classification accuracy results
are obtained and demonstrated in our new approach.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Spectrum recognition has a wide range of applications, such
as chemical element identification, stellar classification, and
matter structure analysis. For spectral data, the number of vari-
ables (wavelengths) is much higher than that of training sam-
ples; therefore, spectral data are severely ill-posed. Due to such
high dimensionality, the common multivariate classification
methods of linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) cannot be directly applied because
of the matrix singularity problem [1].

Spectrum recognition is usually a high-dimensional small
sample set classification problem. Generally speaking, classifi-
cation has two aspects: supervised classification (discrimination
or simply classification) and unsupervised classification (clus-
tering). In recent years, several classification algorithms have
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been developed to partition a data set into pre-defined classes.
When the data are viewed as arising from two or more clusters
mixed in varying proportions, we can use the finite Gaussian
mixture distribution to analyze the data set. The Gaussian mix-
ture distribution analysis method has been employed widely in
a variety of important practical situations, where the likelihood
approach to the fitting of Gaussian mixture models has been
utilized extensively [2–5].

When classifying data with the Gaussian mixture model,
the mean vector and covariance matrix of each component are
not known in advance, and they have to be estimated from
the given data set. While a large-size data set is desirable for
estimating the parameters more accurately, in the real world,
often only a small-size data set can be obtained because of some
restriction, e.g., high cost in collecting large-size data sets. For
a relatively small-number sample data set, if the dimension d of
variable x is comparable to the number of training samples nj

in class j , the problem may become poorly posed. Worse, if the
number nj of training samples is less than the dimensionality,
the problem becomes ill-posed. In this case, not all parameters
can be properly estimated, and the classification accuracy is
degraded.
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There are two possible solutions for this kind of problem:
one is dimensionality reduction [6,7], and the other is regu-
larization [1,8]. Regularization is the procedure of allowing
parameters bias toward what are thought to be more plausi-
ble values, which reduces the variance of the estimates at the
cost of introducing bias. Besides the regularization techniques
can be used to sparse nonparametric density estimation in high
dimension case [9], the regularization techniques have been
highly successful in classifying small-number data with some
heuristic approximations [1,8,10,11]. However, these methods,
such as regularized discriminant analysis (RDA) [10], require
users to select regularization parameters (or called model) with
some statistical techniques like leave-one-out cross-validation
[11–14], which is computation-expensive. Furthermore, a re-
cent study shows that cross-validation performance is not al-
ways good in the selection of linear models [15] in some cases.
Therefore, it is worthy to further investigate this problem.

Originally proposed as an estimation criterion by Rissanen
[16,17], the minimum description length (MDL) principle can
be applied to universal coding, linear regression, and density
estimation problems. The central idea of this principle is to rep-
resent an entire class of probability distributions as models by
a single “universal” representative model, such that it would be
able to imitate the behavior of any model in the class. The best
model class for a set of observed data is the one whose rep-
resentative permits the shortest coding of the data. The MDL
estimates of both the parameters and their total number are
consistent; i.e., the estimates converge and the limit speci-
fies the data generating model [17]. The codelength1 criterion
of MDL involves in the Kullback–Leibler divergence [18,19].
MDL principle has a wide applications, such as clustering prob-
lem [20]. In this paper, based on the MDL principle with the
mixture model analysis, we present the results of investigating
covariance matrix estimation and regularization parameter se-
lection in the Gaussian classifier for the small-sample set with
high-dimension classification problem.

2. Theoretical background

2.1. Classification with finite Gaussian mixture model

In pattern recognition problem, we have a set of data sam-
ples, each consisting of measurements on a set of variables with
associated labels, the class types. They are used as exemplars in
the classifier design [21]. In clustering we need to estimate prior
probability and posterior probability in the classifier design. If
these probabilities are known, it becomes a classification prob-
lem. So clustering is more general than classification in the
mixture model analysis case. Let us consider the general case
first.

The data points D = {xi}Ni=1 to be classified are assumed to
be samples from a mixture of k Gaussian densities with joint
probability density of which the mathematical expressions are

1 A term codelength is just another way to express a probability distri-
bution or a model.

shown as follows:

p(x, �) =
k∑

j=1

�jG(x, mj , �j )

with �j �0 and
k∑

j=1

�j = 1, (1)

where

G(x, mj , �j ) = exp[− 1
2 (x − mj )

T�−1
j (x − mj )]

(2�)d/2|�j |1/2
(2)

is a general multivariate Gaussian density function, x denotes
a random vector, d is the dimension of the x, and parameter
�={�j , mj , �j }kj=1 is a set of finite mixture model parameter
vectors. Here �j is the prior probability, mj is the mean vector,
and �j is the covariance matrix of the jth component. Based
on the given data set, these parameters can be estimated by the
maximum likelihood (ML) method with expectation-maximum
(EM) algorithm [22,23].

In the Gaussian mixture model case, the Bayesian decision
rule is applied to classify the vector x into class j with the largest
posterior probability. The posterior probability P(j |x, �) rep-
resents the probability that the sample x belongs to class j. We
use Bayesian decision j∗ = arg maxj P (j |x, �) to classify x
into class j∗. The probability functions P(j |x, �) are usually
unknown and have to be estimated from the training samples.
With the ML method estimated parameter �̂, the posterior
probability can be written in the form

P(j |x, �̂) = �̂jG(x, m̂j , �̂j )

p(x, �̂)
with

j = 1, 2, . . . , k. (3)

Taking the logarithm to the above equation and omitting the
common factors of the classes, the classification rule becomes

j∗ = arg min
j

dj (x), j = 1, 2, . . . , k (4)

with

dj (x) = (x − m̂j )
T�̂

−1
j (x − m̂j ) + ln |�̂j | − 2 ln �̂j . (5)

This equation is often called the discriminant function for the
jth class in the literature [1]. Furthermore, if the prior probabil-
ity �̂j is the same for all classes, the term 2 ln �̂j can be omitted
and the discriminant function reduces to a simpler form [24].

2.2. Covariance matrix estimation

When the sample number is small, the sample-based esti-
mation of class-specific covariance matrix becomes inaccurate,
resulting in lowered classification accuracy. To solve this prob-
lem, several techniques are proposed, such as LOOC as well
as its extensions bLOOC1 and bLOOC2 [11–14]. LOOC was
proposed by Hoffbeck and Landgrebe [11], who examine the
diagonal sample covariance matrix, the diagonal common co-
variance matrix, and some pair-wise mixtures of those matrices.
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They called the covariance matrix estimator as LOOC because
the mixture parameter was optimized by leave-one-out cross-
validation method. Bensmail and Celeux proposed eigenvalue
decomposition discriminant analysis (EDDA) approach to solve
covariance matrix estimation problem [25], the covariance ma-
trix is constrained to some form, such as diagonal matrices.
Later, a covariance estimator formulated under an empirical
Bayesian setting was described in Ref. [12], which is named as
BLOOC, and it can also be viewed as a compromise between
the linear and quadratic classifiers. The maximization of leave-
one-out average log likelihood is used as the criterion to select
the appropriate mixture model. Note in Ref. [13], an improved
regularized covariance estimator of each class with the advan-
tages of LOOC and Bayesian LOOC (BLOOC) was presented.
There are two forms of this covariance estimation depending
on the form of covariance matrices used, namely bLOOC1 and
bLOOC2. Because bLOOC1 and bLOOC2 suffer from draw-
backs inherited from RDA, LOOC, and the empirical Bayesian
covariance estimators, a new family of adaptive covariance esti-
mators is presented in Ref. [14], which is produced by combin-
ing an adaptive classification process with various regularized
covariance estimators such as LOOC, bLOOC1, and bLOOC2.
The regularized parameters and supportive covariance matri-
ces employed in a covariance mixture are determined based
on both training samples and semi-labeled samples, and they
are repeatedly updated until the highest classification accuracy
is reached. These methods mainly concern various mixture of
sample matrix and common matrix, where the regularized pa-
rameters are determined by maximizing average leave-one-out
log likelihood criterion. Besides, the high variance problem
can be addressed by ensemble-based discriminant analysis so-
lutions [26]. More recently, Srivastava et al. [27] proposed a
Bayesian QDA classifier termed BDA7. BDA7 differs from the
previous Bayesian QDA methods in that the prior is selected
by cross-validation from a set of data-dependent priors.

In this paper, we focus on the regularization method and ad-
dress this problem based on MDL principle. The focus of in-
terest in MDL principle is in various classes of probability dis-
tributions as models, which results in the modeling problems.
Now we consider that a given sample data set x was generated
from an unknown density p(x), which can be modeled by a
finite Gaussian mixture density p(x, �), where � is the pa-
rameter set. In the absence of knowledge of p(x), it may be
estimated by an empirical kernel density estimate ph(x) [28]
obtained from the data set. Because these two probability den-
sities describe the same unknown density p(x), they should be
best matched with proper mixture parameters and smoothing
parameters. However, if we only make these two models close
to each other without applying the given sample set, it may turn
out that none of them is close to the true density underlying
the sample.

According to MDL principle, the best model class for a set
of observed data is the one whose representative permits the
shortest coding of the data, and the system should be optimized
with optimal or ideal code length. That is, the model parameters
should be estimated with minimized Kullback–Leibler distance
(also called divergence) KL(h, �) based on the given data

set drawn from the unknown density p(x). With the constraint
of the given data set, the “distance” of these two probability
densities can be measured with the following Kullback–Leibler
divergence function in integration form [18,19],

KL(h, �) =
∫

ph(x) ln
ph(x)

p(x, �)
dx, (6)

which equals to zero only if ph(x) = p(x, �). The above KL
function, also called the system relative entropy or cost func-
tion in MDL principle, is described as the expected codelength
difference (redundancy) and can be rewritten in the form

KL(h, �) = −
∫

ph(x) ln p(x, �) dx

+
∫

ph(x) ln ph(x) dx, (7)

where

ph(x) = 1

N

N∑
i=1

G(x, xi , Wh) = 1

N(2�)d/2|Wh|1/2

N∑
i=1

× exp

⎡⎣−1

2

d∑
j=1

(xj − xi,j )
2

hj

⎤⎦ (8)

is assigned as the Gaussian kernel density for the given samples.
Here xj is the j th component of the random variable x, xi,j

represents the j th component of the variable for data point i,
and Wh is a d × d dimensional diagonal matrix with a general
form,

Wh = diag(h1, h2, . . . , hd), (9)

where hi , i = 1, 2, . . . , d are smoothing parameters in the non-
parametric kernel density. In the following we denote this set
as h = {hi}di=1.

When we estimate parameter �, the second term in Eq. (7)
can be neglected because it is not related to �. At the limit
h → 0, the kernel density function becomes a � function,
then Eq. (7) reduces to the negative log likelihood function.
Minimizing KL function is equivalent to maximizing likeli-
hood function in this case. The ordinary EM algorithm [22,23]
can be re-derived based on the minimization of this KL diver-
gence function with respect to mixture parameter � [21]. The
ML-estimated covariance matrix �̂j has the form

m̂j =
∑N

i=1P(j |xi , �̂)xi∑N
i=1P(j |xi , �̂)

= 1

nj

N∑
i=1

P(j |xi , �̂)xi ,

�̂j = 1

nj

N∑
i=1

P(j |xi , �̂)(xi − m̂j )(xi − m̂j )
T. (10)

Unlike the supervised learning, the ML with EM algorithm
can be applied for a totally un-labeled training data set, for
example, in an application of automatic image segmentation
[29]. However, for small-number samples with high dimen-
sion, the ML-estimated covariance matrix �̂j with the EM al-
gorithm becomes singular when nj < d, leading to an unstable
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classification rate. To deal with this difficulty, one approach is
regularization. In the following we address this problem based
on Kullback–Leibler divergence with h �= 0.

The smoothing parameter h in a Gaussian kernel density
plays an important role in estimating the mixture model param-
eter. The most concerned problem is covariance matrix estima-
tion in classification, where the mixture weight �j and class
mean mj can be estimated with summation under the h = 0
approximation as in Eq. (10). Then we focus on covariance
matrix estimation problem in the following. By minimizing
Eq. (6) with respect to �, i.e., setting �/��jKL(h, �) = 0,
the following covariance matrix estimation formula can be
obtained:

�̂j =
∫

ph(x)P (j |x, �̂)(x − m̂j )(x − m̂j )
T dx∫

ph(x)P (j |x, �̂) dx
. (11)

Note in the above equation the parameters still need an
iterative estimation. There are several ways to evaluate the
probability-type integration in each iterative estimation step.
One of the techniques is the well-known Monte Carlo in-
tegration [30,31]. In the Monte Carlo integration approxi-
mation, we need to generate a huge number of samples in
high-dimension setting. It seems that this method is very
computation-expensive, although it can achieve a reasonable
accuracy.

Another method to evaluate the integration is to apply the
Taylor expansion approximation, which is employed in this
paper. Because the ph(x) term is contained in the integration
of Eq. (11), when x is far away from xi and ph(x) is smooth
near xi , the function value becomes very small. In this case,
we can use the Taylor expansion for P(j |x, �) at x = xi with
respect to x and take up to second order approximation:

P(j |x, �̂) ≈ P(j |xi , �̂) + (x − xi )
T∇xP (j |xi , �̂)

+ 1
2 (x − xi )

THi (j)(x − xi ) (12)

with notation ∇xP (j |xi , �̂) = ∇xP (j |x, �̂)|x=xi
. Hi (j) is the

Hessian matrix of the posterior probability function, Hi (j) =
∇x∇xP (j |x, �̂)|x=xi

. It is computed as the following:

Hi (j) = P(j |xi ){�−1
j (xi − mj )(xi − mj )

T�−1
j

−
k∑

l=1

P(l|xi )[�−1
l (xi − ml )(xi − ml )

T�−1
l ]}

+ P(j |xi )

{
k∑

l=1

P(l|xi )�
−1
l − �−1

l

}

+ 2P(j |xi )

[
k∑

l=1

P(l|xi )�
−1
l (xi − ml )

−�−1
l (xi − ml )

]

×
k∑

l=1

P(l|xi )(xi − ml )
T�−1

l . (13)

On substituting the above equations into Eq. (11), Eq. (11)
reduces to Gaussian type function integrals. These type inte-
grals can be evaluated out (refer to [32, Appendix B]), leading
to the following covariance matrix estimation formula:

�(2)
j (h) = (1 + 1

2 Trace[WhH(j)])Wh + �e

(1 + �)
+ �̂Q

(1 + �)
,

(14)

where H(j)= 1
nj

∑N
i=1 Hi (j). The following notations are used

in the above equations:

� = 1

2nj

S(h, j),

S(h, j) =
N∑

i=1

Trace[WhHi (j)],

�e = WhHeWh (15)

He is a diagonal matrix in which the diagonal elements are
the eigenvalues of H(j), and

�̂Q = 1

nj

N∑
i=1

[P(j |xi , �̂) + 1
2 Trace(WhHi (j))](xi − m̂j )

× (xi − m̂j )
T.

Because this estimation is derived under the framework of
Kullback–Leibler information measure, it is called as KLIM2
in this paper.

If we only consider the first order approximation, the estimate
becomes

�(1)
j (h) = Wh + �̂j . (16)

This estimation is called as KLIM1 in this paper, in which
�̂j is the ML estimation at h = 0, taking the form of Eq. (10).

The quantity in the form
∑k

j=1 P(j |x, �)Q(j) represents
the weighted average value Q(j) over all classes. The above
Hessian equation reflects the difference between single class
quantity and averaged class quantity. If there is only one class,
this Hessian matrix will become a null matrix and �(2)

j (h) re-

duces to �(1)
j (h) automatically.

From the above, we can see that new kinds of regularized
covariance matrices, thereof regularized Gaussian classifiers,
are obtained based on MDL principle with Kullback–Leibler
information measure. Note the smoothing parameter h controls
the degree of regularization, and it plays a role of regulariza-
tion parameter. Because multi-parameter optimization is more
difficult than single parameter optimization, in this paper we
only consider one special case that the smoothing parameters
are the same for all dimensions. Namely,

Wh = hId , (17)

where Id is a d × d dimensional identity matrix.
In the next section we discuss how an optimal value of

smoothing parameter h can be selected based on the training
samples.
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Fig. 1. The J (h) function with some approximations. (a) J (h) vs. h curve computed by Monte Carlo integration approximation. (b) J (h) vs. h curve computed
by second order approximation with Eq. (A.6).

3. Smoothing parameter selection

Different h will generate different models; therefore, to select
the smoothing parameter is to select a model. There are several
ways to select a proper smoothing parameter h. For example,
with training samples we can use the statistical cross-validation
technique to select the smoothing parameter based on an opti-
mal classification rate, such as what is done in RDA [10] and
in LOOC [11]. As we know, the goal in selecting the smooth-
ing parameter is to produce a model for the probability density
which is as close as possible to the unknown density p(x, �)

[32]. From the experience in empirical kernel density estimate,
we know that when sample number N → ∞, ph(x) will best
describe the unknown density with h → 0. When N becomes
small, we should increase h in order to get a plausibly true den-
sity estimate. However, if h is too big, the estimate will become
too smooth and far away from the true density. There should
exist an optimal h value, but to select an optimal h for regu-
larized estimate is a very difficult problem. In fact, we should
choose it under some criteria to obtain a plausible estimate for
the true density solution [33]. To this end, we propose to select
a reasonable h parameter based on MDL principle with given
data.

According to the principle of MDL, it should be with the
shortest codelength to select a model [34]. When h �= 0,
the smooth parameter h can be estimated with the min-
imized KL divergence regarding h with ML estimated
parameter �∗,

h∗ = arg min J (h), J (h) = KL(h, �∗). (18)

This is the MDL model selection criterion for the prob-
lem discussed here. In practical implementation, we can use
an exhaustive search method to find h. That is, for each h,

we compute the J (h) function values to search the minima
of J (h), and choose h∗ that minimizes J (h). Note that in
this approach all the samples can be applied to estimate h∗.
Therefore, it is different from the cross-validation method
which must split data into a training set and a validation
set.

When selecting the optimal h, we have to evaluate the in-
tegration equation of J (h). The integral can be approximated
by the Monte Carlo method [29,31]. Using the Monte Carlo
integration with the extrapolation method we can compute h
with higher accuracy. However, the task is very computational-
intensive, especially in the high dimensionality case which we
deal with in this paper.

Now we propose to use a second order approximation for
estimating the smoothing parameter h. The rough estimation
formula is obtained as

h = d

2Jr(�)
. (19)

Readers can refer to Appendix A for the details of deriving
this formula. With this equation, h now can be estimated with
less computation-expensive effort.

When the Taylor approximations are engaged, the com-
putation cost will be significantly reduced. However, with
rough approximations the obtained value is not as accurate
as computing with an integration. Figs. 1a and 1b are typical
J (h) vs. h curves, showing the difference of the Monte Carlo
method and Taylor approximations in estimating the smoothing
parameter.

4. Approximations

4.1. Approximations for regularization term

In practice, the computation of � and Hessian matrix of Eq.
(15) is still quite complicated, and some proper approximations
should be adopted to simplify the calculation. Now let us con-
sider a special approximation of matrix H(j).

The estimation of eigenvalue matrix of posterior probability
Hessian is an iterative procedure, where initialization is nec-
essary. At the beginning, we do not know the true distribution
of the samples; therefore, the form of matrix �j is also un-
known. One of the assumptions is to let �j = Id be the initial
value. Under this assumption, the posterior probability Hessian
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matrix becomes

H(j) = 1

nj

N∑
i=1

{
P(j |xi , �)

{
(xi − mj )(xi − mj )

T

−
k∑

l=1

P(l|xi , �)[(xi − ml )(xi − ml )
T]

}

+ 2P(j |xi , �)

[
k∑

l=1

P(l|xi , �)(xi − ml )

× − (xi − ml )

]

×
k∑

l=1

P(l|xi , �)(xi − ml )
T

}
. (20)

Furthermore, if we regard
∑k

l=1P(l|xi , �)mj = m as an
averaged mean, the above equation becomes

H(j) = �̂j − �̂ + 2

nj

N∑
i=1

P(j |xi , �)(xi − m)(xi − m)T

− 2

nj

N∑
i=1

P(j |xi , �)(xi − mj )(xi − m)T. (21)

The last term represents the cross-variance between individ-
ual class and common class. If class overlapping part is very
small, this term has very little significance, and can be omit-
ted. The third term can be regarded as approximately equiva-
lent to two times of the common covariance matrix. Under this
approximation, the Hessian matrix can be written as

H(j) = �̂j + �̂. (22)

When we rearrange the term in KLIM2, it leads to

�(2)
j (h) =

(
1 + h

2
Trace[�̂j + �̂]

)
hId

+ h2

(1 + �)
ev(�̂j + �̂) + �̂Q

(1 + �)
, (23)

where ev(�) stands for a diagonal matrix in which the diagonal
elements are the eigenvalues of �.

From these approximations, it is known that the second order
regularization involves calculation of the inverse covariance
matrix. In the case of nj > d, we can use Eq. (10) to estimate
the initial value of �j . While for the case nj < d , �̂j becomes
singular. With KLIM1 estimator, however, �j is not singular
as long as h is not too small. In this case, we adopt KLIM1
estimated covariance matrix as the initial value to calculate
H(j) and �.

In fact, if we let the eigenvector and eigenvalue of a covari-
ance matrix �̂j be ui and �i , respectively,

�̂j ui = �iui , uT
i uj = �ij , (24)

where the inverse matrix of �j in KLIM1 can be expressed as

�−1
j = (hId + �̂j )

−1 =
d∑

i=1

uiuT
i

�i + h
(25)

then,

Trace[�−1
j ] =

d∑
i=1

1

�i + h
. (26)

If �̂j is singular, then |�̂j | = 0 and hence |�I − �̂j | =
0. This means that a singular matrix has at least one zero
eigenvalue, resulting in one term being proportional to h−1 in
Eq. (26). It is clearly seen that as long as h is not too small, �−1

j

exists with a finite value and the estimated classification rate is
stable.

4.2. Approximations in regularization parameter selection

The function Jr(�) can be simplified with an approximation.
From Eqs. (A.3),

Jr(�) = − 1

2N
Trace

N∑
i=1

[∇x∇x ln p(xi , �)] (27)

while

−
N∑

i=1

∇x∇x ln p(xi , �)

=
N∑

i=1

⎧⎨⎩
k∑

j=1

P(j |xi , �)[�−1
j − �−1

j (xi − mj )(xi − mj )
T

× �−1
j ] +

⎡⎣ k∑
j=1

P(j |xi , �)[(xi − mj )
T�−1

j ]T

⎤⎦
×

⎡⎣ k∑
j=1

P(j |xi , �)[(xi − mj )
T�−1

j ]
⎤⎦⎫⎬⎭ .

Using the approximations
∑N

i=1 P(j |xi , �)(xi − mj )(xi −
mj )

T ≈ nj �̂j ,
∑N

i=1 P(j |xi , �) ≈ nj , and �−1
j �̂j ≈ Id , the

first term in Eq. (27) is equal to zero. In considering hard-cut
case, the cross-terms in the second term of the above equation
can be omitted. The equation is reduced to

Jr(�) = 1

2N
Trace

N∑
i=1

[−∇x∇x ln p(xi , �)]

≈ 1

2N
Trace

k∑
j=1

nj∑
i=1

�−1
j (xi − mj )(xi − mj )

T�−1
j

= 1

2
Trace

⎧⎨⎩
k∑

j=1

�j�
−1
j

⎫⎬⎭ .
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From Eq. (19), we get

h = d

2Jr(�)
≈ d

Trace[∑k
j=1 �j�

−1
j ] . (28)

Further, we can take the mean approximation [35], and let

k∑
j=1

�j�
−1
j = �−1. (29)

To estimate the regularization parameter, we should avoid
calculating the inverse of a covariance matrix in ill-posed case.
We now take the following approximations: using the average
eigenvalue to substitute each eigenvalue of a matrix �, that is,

�i = �̄, i = 1, 2, . . . , d, (30)

where

�̄ = 1

d

d∑
i=1

�i = 1

d
Trace[�]. (31)

Then we have

h ≈ 1

Trace [�−1] ≈ 1

d/�̄
= �̄

d
, (32)

h = 1

d2
Trace[�]. (33)

This means h can be estimated as 1/d average of the eigen-
values of the common matrix. Note that we can use the whole
data points to estimate �̂ as an approximation of �,

�̂ = 1

N

N∑
i=1

(xi − m̂)(xi − m̂)T, (34)

m̂ = 1

N

N∑
i=1

xi , (35)

Trace[�̂] = 1

N

N∑
i=1

Trace(xi − m̂)(xi − m̂)T

= 1

N

N∑
i=1

d∑
k=1

(xi,k − mk)
2

= 1

2N2

N∑
i=1

N∑
j=1

d∑
k=1

(xi,k − xj,k)
2

= 1

2N2

N∑
i=1

N∑
j=1

‖xi − xj‖2. (36)

Then h in Eq. (33) can be estimated with the formula

h = 1

2d2N2

N∑
i=1

N∑
j=1

‖xj − xi‖2. (37)

Hence, we derive a simplified model selection criterion for
the particular case studied in this paper.

4.3. Discussion of KLIM with RDA and LOOC

In this section we examine Eq. (23) in order to compare
KLIM with other regularized matrix estimators. The term
h2/2 Trace[�̂j + �̂])Id in the expression is very similar to the
term 	/d Trace[�j (
)]Id of the RDA form in Ref. [10], but the
coefficients are different. While the terms of diagonal matrices
are similar to LOOC (especially if �̂ and �̂j are diagonal, the
eigenvalue matrix ev(�) is equal to diagonal(�)); again the
coefficients are quite different. The most important difference
between KLIM and RDA is that RDA uses two parameters to
control regularization, while KLIM uses a single parameter h.
On the other hand, LOOC uses a single parameter to control
the mixing of two covariance matrices, while KLIM just uses
the same portion by adding eigenvalue matrices of sample and
common covariance matrices.

KLIM is derived under the framework of MDL principle,
while RDA and LOOC are heuristically proposed. KLIM, RDA
and LOOC are similar in that they all consider ML estimated
covariance matrix with the addition of extra matrices. KLIM
and RDA both engage an identity matrix multiplied by a scalar;
however, the scalar term is different from each other. There is
also a term in KLIM2 which is the eigenvalue matrix of pos-
terior probability Hessian, while RDA considers it with LDA
estimation, and LOOC considers it with the diagonal sample
or common covariance matrix. Moreover, the ML estimate in
KLIM2 has the regularization coefficient related to the differ-
ence between averaged class quantities and single class quan-
tities, while RDA is simply related to the sample covariance
matrix estimation.

KLIM is different from LOOC in that LOOC considers mix-
ing sample covariance matrix and its diagonal or common co-
variance. However, the value of mixing parameter �j in LOOC
is still selected by using leave-one-out cross-validation statis-
tical methods. In KLIM, on the other hand, the regularization
parameter is the smoothing parameter in kernel density estima-
tion, which can be selected based on the model selection cri-
teria derived under the MDL principle with all samples. While
in RDA, the regularization parameter is heuristically proposed,
which must employ some statistical methods, such as bootstrap
or leave-one-out cross-validation, for optimization. In this re-
gard, RDA requires much more computation than KLIM.

In a special approximation we can get h=1/d Trace[�]/d. In
RDA, if we let 
=1 and 	=1, the identity matrix coefficient will
reduce to the same form as above except for a factor 1/d. Here
we can see that even in the first order approximation, KLIM
and RDA still maintain certain relationship. This demonstrates
that under the framework of MDL principle, we can establish
an analytic link between RDA and KLIM.

5. Experiment results

The main objective of our experiments is to assess the per-
formance of KLIM estimator and regularization parameter se-
lection criterion. In order to verify the proposed methods, we
applied two real-world spectral data sets and conducted a series
of experiments.
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Fig. 2. Representative spectrum for each of the three Raman data classes.

Table 1
Raman data set used for classification experiments

Dimension d Class 1
(ethanol)

Class 2
(acetic acid)

Class 3
(ethyl acetate)

134 30 50 290

5.1. Raman spectra data

5.1.1. Data description
This real-world data set was collected in the laboratory ex-

periments from the physics department at Peking University.
It includes 37 Raman spectra whose wave number ranges are
from 320 to 1640 cm−1, where each spectrum is measured by
the charge-coupled device (CCD) detector with 1340 effective
channels at the same time. The raw data set consists of three
classes: 3 Raman spectra for ethanol, 5 for acetic acid, and 29
different time measures in synthesizing ethyl acetate. The di-
mension of the raw data set is 1340 and the sample number
is 37. Fig. 2 shows the representative spectrum for each of the
three classes.

Because the dimension of the raw data set is very high and
the data number is too small, we first divide each sample into 10
sub-samples. From every 10 variables of the raw spectrum vec-
tor, one point is drawn and used to construct a new sample vec-
tor. By this method, each original sample is subdivided into 10
samples, and the dimension d from 1340 is reduced to 134. We
also scale the intensity of Raman spectra to the range of [0,1].

Consequently, the data set we engaged for classification ex-
periments is shown in Table 1. Here we should indicate that the
classification results are comparable because we engage this
same preprocessed data set for LDA, QDA, RDA, KLIM1, and
KLIM2, and the results are not dependent on preprocessing of
the data set.

5.1.2. Experiment
In order to study the performance of the regularized clas-

sifiers, we apply bootstrap technique [36] to conduct the

experiments. The experiment for KLIM1 is described as
follows:

Step 1: Randomly draw 20 training samples from each class,
and apply them to estimate the mean and covariance matrices
with Eq. (10).

Step 2: h is estimated with formula (37).
Step 3: Regularized covariance matrix is estimated with

Eq. (16).
Step 4: The remaining samples are employed as test samples

to verify classification accuracy. Using Eq. (4) to calculate the
class label, then count all test samples to find correct classifi-
cation rate.

The experiments are repeated 26 times, and the obtained
results are the averaged values. The same data set is engaged
with different classification methods. This is still an ill-posed
problem because of nj=20, which is much smaller than d=134.
In this case, when we apply LDA2 and QDA to this Raman
spectra data set, they fail to give reliable classification results
because the covariance matrix is singular.

On the other hand, the bootstrap experiments show that RDA
gives an averaged classification accuracy of 99.27% with the
standard deviation of 0.43, while the classification accuracy for
KLIM1 and KLIM2 both reach 99.81% with the standard devi-
ation of 0.28. The results also illustrate that these three classes
are well separated from each other in the high-dimension space.

5.2. Stellar spectra data

5.2.1. Data description
There are seven main spectral types of stars in the order of

decreasing temperature, namely: O—He II absorption, B—He I
absorption, A—H absorption, F—Ca II absorption, G—strong
metallic lines, K—bands developing, and M—very red. We
employ 111 selected spectra from four spectral classes of stel-
lar spectra as samples. Wavelength of the spectra ranges from
350 to 750 nm. Each of them contains a continuum spectrum
and some absorption lines. The raw data set consists of four
classes: B-type, A-type, F-type, and G-type. The representative
spectrum for each of these classes is shown in Fig. 3.

Therefore, the data set we engaged for classification experi-
ments is d =745, N =111, where class B-type has 23 samples,
class A-type has 30 samples, and class F-type and class G-type
each has 29 samples, respectively.

5.2.2. Experiment
For this data set, as the same as Raman spectra data, we

also apply bootstrap technique to conduct the experiments with
the same procedure. nj = 15 training samples are randomly
drawn from each class and applied to estimate the mean and
covariance matrices. The remaining samples are employed as
test samples to verify classification accuracy. The same data set
is used with different classification methods. In the d=745 case,
when we apply LDA and QDA to this stellar spectra data set,

2 The terminology LDA used in this paper is from Ref. [1]. It is different
from Refs. [6,37], in which LDA is usually called Fisher linear discriminant
analysis (FDA) in the literature.
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Fig. 3. Representative spectrum for each of the four stellar data classes.

Table 2
Mean classification accuracy for stellar eigen-spectra

d = 6 d = 10 d = 20 d = 40

LDA 88.91 (4.26) 90.57 (3.23) 87.18 (4.41) 79.18 (7.27)
QDA 88.31 (3.11) 84.99 (4.43) – –
RDA 89.74 (4.12) 89.67 (4.06) 88.59 (3.17) 90.35 (4.03)
KLIM 89.97 (3.52) 90.80 (3.54) 91.25 (2.30) 91.55 (4.14)

they are unable to provide reliable classification results, again
because the covariance matrix is singular. On the other hand,
the bootstrap experiments show that RDA gives an averaged
classification accuracy of 88.23% with the standard deviation of
3.37, while the classification accuracy for KLIM1 and KLIM2
are the same, both reaching 90.27% with the standard deviation
of 3.48.

Because the dimension of Stellar spectra data is as high as
d = 745, when we try to compare the results with different di-
mensions, such as 6, 10, 20, and 40 dimensions, we need to
adopt some dimension reduction methods to get the desired di-
mension from the original 745 dimension. Principal component
analysis (PCA) [38] as the most used dimensionality reduction
technique can be engaged directly for ill-posed problem by ex-
tracting principal component to form eigen-spectra, thus the
number of variables in eigen-spectra can be made lower than
the number of samples. In this work we adopt PCA for the
purpose of getting a lower-dimension data set. In the experi-
ments of eigen-spectra classification, the condition is the same
as the above, while the dimension of eigen-spectra is reduced.
The classification results for eigen-spectra are shown in Table 2
. In Table 2, d stands for the first d-dimension of the eigen-
spectra, the classification accuracy is reported in percentage,
and the value in parentheses represents the standard deviation.
Furthermore, the dash lines represent that the covariance matrix
is singular, in which case reliable results cannot be obtained.

With the developed fast regularization parameter estimation
method, KLIM demonstrates a slightly higher classification
accuracy than RDA. Besides, in all stellar eigen-spectra ex-
periments, KLIM estimators are consistently better than LDA
and QDA estimators. From the experiments, we can see that

classification accuracy in high-dimension setting is usually
higher than that in low-dimension. The results also illustrate
that by only adopting PCA to reduce dimension can solve the
ill-posed problem, but its classification accuracy will degrade
[39]. The reason is that some samples can be separated in high-
dimension space, but when projecting into reduced dimension
space, they cannot be separated anymore.

5.3. Face image data

5.3.1. Data description
Face recognition is a typical small sample size recognition

problem [40–42]; therefore, face data can be applied to assess
the performance of KLIM estimator and regularization param-
eter selection criterion. ORL face database [43] is a popular
database in face recognition research. This database consists of
40 persons, with each person’s face appearing in 10 images, for
the total of 400 images altogether. The images are taken at dif-
ferent time instances, with different lighting conditions, facial
expressions (open/closed eyes, smiling/not smiling) and facial
details (glasses/no glasses). All the images were taken against
a dark homogeneous background with the faces in an upright,
frontal position, including tolerance for some movement. All
of the images are 112 ×92 in size. Fig. 4 shows samples of the
face images for two persons taken at different time instances.

5.3.2. Experiment
We randomly select seven persons from the ORL database

to construct the data set used in the experiments. Therefore, the
data set we engaged for classification experiments is d=10304,
N = 70, where there are seven classes, each with 10 samples.

In the experiments, as the same as above, we still apply boot-
strap technique. nj = 6 training samples are randomly drawn
from each class and applied to estimate the mean and covariance
matrices. The remaining samples are employed as test samples
to verify the classification accuracy. The same data set is used
with different classification methods. We also adopt PCA for
the purpose of getting a lower dimension data set. The classi-
fication results for eigen-face are shown in Table 3. In Table 3,
d stands for the first d-dimension of the eigen-face, the clas-
sification accuracy is reported in percentage, and the value in
parentheses represents the standard deviation. Furthermore, the
dash lines represent that the covariance matrix is singular, in
which case reliable results cannot be obtained.

In this eigen-face experiment, KLIM estimators are consis-
tently better than LDA and QDA estimators. From the experi-
ments, we can find that classification accuracy of KLIM is bet-
ter than that of LOOC, and is only a litter worse than that of
RDA on average. However, the computation time to estimate
regularization parameters for RDA and LOOC is much longer
than that of KLIM.

5.4. Discussions

From these experiments and previous experiments with
synthetic data [44], we see that the performance of various
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Fig. 4. Examples of face images for two persons in the ORL face database.

Table 3
Mean classification accuracy for eigen-face data

d = 5 d = 10 d = 20 d = 40

LDA 96.0 (0.18) 99.57 (0.01) 99.43 (0.02) –
QDA 80.86 (1.4) – – –
RDA 97.57 (0.19) 99.71 (0.02) 99.86 (0.0) 100 (0)
LOOC 93.0 (0.26) 98.0 (0.11) 98.29 (0.1) 98.14 (0.11)
KLIM 97.43 (0.13) 100 (0.0) 99.43 (0.02) 99.0 (0.03)

classification is generally data-dependent. For example, if all
the classes have the same covariance matrix, LDA will lead
to a higher classification accuracy than that of QDA. The
synthetic data experiment illustrates that the classification ac-
curacy strongly depends on the degree of overlapping between
classes. If the classes are heavily overlapped with highly un-
equal ellipsoidal distribution, LDA’s performance will be very
poor. With properly selected smoothing parameter, however,
KLIM1 is better than RDA except in one case (d = 20). In
the real-world spectra data experiments, KLIM’s performance
is better than all other estimators. These experimental results
indicate that KLIM1 covariance matrix estimator can lead to a
higher classification accuracy, suggesting that KLIM1 is simple
and good-enough for most cases. According to the hypothesis
tests (t-test) applied, there is no statistical evidence (� = 0.05)
for stating the difference of performance between the RDA
and KLIM1 with synthetic data set (p-value equals to 0.161).
On the other hand, KLIM has the mean of the classification
error significantly (� = 0.05) smaller than that of RDA with
real-world data set (p-value equals to 0.012).

From these experiments, we also find that the smoothing pa-
rameter values for KLIM do not require stringent accuracy, as
there exists a range of values in which a higher classification
accuracy can be obtained. This range depends on training sam-
ples distribution. In most cases, however, the smoothing pa-
rameter selection methods employed in this paper work quite
well.

In comparing KLIM1 and KLIM2, KLIM2 estimator leads
to the same or a higher classification accuracy than KLIM1 in
poorly posed problems, but its performance is not as good in ill-
posed problems. One of the possible reason is that in ill-posed
cases, the computation of covariance matrix �̂j is highly vary-
ing, resulting in a large difference in value between averaged
class quantity and single class quantity. This leads to strong
regularization in estimating �̂Q, consequently deteriorating

KLIM2 estimation. Nevertheless, this phenomenon occurs
only in the cases where classes are heavily overlapped. When
the classes are well separated from each other, the probability
of xi belonging to only one class will approach 1, resulting
in � → 0 and KLIM2 automatically reduces to KLIM1. The
results in experiments with synthetic data and from the spectra
data set, consequently, show that there is little or no significant
difference between KLIM1 and KLIM2.

The regularization parameter selection is a crucial problem
in regularized covariance matrix estimation. In the literature,
the most applied method to selecting regularization parame-
ters is with leave-one-out cross-validation statistical techniques
[11–14]. The direct implementation of the leave-one-out like-
lihood function for each class with Ni training samples would
require the computation of Ni matrix inverses and determi-
nants at each value of the regularization parameter, which is
computation-expensive. For the particular case studied in this
paper, we derive a simplified regularization parameter selection
criterion (Eq. (37)) based on MDL principle. It gives a theo-
retical guide to select regularization parameter, which is sim-
ple for users, and can significantly reduce computation time
without loss of the classification accuracy. Using this formula
to estimate regularization parameter obviously requires much
less computation work than using the cross-validation method.
If we count the order of computation time is O(N2), while the
cross-validation method requires at least an order of O(N4)

computation. In the face recognition experiments, the cross-
validation method takes about 20.51 s for regularization pa-
rameters estimation in the case of d = 40, while using the
estimation formula to calculate the regularization parameter,
it only takes about 0.0037 s, this is consistent with the above
analysis.

Compared with the following regularization parameter esti-
mation formula which we proposed heuristically in Ref. [45],

h = 1

dN3

N∑
i=1

N∑
j=1

‖xj − xi‖2, (38)

we can find that it is a special case when 2d=N in Eq. (37). This
clearly demonstrates that our heuristic method has established
a theoretical basis.

6. Conclusions

In this paper, based on MDL principle, the KLIM covari-
ance matrix estimation was derived and investigated for the
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classification problem. An efficient smoothing parameter ap-
proximation formula was derived, and the approximation was
found to be accurate for most cases in our experiments. With the
KL information measure, total samples can be used to estimate
the smoothing parameter, making it less computation-expensive
than using leave-one-out cross-validation method proposed in
the literature. With the MDL principle based estimation method,
more than half of the experiments show that the obtained KLIM
estimators work well, as they achieve higher classification ac-
curacy than RDA. Besides, in all experiments, KLIM estimators
are consistently better than QDA and LDA estimators. How-
ever, there are still some open problems to investigate as future
work. For example, we can compare the dimensionality reduc-
tion with regularization technique in various high-dimension
data sets. Also, we can study the kernel method combined with
discriminant analysis as well as their applications to the face
recognition problem. We can further study Monte Carlo method
in the application of covariance matrix estimation in detail, and
investigate the classification accuracy problem in data sets with
heavily overlapped classes.
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Appendix A.

Derive the smooth parameter estimate formula with Taylor
approximations.

Rewrite the integral in the form

J (h) = −
∫

ph(x) ln p(x, �) dx +
∫

ph(x) ln ph(x) dx

= J0(h) + Je(h), (A.1)

where

J0(h) ≡ −
∫

ph(x) ln p(x, �) dx

Je(h) ≡
∫

ph(x) ln ph(x) dx.

We can apply the Taylor expansion of ln p(x, �) with respect
to x to the function at x = xi and only keep the second order
term. Replacing the integral by an average over the data xi , it
results in the approximation of J0,

J0(h) ≈ J01(�) + hJ r(�) (A.2)

with

J01(�) = − 1

N

N∑
i=1

ln
k∑

j=1

�j G(xi , mj , �j ),

Jr(�) = − 1

2N

N∑
i=1

Trace[∇x∇x ln p(xi , �)]. (A.3)

The logarithmic mixture density Hessian matrix can be com-
puted as

∇x∇x ln p(xi , �)

=−
⎧⎨⎩

k∑
j=1

P(j |xi , �){�−1
j −�−1

j (xi−mj )(xi−mj )
T�−1

j }

+
⎧⎨⎩

k∑
j=1

P(j |xi , �)[(xi − mj )
T�−1

j ]T

⎫⎬⎭
×

⎧⎨⎩
k∑

j=1

P(j |xi )[(xi − mj )
T�−1

j ]
⎫⎬⎭

⎫⎬⎭ . (A.4)

Similar to J0, we can obtain the Je(h) term as follows:

Je(h) ≈ 1

N

N∑
i=1

R(xi , h) + h

2N

N∑
i=1

Trace

× [∇x∇xR(xi , h)], (A.5)

where

R(xi , h) ≡ ln ph(xi ).

∇x∇xR(xi , h)= 1

h2

⎧⎨⎩
N∑

j=1

�(xi , xj )[(xi−xj )(xi−xj )
T−hId ]

−
⎡⎣ N∑

j=1

�(xi , xj )(xi − xj )

⎤⎦

×
⎡⎣ N∑

j=1

�(xi , xj )(xi − xj )

⎤⎦T
⎫⎪⎬⎪⎭

with

�(x, xi ) = G(x, xi , hId)∑N
j=1G(x, xj , hId)

and note that

N∑
i=1

�(x, xi ) =
N∑

i=1

G(x, xi , hId)∑N
j=1G(x, xj , hId)

= 1.
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With this relation, we get

h

2N

N∑
i=1

Trace[∇x∇xR(xi , h)]

= 1

2Nh

N∑
i=1

⎧⎨⎩
N∑

j=1

�(xi , xj )[‖xi − xj‖2]

−
∥∥∥∥∥∥

N∑
j=1

�(xi , xj )(xi − xj )

∥∥∥∥∥∥
2
⎫⎪⎬⎪⎭ − d

2
.

Now the function J (h) can be computed based on the original
samples with summation instead of integration. That is,

J (h) = J0(h) + Je(h)

≈ J01(�) + hJ r(�) + Je(h). (A.6)

For very sparse data distribution, we can use the following
approximation:

ph(x) ln ph(x) ≈ 1

N

N∑
i=1

G(x, xi , hId) ln
1

N
G(x, xi , hId)

= 1

N

N∑
i=1

G(x, xi , hId)

[
−d

2
ln(2�h)

− 1

2h
‖x − xi‖2 − ln N

]
Je(h) =

∫
ph(x) ln ph(x) dx

≈ − d

2
ln(2�h) − d

2
− ln N .

In this case we get the approximation formula for J (h),

J (h) ≈ J01(�) + hJ r(�) − d

2
ln(h) + C, (A.7)

where C is a constant irrelevant to h.
Taking partial derivative of J (h) to h and let it be equal to

zero,

�

�h
J (h) = Jr(�) − d

2h
= 0

the rough estimation formula is then obtained as

h = d

2Jr(�)
. (A.8)
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