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Abstract: Nowadays, more and more scientific applications are moving to 
cloud computing. The optimal deployment of scientific applications is critical 
for providing good services to users. Scientific applications are usually 
topology-aware applications. Therefore, considering the topology of a 
scientific application during the development will benefit the performance of 
the application. However, it is challenging to automatically discover and make 
use of the communication pattern of a scientific application while deploying 
the application on cloud. To attack this challenge, in this paper, we propose a 
framework to discover the communication topology of a scientific application 
by pre-execution and multi-scale graph clustering, based on which the 
deployment can be optimised. In addition, we present a set of efficient 
collective operations for cloud based on the common interconnect topology. 
Comprehensive experiments are conducted by employing a well-known MPI 
benchmark and comparing the performance of our method with those of other 
methods. The experimental results show the effectiveness of our topology-
aware deployment method. 
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1 Introduction 

Scientific computing usually needs huge computing resources to carry out large-scale 
scientific experiments. In addition, the data transportation in scientific experiments 
requires a high bandwidth. Nowadays, a lot of scientific applications are deployed in grid 
systems because they have a high performance and massive storage. Traditional grids are 
based on batch-queue mechanisms that execute programs according to a pre-established 
scheduling policy, and they offer scalability by increasing the number of utilised 
computing nodes (Evoy et al., 2011). However, building a grid system is extremely 
expensive and it is not available for scientists all over the world to use. Recently, cloud 
computing has been under a growing spotlight as a possible solution for providing a 
flexible, on-demand computing infrastructure for scientific applications (Hoffa et al., 
2008; Gunarathne et al., 2011). Compared with other computing platforms, cloud 
computing is deemed as the next generation of IT platforms and promising to be a 
cheaper alternative to supercomputers and specialised clusters, a much more reliable 
platform than grids, and much more scalable platform than the largest common clusters 
or resource pools (Buyya et al., 2000; Foster et al., 2008). However, the nature of 
distributing and latency/bandwidth diversity of cloud nodes makes deploying and 
executing the scientific applications over clouds a challenging problem. 

There are three kinds of methods for deploying applications on cloud: random based, 
ranking based and clustering based. A random method selects cloud nodes randomly. A 
ranking method will rank available cloud nodes based on their Quality of Service (QoS) 
values and select the best ones. Ranking methods are usually used for computation-
intensive applications, but are not appropriate for communication-intensive applications 
[e.g. Message Passing Interface (MPI) programs] (Fan et al., 2011). The reason is a 
ranking method cannot consider the communication performance between cloud nodes. 
For deploying communication-intensive applications, clustering-based methods (Fan  
et al., 2011; Fan et al., 2012a) are proposed. The basic idea of a clustering-based method 
is to cluster the cloud nodes that have a good communication performance together to 
deploy an application. 

Scientific applications can usually be decomposed into interdependent components, 
connected according to a specific topology and capable of exploiting different types  
of computational resources: this is what we call topology-aware applications (Bar  
et al., 2009). However, current deployment methods rarely consider the communication 
topology information of deployed applications. Thus, in the general case, for a clustering-
based method, an application may continuously communicate back and forth between 
clusters, with a significant impact on performance. Therefore, we need to consider 
topology information when deploying scientific applications. A few approaches try to use 
the topology information to improve the performance of systems (e.g. Bar et al., 2009). 
These approaches usually need users to describe a topology for a deployed application. 
However, this requirement is not practical in cloud computing, since the scientific 
application may not be developed by the user, and even the sources may be not available. 
In this paper, we propose a topology-aware framework to automatically discover 
topology information and use the topology information during deployment. 

Collective operations are often the critical factor determining the ultimate 
performance of parallel scientific applications. Therefore, how to optimise the collective 
operations is a challenge for researchers. Existing approaches usually optimise collective 
operations via implementation of collective operations algorithm (Almási et al., 2005) or 
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MPI library (Hoefler et al., 2011). However, implementation of collective operations 
algorithm or MPI library is difficult to a cloud user, since the cloud user may not be the 
developer of a scientific application. In order to optimise collective operations in cloud 
environment, we analyse the common interconnect topology of collective operations and 
deploy scientific applications based on these common interconnect topology. 

This paper is an extension of our conference paper (Fan et al., 2012b). Compared 
with the work in Fan et al. (2012b), the following extensions can be found: 

 We analyse the common interconnect topologies of collective operations and 
propose a topology-aware method to optimise collective operations. Instead of 
improving the collective operations algorithms directly, our topology-aware method 
optimises collective operations based on their common interconnect topologies. 

 For determining the appropriate value of logical topology structures, we analyse the 
relation between a logical topology and its physical topology structures, and present 
appropriate logical topology structures via experiments. 

 More extensive real-world experiments have been conducted. 

The rest of this paper is organised as follows: Section 2 discusses the related work; 
Section 3 introduces the motivation and the system architecture; Section 4 presents our 
topology-aware deployment method; Section 5 describes the experiments and Section 6 
concludes the paper. 

2 Related work 

Recently, scientific applications in clouds have attracted great interests, since clouds 
provide an alternative to clusters, grids and supercomputers for scientists at a lower cost 
(Petruch et al., 2011). For deploying applications or services on distributed systems or 
clouds, a number of approaches have been proposed. BOINC (Anderson, 2004) is a 
volunteer computing framework, which uses a random method to select the nodes for 
deployment. Although it is easy to choose nodes randomly, the performance is often 
poor. RIDGE (Budati et al., 2007) is a reliability-aware system that uses the prior 
performance and behaviour of a node to make more effective scheduling decisions. 
Sonnek et al. (2007) propose the schedule algorithms that employ the estimated 
reliability ratings of nodes for task allocations. QoS can be employed for describing  
the non-functional information of cloud nodes (Sun et al., 2011; Zheng et al., 2010; 
Zheng et al., 2011). CloudRank (Zheng et al., 2010) is a QoS-driven component ranking 
framework for cloud computing. Zheng et al. (2012) propose a component ranking 
method for fault-tolerant cloud applications. Kang et al. (2011) propose a user-
experience-based mechanism to redeploy cloud services. These approaches are ranking-
based methods and usually used for computing-intensive applications. Zheng and  
Lyu (2013) propose two personalised reliability prediction approaches of web services 
and recommend the best web services to the user based on the prediction result. Scientific 
applications usually have a lot of communications between the involved nodes.  
However, ranking methods merely consider node performance, without the relationship 
between nodes (e.g. the communication between cloud nodes), which is important for 
communication-intensive scientific applications. The sizes of data have grown 
exponentially in the past, and data have been distributed widely in a grid or cloud 
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environment (Taniar et al., 2008). In order to improve the performance of data-intensive 
applications, Yuan et al. (2010) propose a matrix-based k-means clustering strategy for 
data placement in scientific cloud workflows. SSS (Nakada et al., 2012) is a MapReduce-
based stream processing system, which is capable of processing the streams of large-
scale static data. Sailfish (Rao et al., 2012) is a new MapReduce framework for large-
scale data processing. Different from the preceding existing work, our work focuses on 
the optimal deployment of the scientific applications on cloud platforms and the 
communication performance. However, for data-intensive applications, we believe our 
method is also feasible. 

There are also existing literatures for improving the communication performance  
of the applications in cloud. Hoffa et al. (2008) indicate that the communication 
performance is important for the scientific applications in cloud computing. Ostermann  
et al. (2009) analyse the performance of the EC2 cloud computing services for scientific 
computing. Koehler et al. (2010) present a service-oriented infrastructure that integrates 
grid computing technologies with a cloud infrastructure to support the scheduling of 
dynamic scientific workflows. P4P (Xie et al., 2008) uses application layer traffic 
optimisation to control the traffic between applications and network providers. Bessai  
et al. (2012) propose three bi-criteria complementary approaches to tackle the allocation 
and scheduling workflow problems in cloud environments. Chronos (Kapoor et al., 2012) 
is an architecture to reduce data centre application latency especially at the tail. Based on 
the cross-service information and user locations, Kang et al. (2012) propose a latency-
aware co-deployment mechanism for cloud-based services. We propose (Fan et al., 2011; 
Fan et al., 2012a) a framework that considers the node relations and uses clustering 
analysis to deploy communication-intensive applications. In an Infrastructure-as-a-
Service (IaaS) cloud, resources or services are provided to users in the form of Virtual 
Machines (VMs). Therefore, several schedule algorithms based on virtual machines are 
proposed. Chen et al. (2011) propose a static method for tasks placement and scheduling 
based on virtual machines. Li et al. (2012) present a resource optimisation mechanism in 
heterogeneous IaaS federated multi-cloud systems, which enables pre-emptable task 
scheduling. Compared with our work in this paper, the existing work does not consider 
the communication topologies of the scientific applications in cloud computing, and a 
poor performance or overload may occur in some scenarios when using these methods. 

There are also some existing literatures for running or deploying applications  
with respect to topology information. In Lacour et al. (2005), a generic application 
description model is proposed for the automatic deployment of the applications on 
computational grids. Bar et al. (2009) design a topology-aware grid middleware to 
schedule the topology-aware applications in grids. Coti et al. (2009) propose a topology-
aware approach to deploying MPI applications in grid. In Bhatele et al. (2009), an  
API for topology-aware task mapping is introduced. Chang et al. (2012) present  
a placement algorithm that exploits the Euclidean triangular inequality property of 
network topologies. All of these approaches need users or developers to describe the 
communication patterns of scientific applications, and then map or schedule tasks on 
nodes. However, it is not practical for cloud users to provide communication patterns. 
Compared with the existing methods, we use pre-execution and clustering analysis to get 
topology information automatically. 

For many parallel programs, such as MPI program, collective operations are critical. 
The speed of MPI collectives is, needless to say, often the critical factor determining the 
ultimate performance of the applications. To improve the performance, a number of 
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collective algorithms have been proposed. In Kumar et al. (2008) and Kandalla et al. 
(2010), some topology-aware collective communication algorithms are presented for 
large-scale clusters. Träff (2002) uses a topology mechanism to implement MPI. Hoefler 
et al. (2011) propose a new scalable process topology interface for MPI 2.2. Faraj and 
Yuan (2005) present a system that produces efficient MPI collective communication 
routines. Almási et al. (2005) implement a number of optimised collective operations  
on BlueGene/L systems. These approaches focus on how to implement the underlying 
library or collective operations. Different from previous works, our work focuses  
on how to provide an optimal deployment for collective operations. We have analysed 
the common interconnect topologies of collective operations and use the topology 
information to optimise collective operations. 

3 Motivation and architecture 

3.1 Motivation 

Here we describe a topology-aware application that we will use for testing our topology-
aware deployment method. 

A scientific application usually needs collaborations of computing nodes, and there 
are a lot of communications between these nodes. An example of a communication 
information graph of an MPI application is shown in Figure 1. The numbers on the left 
are the node numbers (this application was deployed on eight nodes) and on the right is 
the communication graph (x-axis represents time). White arrows represent the messages 
exchanged between nodes. The application shown in Figure 1 has been parallelised in a 
manner that combines eight nodes to conduct this MPI application, and Figure 1 shows 
the following: 

 The communications in the first four nodes are frequent, and the same situation 
happens in the last four nodes. However, the communications between these two 
groups are obviously less. 

 Based on the communication information, we can partition the first four nodes into 
the same communication topology structure and the rest of the nodes into another 
structure. 

Figure 1 The communication graph of an MPI application (see online version for colours) 
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In order to deploy a scientific application on cloud, we can use clustering methods to 
select nodes, since a clustering method can reflect the relations between nodes and 
partition the similar nodes (low latency between nodes) into the same cluster. However, 
the result of a clustering method would be very poor in the following scenarios. 

 Choose nodes from multi-clusters: the nodes in a same topology structure may be 
from different clusters if the cloud service provider selects the nodes across multi-
clusters. For example, in Figure 1 nodes (0–3) should be selected from one cluster. 
However, in an across clusters scenario, nodes 1 and 2 may be selected from one 
cluster, but the rest of the nodes from another cluster, which may lead to poor 
performance. 

 Overload: Taniar and Leung (2003) indicate that overload has been one of the major 
problems in a distributed and parallel environment. All selected nodes may be in the 
same cluster when using a ranking or clustering method. Under this situation, if 
users deploy several applications on these nodes, overload will happen. 

In order to address the aforementioned problems, we propose a topology-aware 
framework to deploy scientific applications on cloud based on communication topology. 
Our method can take into account not only the communication performance between 
nodes but also the communication topology of a scientific application. The details of this 
framework will be introduced in the following section. 

3.2 Topology-aware node selection framework 

Figure 2 shows the architecture of our proposed topology-aware method for deploying 
scientific applications on cloud. The workflow of our framework is as follows:  

Figure 2 Topology-aware deployment framework 
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 A cloud user submits an application to the cloud environment. This application  
will be sent to the pre-execution server. The pre-execution server takes charge of 
discovering and analysing the communication topology of the application. To ensure 
effectiveness of pre-execution phase, we employ a method that reduces the problem 
size of the application when pre-executing the application (Ananth et al., 2003). 
After pre-execution, the communication information will be recorded, based on 
which the topology can be extracted. In our experiments (Section 5) using MPI 
programs, we develop a slog-2 logfile (Chan et al., 2008) analysis tool that can 
discover the communication topology of an MPI program based on the MPI 
slog2sdk (SLOG-2 software development kit) (Chan et al., 2008), which can record 
the message exchanges of an MPI program when it is running. More details will be 
introduced in Section 4.1. 

 Each cloud node runs a monitor program, which takes charge of monitoring the 
computing and communication performances of the cloud node. To precisely 
measure the computing and communication performances of the cloud node, we use 
the average value during a period as the value of each performance. According to the 
communication performance, cloud nodes will be partitioned into different clusters 
via clustering analysis. 

 Based on the communication topology of a scientific application, the cloud service 
provider can map the topology of the cloud node clusters with the topology of the 
application, and select nodes from appropriate clusters. More details of node 
partition and selection will be introduced in Section 4.2. 

4 Deploy method 

This section presents our topology-aware method for deploying scientific applications in 
cloud, which is explained in two steps. First, we will introduce how a multi-scale 
clustering algorithm can be used to discover the communication topology of a scientific 
application. Next, we will use a spectral clustering method to partition cloud nodes  
into different clusters and present how cloud nodes from the generated clusters can be 
selected with respect to the topology information. 

4.1 Logical topology discovery 

The communication pattern of a scientific application can be modelled by an undirected 
(weighted) graph, and it is assumed that two adjacent nodes in the graph have some 
communications. An undirected graph is usually represented as an adjacency matrix, 
each entry of which represents the communication frequency between the node pair. For 
example, the following is an adjacency matrix of a scientific application that is deployed 
on four nodes: 

0 3 1 0

3 0 0 1

1 0 0 3

0 1 3 0

A B C D

A

B

C

D

 
 
 
 
 
 

 (1) 
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From equation (1), we can observe that there have been a lot of communications in  
the node pair (A, B) or (C, D), and less in (A, C) and (B, D). In this paper, we formulate 
the communication topology discovery problem as a graph clustering problem: we  
want to find the structure of adjacency, in which nodes are joined together in a  
tightly knit structure (which means that the nodes within the same structure have more 
communications with each other). And there are only looser connections between 
structures, which mean the nodes in different structures have less communications. 

Usually, a graph clustering algorithm partitions a set of nodes into k groups, where k 
is an input to the algorithm. Therefore, we should know the value of k before using a 
graph clustering algorithm to discover topology. However, this assumption is not 
practical for cloud computing, since a cloud user or provider may not be the developer of 
the applications to be deployed. To attack this challenge, we use a hierarchical clustering 
algorithm (Jain et al., 1999). A hierarchical clustering algorithm does not assume  
any particular number of clusters. Instead, a desired number of clusters can be obtained 
by ‘cutting’ the dendrogram at a proper level (Jiang et al., 2004). An example of 
dendrogram is shown in Figure 3. The results of a hierarchical clustering algorithm  
are often improved with refinement algorithms, which iteratively reassign nodes to 
different clusters (Karypis et al., 1999). In this subsection, we use a multi-scale 
refinement algorithm (Noack and Rotta, 2009; Hadany and Harel, 2001) to discover a 
communication topology. The details of graph clustering and clustering criteria will be 
introduced in the following. 

Figure 3 Dendrogram graph 

 

An undirected graph G is defined as (V, E), where V is the node set and E is the edge set. 
The weights of edges are defined by a total function f:V × V→N. For an undirected graph, 
f(u, v) = f(v, u), where u, v  V. The degree of a node v, denoted by deg(v), is defined as 
the total weight of its edges, i.e. ( , )

u V
f v u

 . The degree of a nodes set deg(C) is 

defined as deg( )
u C

u
 ; and the weight of two node sets,  1 2,f V V  is defined as 

 
,1 2

,
u V V V

f u v
  . A merging operation assigns to each cluster pair (C, D) a real number  
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called merging priority, and thereby determines the order in which an algorithm merges 
cluster pairs. In this paper, we use weight density as a merge prioritisation to merge 
cluster pairs. The weight density of a cluster pair is defined as 

( , )

deg( )deg( )

f C D

C D
 (2) 

Informally, we denote a subgraph as a graph cluster if it has many internal edges and few 
edges to the remaining. This can be formalised by defining a measure for the coupling 
between subgraphs, such that a smaller coupling indicates a better clustering. 

Modularity is a quality measure for graph clustering. Newman (2004) proposes a 
modularity measure of the coupling for k disjoint sets of nodes, which is defined in 
equation (3): 

 
   

 

2

1 2
, =1

, deg
, , =

| | deg

k
i j i

k
i j

cut V V V
Q V V

E V

 
 
 
 

  (3) 

In equation (3), | |E  is the number of edges, ( , )i jcut V V  is the sum of the weights of the 

cut wedges, the first term is the fraction of all edges that are within iV  and the second 

term is the expected value of this quantity (Noack, 2007). It can easily be verified that 
merging two clusters C and D increases the modularity by the following equation: 

, 2

2 ( , ) 2deg( )deg( )
:=

( , ) deg( )C D

f C D C D
Q

f V V V
   (4) 

In addition, moving a node v from its current cluster C to another cluster D increases the 
modularity, which is explained by equation (5): 

   
 

       
 2

2 , 2 , 2deg deg 2deg deg
:=

, deg
v D

f v D f v C v v D v C c
Q

f V V v


   
   (5) 

Our multi-scale algorithm for discovering a logical topology has two stages: first, use a 
hierarchical algorithm to partition nodes into clusters; second, use a refinement algorithm 
to refine the clusters. The algorithm is shown in Algorithm 1. 

Algorithm 1: Multi-scale graph clustering algorithm 

Input: Adjacency matrix M, Edge set E, Node set N 

Output: Topology structure that includes k groups 

1 bMerge=true; 

2 while bMerge do 

3 bMerge = false; 

4 Use Equation 2 to calculate weight densities; 

5 E = Sort(E) //based on weight density; 

6 foreach e  E do 

7 if e.weight density < atedges/atparis then 
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8 Break 

9 end 

10 if e.startnode or e.endnote merged then 

11 Continue 

12 end 

13 n = Merge e.startnode and e.endnote; 

14 bMerge=true; 

15 N = N – {e.startnode} – {e,endnote}; 

16 N = N  + {n}; 

17 end 

18 Calculate new adjacency matrix M, Edge set E; 

19 end 

20 l=level of dendrogram; 

21 for l from lmax – 1 to 1 do 

22 repeat 

23 (v, D) ← best node move; 

24 if ΔQv←D > 0 then 

25 Move node v to the cluster D 

26 end 

27 until ΔQv→D ≤ 0; 

28 end 

 Step 1 (4–5): Calculate weight density via equation (2), and then descend edge 
rankings based on weight densities. 

 Step 2 (lines 6–18): If the start node and end node of an edge have been not merged, 
the algorithm will merge these two nodes when the weight density of the edge is 
greater than /atedges atparis , where atedges  is the sum of the edge weights of the 

graph and atparis  is the square of the sum of the node weights. Then, calculate the 

new adjacency matrix M and edge E, until no more clusters can be merged. 

 Step 3 (lines 20–23): l is the level of dendrogram (cf. Figure 3) and equal to the loop 
count in Step 2. In line 23, the algorithm uses equation (5) to calculate the 
modularity of moving a node to another cluster and selects the best node move  
(v, D). Here the best node move is a move with the largest modularity increase  
(cf. equation 5). 

 Step 4 (lines 24–27): Move v to D, if (v, D) is the best move and ΔQv→D > 0. The 
process will be repeated until ΔQv→D ≤ 0. 

Step 2 of Algorithm 1 means two nodes merge when , >0C DQ  (equation 4); the proof 

can be seen in the following. 
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Proof: Two nodes merge when the weight density of the edge is greater than 
/atedges atparis  in step 2. Hence, 

 
   

,
>

deg deg

f C D atedges

C D atparis
 

where atedges = f(V, V) is the sum of the weights of all edges and atparis = deg(V)2 is the 
square of the degree of all the nodes. Hence, 

 
   

 
 2

, ,
>

deg deg deg

f C D f V V

C D V
 

since all the items are positive numbers. Hence, 

 
 

   
 2

, deg deg
>

, deg

f C D C D

f V V V
 

Hence, 

 
 

   
 2

2 , 2deg deg
> 0

, deg

f C D C D

f V V V
  

which means two nodes merge when , >0C DQ . 

The multi-scale algorithm can generate the topology structure of a scientific 
application automatically. In the next section, we will explain how the physical topology 
of the nodes in cloud can be discovered, and then map a logical topology to a physical 
topology. 

4.2 Physical topology discovery 

Topology-aware deployment requires the information of two aspects: the logical 
topology (or communication topology) and the physical topology (or cloud node 
topology). In the previous subsection, we describe the method to obtain a logical 
topology. This subsection introduces the method of obtaining the physical topology of 
cloud nodes. 

If we restrict the communications in applications only between neighbour nodes, we 
can have a better utilisation of the available bandwidth. Therefore, we want to have the 
physical topology of cloud nodes, and the nodes that are close to each other will be in the 
same topology structure. The nodes of different clusters will have a higher latency. Thus, 
if we denote the latency relations of the nodes in cloud as an adjacency matrix, the 
physical topology discovery problem can also be formulated as a graph clustering 
problem. In our previous works (Fan et al., 2011; Fan et al., 2012a), we propose a 
spectral clustering-based method to discover the topology of cloud nodes. In this paper, 
we use the discovery method in Fan et al. (2012a) to get the topology of cloud nodes. 
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Figure 4 Map tasks without considering topology 

 

After getting a physical topology, cloud nodes are partitioned into different clusters. 
Then, we can map the task to these nodes for deployment. In the map phase,  
we may obtain poor performance if we do not consider the communication topology. We 
use a simple example in Figure 4 to demonstrate the problem. In Figure 4, the application 
has eight tasks and should be deployed on 15 cloud nodes. We can observe the 
communications between these tasks can be partitioned into two topology structures, 
each of which includes four tasks, and cloud nodes are partitioned into three clusters, 
each of which has five nodes. In this scenario, nodes should be selected from different 
nodes clusters, since the number of nodes in each cluster is smaller than the number of 
tasks. If we use the map method that does not consider the communication topology  
(e.g. the method introduced in Fan et al., 2012a), it will select all the nodes from the first 
cluster for deploying tasks 1–5, and three nodes from the second cluster for deploying the 
tasks 6–8. However, in this scenario, there have been a lot of communications between 
the first cluster and the second cluster, since task 5 deployed on the first cluster has a lot 
of communication with tasks 6–8. Therefore, mapping tasks to cloud nodes without 
considering topology information may lead to a poor performance. 

In order to address the problem, we select the nodes for deployment based on the 
logic topology information of an application. As shown in Figure 5, we first rank these 
three clusters based on the performance of these clusters and select the first two clusters. 
Then, we select four nodes from the first cluster for deployment in tasks 1–4, and select 
four nodes from the second cluster for deployment in tasks 5–8. 
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We use a greedy algorithm (Fan et al., 2012a) to rank the generated clusters. After 
mapping and greedy ranking, the required cloud nodes of deploying an application can be 
selected. 

Figure 5 Select nodes based on topology structures 

 

4.3 Collective operations 

Collective communication is an important and frequently used component of parallel 
scientific applications. A study conducted at the Stuttgart High-Performance Computing 
Center shows that 45% of the overall time on their Cray T3E is spent on MPI routines 
(Coti et al., 2009; Rabenseifner, 2004). Collective operations have been studied and 
optimised during the last decades. A hierarchical broadcast algorithm is presented in 
Cappello et al. (2001). Furthermore, topology information can be used to organise point-
to-point communications within collective operations. MPICH-G2 (Karonis et al., 2000) 
uses topology-discovery features to implement a topology-aware hierarchical algorithm. 
These approaches are focused on implementing and optimising MPI library and 
collective operations. However, cloud users may not be the developer of the applications, 
and a cloud platform usually has a special environment (e.g. OpenMPI) (Gabriel et al., 
2004). Thus, it is difficult for users or providers to optimise collective operations. To 
attack this challenge, we analyse the common topologies of collective operations and use 
topology information and hierarchical models to optimise collective operations. 
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Figure 6 MPI_Scatter operations on different topologies. (a) Balance binary tree; (b) ring;  
(c) hypercube; (d) mesh 
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Figure 6 MPI_Scatter operations on different topologies. (a) Balance binary tree; (b) ring;  
(c) hypercube; (d) mesh (continued) 

 

(d) 

We introduce a variety of topologies usually used for collective operations before 
describing our optimisation method. Figure 6 shows four topologies (balance binary tree, 
ring, hypercube and mesh) used to implement Scatter operations. Figure 6(a) displays the 
detail communication steps for a Scatter operation on eight-node tree. In Figure 6(a), the 
source node (node 0) contains all the messages. The messages are identified by the labels 
of the destination nodes. In the first communication step, the source transfers half of the 
messages to node 4. In subsequent steps, each node that has some data transfers half of it 
to a related node (e.g. node 0 sends data to node 2, and node 4 to node 6) that has not yet 
received any data. There is a total of logN (N is the number of nodes) communication 
steps. The communication steps of the Scatter operations on ring and hypercube 
topologies are similar to those of balance binary tree. Figure 6(d) shows a Scatter 
operation on a 16-node mesh, which also have logN communication steps. From  
Figure 6, we can observe that the communication of MPI_Scatter can be organised as a 
hierarchical model, where messages are transmitted form the top level to the lowest level, 
and the nodes can be partitioned into different topological groups based on  
the communications. For example, in Figure 6(a), we can partition eight nodes into  
two topological groups (left subtree of root node and right subtree of root node), each  
of which has four nodes. Therefore, instead of implementing special collective operation 
algorithms, we can use the hierarchical model and the topology information for 
optimisation. 

In order to use the topology information for collective operations, we have the 
following rules for mapping nodes to the structures and the corresponding 
communicators: (a) each topological structure is assigned with a set of nodes which are 
close to each other; (b) for all the groups, a master is defined (e.g. rank 0 is the master of  
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all groups) and a sub-master is defined within some groups (e.g. rank 4 is a sub-master of 
a group); (c) the nodes within some topology structures have special ranks, e.g. the nodes 
mapped in a given topology structure have consecutive in-Scatter operations, because the 
process with rank 0 sends messages to the processes with ranks 1 and 2, and the process 
with rank 2 sends message to the process with rank 3. Next, we use three collective 
operations as examples to show our optimisations. 

MPI_Scatter: We start a Scatter operation at the process of rank 0 (root node) and 
conduct the operation in a hierarchical way: a root node (rank 0) is defined for topology 
structures and a sub-root is defined in each topology structure. Messages are sent from 
root node to sub-root nodes. Each sub-root node then sends the messages to its ‘sub-
structure’ nodes, until the nodes at the lowest level are reached. 

MPI_Bcast: Broadcast operations are quite similar to that of Scatter operations. The 
communication patterns of one-to-all Broadcast and Scatter are identical. The only 
differences are the size and the content of messages. Therefore, we can conduct a 
broadcast operation in the same way as that of Scatter operations. 

MPI_Alltoall: Alltoall is a generalisation of one-to-all broadcast, and all the nodes 
involved simultaneously initiate a broadcast. We can use a hypercube to conduct Alltoall 
operations. In hypercube mode, communications take place along a different dimension 
of the eight-node hypercube in each step. In every step, pairs of nodes exchange their 
data and double the size of the messages to be transmitted in the next step by 
concatenating the received messages with their current data. For example, in Figure 6(c), 
data are simultaneously exchanged in these four node pairs {(0,1),(2,3),(4,5),(6,7)}, and 
then communications take place in {(0,2),(1,3),(4,6),(5,7)}. At the last step, each node 
pair in {(0,4),(1,5),(2,6),(3,7)} exchanges data. 

4.4 Grain of logical topology structures 

In Sections 4.1 and 4.2, we obtain the logical and physical topology structures. We define 
the number of logical topology structures as klog and the number of physical structures as 
kphy. Instead of inputting klog before running, multi-scale algorithm can obtain an adequate 
klog automatically. However, the value of klog may not be proper in some scenarios when 
mapping a logical topology to a physical topology, since the value of kphy will greatly 
influence the result of mapping. For example, after obtaining logical and physical 
topologies, klog = 4 and kphy = 4. Thus, the four logical topology structures are mapped to 
the four physical topology structures, which means we select the nodes from four 
physical topology structures for deploying scientific applications. However, the third or 
fourth cluster has a poor performance (descending cluster ranking). Thus, the nodes that 
have poor performance may be selected. To address this problem, we analyse the relation 
between klog and kphy, and there are two scenarios of mapping a logical topology to a 
physical topology: 

 klog > kphy: intuitively, the value of klog should be reduced to adapt to the value of kphy. 

 klog ≤ kphy: this scenario is more complex than klog > kphy. In this scenario, we need to 
determine whether to reduce the value of klog to adapt to the physical topology 
structures to avoid the problem mentioned earlier. 
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In this paper, we focus on the second scenario, i.e. klog ≤ kphy. In this scenario, we 
determine whether to reduce the value of klog with respect to the value of klog/kphy: if 
klog/kphy is indeed less than a special value, the topology-aware method will be better than 
other methods. For determining an appropriate value of klog/kphy, we conduct a series of 
experiments that compare our topology-aware method with other methods in different 
values of klog/kphy. Based on these experiments, we obtain the appropriate value of klog. 
More details of experiment results will be introduced in Section 5.2. 

5 Experiments 

In this section, we evaluate our topology-aware deployment method by some real-world 
experiments and give a comprehensive performance comparison with other methods.  
We first describe our experiment set-up along with the benchmark, followed by the 
evaluation results. 

5.1 Experiment setup and benchmark 

We carried out our experiments on PlanetLab (Chun et al., 2003), which is a global 
overlay network for developing and accessing broad coverage network services. Our 
experimental environment consists of 100 distributed nodes that serve as cloud nodes. 
Our framework is implemented with JDK 1.6. In Section 2.2, we mentioned that there is 
a monitor program running on every cloud node for evaluating the communication and 
computing performances. To obtain the accurate values of communication performance, 
our framework measures the response time between two nodes periodically and uses the 
average response time during a period as the value of performance. The computing 
power of a cloud node pair is difficult to measure, since cloud nodes are usually 
heterogeneous. For measuring computing power, we run a benchmark (e.g. calculating 
pi) on each cloud node periodically and use the average execution time of two nodes as 
the value of computing power. Our framework ran for about 133 days, and we conducted 
above 9576 times to measure computing power and above 7660 times for communication 
performance. 

Our experiment includes four parts: first, in the case of selecting nodes across 
multiple clusters, we compare the performance of our topology-aware method against 
others; second, we conduct a series of experiments for determining the appropriate value 
of klog/kphy; third, we deploy multiple collective operations applications to justify that our 
topology-aware method is also effective to be deployed in collective operations; and 
fourth, with respect to the load performance, we deploy multiple applications and 
compare the load performance of our method with those of others. Our experiments use 
two MPI benchmarks: NAS Parallel Benchmarks (NPB) and Intel MPI benchmark (IMB) 
(Miguel-Alonso et al., 2007). NPB were derived from Computational Fluid Dynamics 
(CFD) applications. NPB are a small set of benchmark programs (e.g. CG, MG and BT) 
designed to compare the performance of parallel computers and are widely recognised  
as a standard indicator of computer performance. The IMB (Version 3.2) performs a  
set of MPI performance measurements for point-to-point and global communication  
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operations for a range of message sizes. The generated benchmark data fully characterise 
the performance of a distributed system, including node performance, network latency 
and throughput. 

5.2 Performance comparison 

To justify the effectiveness, we compare our topology-aware method with the clustering-
based methods (Fan et al., 2011; Fan et al., 2012a) that only use clustering analysis to 
select nodes for an application without considering the topology information. 

We use the following two metrics in this experiment: 

 Makespan: the makespan of a job is defined as the duration between sending out a 
job and receiving the correct result. 

 Throughput: the throughput of a job is defined as the total Million Operations per 
Second (Mop/s) rate over the number of processes. 

We first use a pre-execution (cf. Section 3.2) and logical topology discoverer  
(cf. Section 4.1) method to get the topology structures of the programs in NPB. Table 1 
shows the topology structure numbers of these programs. The first row of Table 1 
displays the numbers of the nodes used for deployment. The problem size and the 
number of cloud nodes must be assigned when the NPB programs are compiled. In NPB, 
some NPB programs (e.g. CG and MG) can only run on a power-of-2 number of cloud 
nodes. The rest (SP and BT) can only run on a square number of cloud nodes. Therefore, 
SP and BT cannot be deployed on eight nodes. In our experiments, the problem size of 
CG and MG is Class A, the BT and SP are Class B. The entities in Table 1 are the 
numbers of topology structures (e.g. the number of topology structures is two when CG 
is deployed on four nodes) obtained by the logical topology discovery algorithm  
(cf. Section 4.1). In our experiment, we partitioned cloud nodes into three clusters (which 
means kphys = 3). 

Table 1 The number of topology structures of NPB programs 

 Deployed on 4 Deployed on 8 

CG 2 2 

MG 2 2 

SP 2 – 

BT 2 – 

In each experiment, we select a small set of nodes randomly from 100 nodes (e.g. as 
shown in Table 2, we select seven or eight nodes randomly from 100 nodes). Usually, 
selecting nodes is across multi-clusters. In order to obtain precise results, all benchmarks 
were run ten times, and we use the average result. In Tables 2 and 3, topology means our 
topology-aware method and untopology is the method introduced in Fan et al. (2012a) 
that does not consider the communication topology of a scientific application. These 
results in Tables 2 and 3 show that for most of the programs, our topology-aware method 
performs better than untopology method (less execution time and high throughput). The 
reason is our method deploys applications with respect to their communication 
topologies. 
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Table 2 Makespan of different method(s) 

  Topology Untopology 

7 164.9 268.9 
CG.4 

8 110.0 222.1 

7 202.0 248.2 
MG.4 

8 130.7 189.1 

7 81.2 95.5 
BT.4 

8 72.9 83.1 

7 125.1 130.2 
SP.4 

8 94.5 100.6 

14 304.6 461.5 
CG.8 

15 195.9 289.1 

14 136.6 171.4 
MG.8 

15 121.9 170.7 

Table 3 Throughout of different method (Mop/s) 

  Topology Untopology 

7 14.18 7.38 
CG.4 

8 18.62 13.14 

7 23.43 17.88 
MG.4 

8 35.73 30.39 

7 3.07 2.47 
BT.4 

8 4.18 3.77 

7 0.92 0.86 
SP.4 

8 1.06 1.04 

14 5.56 4.75 
CG.8 

15 9.27 6.37 

14 35.2 24.4 
MG.8 

15 34.4 24.2 

Figure 7 shows the detail results of running CG.8 and MG.8 ten times. In most cases, the 
topology-aware method has a better performance. On the contrary, the untopology 
method may have a very poor performance in some cases (e.g. the execute time of CG.8 
is about 1500 s in the fourth execution). The reason is the nodes in some communication 
topology structures may be selected from different clusters. Therefore, the communications 
between nodes have a poor performance. 
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Figure 7 Details of ten results. (a) Details of CG.9; (b) details of MG.9 (see online version  
for colours) 

 
(a) 

 
(b) 

5.3 Grain of logical topology structures 

In this section, we will conduct a series of experiments to determine the grain of logical 
topology structures. The first thing we should do is to demonstrate the necessity of 
determining the grain of logical topology structures. 

We deploy the programs in NPB on 16 nodes. The benchmark in this experiment is 
CG.16, and the number of topology structures is four (klog = 4). We randomly select 30 
nodes from all the nodes and then partition these nodes into four clusters (which means 
the number of physical topology structures is four). Figure 8(a) shows the detailed results 
of executing ten times when the number of logical topology structures equals to four. 
From Figure 8(a), we can observe that the effectiveness of our topology-aware method is 
not obvious (the average makespan of the topology method is 1272.7 s and that of 
untopology method is 1118 s). The reason is that the number of logical topology  
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structures is bigger and the selected nodes are distributed in the clusters that have poor 
performance. For example, in this experiment, because the number of topology structures 
is four, the nodes are selected from four clusters. However, the third or the fourth cluster 
has a poor performance (descending cluster ranking). For justifying this reason, we  
set the number of topology structures to be two, which can be obtained by merging the 
(first, second) and the (third, fourth) topology structures. Figure 8(b) shows the results 
after changing the number of topology structures. We can observe that in most cases, the 
topology method is better than the untopology method (the average makespan of the 
topology method is 426.7 s and that of the untopology method is 575.9 s). The reason is 
the nodes will be selected from the first and the second clusters for deployment when the 
logical topology structures are merged into two, and the nodes selected from the first and 
the second clusters have better performance than those from the third and fourth clusters. 
Therefore, the topology method will be better than the untopology method. 

Figure 8 The results of CG.16 in different number of topology structures. (a) The number of 
topology structures is four; (b) the number of topology structures is two (see online 
version for colours) 

 
(a) 

 
(b) 
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Figure 9 The result of klog > kphy (see online version for colours) 

 

As mentioned in Section 4.4, there are two scenarios when mapping a logical topology to 
a physical topology. Firstly, the logical topology structures need to be reduced when  
klog > kphy. In this scenario, we randomly select 30 nodes from all the nodes and set  
klog = 4 and kphy = 3. We deploy CG.16 on 16 nodes and run ten times. We reduce the 
value of klog to two by merging the (first, second) and (third, fourth) topology structures. 
Figure 9 shows the detail results of CG.16 run ten times. In most cases, topology-aware 
method is better than untopology method (the average makespan of topology method is 
430.1 s and that of untopology method is 494.7 s). This experiment shows our topology-
aware method can obtain better performance after decreasing the value of klog to adapt 
kphy when klog > kphy. 

It is difficult to determine klog when klog ≤ kphy. As mentioned earlier, we make the 
decision with respect to the value of klog/kphy. To study the impact of klog/kphy, we vary the 
values of kphy from 4 to 7 with a step value of 1, and we set klog as 4 and 2 in this 
experiment. The MPI programs used in this experiment are CG.16 and MG.16. All 
benchmarks were run 3 times, and we use the average result. Firstly, we set klog = 4, and 
Figure 10 shows the details of the results of the experiment. 

Figures 10(a–b) show the CG.16 and MG.16 results of makespan. Figure 10 shows  
the makespan of topology-aware method decreases when the value of kphy increased 
(means klog/kphy decreased) from 4 to 7. In addition, we can observe that the performance 
of the topology method is worse than that of the untopology method when klog/kphy ≥ 0.8 
(kphy in [4–5]) and better when klog/kphy ≤ 0.67 (kphy in [6–7]). This is because when klog is 
fine-grained (e.g. klog = 4) and kphy has a small value, it will map a logical topology to the 
clusters that have bad performance. 

We conduct another experiment to study the impact of klog/kphy. In this experiment, we 
reduce klog to 2 that is obtained by merging the (first, second) and (third, fourth) topology 
structures. Figures 11(a–b) show the results of CG.16 and MG.16. Figure 11 shows that, 
in most cases (klog/kphy ≤ 5), the topology-aware method has a better performance than the 
untopology method. The reason is logical topology structures are mapped to the first two 
physical topology structures that have better performance. From Figures 10 and 11, we 
can observe that the performance of the topology-aware method is better than that of the 
untopology method when klog/kphy < 0.6. Therefore, we can reduce the value of klog to 
make klog/kphy < 0.6 for obtaining a better performance when klog ≤ kphy. 
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Figure 10 Impact of klog/kphy when klog = 4. (a) The result of CG.16; (b) the result of MG.16  
(see online version for colours) 

 
(a) 

 
(b) 

Figure 11 Impact of klog/kphy when klog = 2. (a) The result of CG.16; (b) the result of MG.16  
(see online version for colours) 

 
(a) 
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Figure 11 Impact of klog/kphy when klog = 2. (a) The result of CG.16; (b) the result of MG.16  
(see online version for colours) (continued) 

 
(b) 

5.4 Collective operation experiments 

In Section 4.3, we introduced the use of topology information and hierarchical models to 
optimise collective operations. To justify the effectiveness of this method, we compare it 
with the untopology method in Fan et al. (2012a). We use IMB benchmark in this 
experiment. IMB benchmark contains serials of benchmarks, and we choose Scatter, 
Reduce, Alltoall, Bcast and Barrier collective programs. We randomly select 14 and 15 
nodes from all the nodes. These nodes are partitioned into three clusters. We deploy these 
collective operations applications on eight nodes based on the topology information and 
the hierarchical model that we introduced in Section 4.3. Each IMB benchmark should be 
run with some message lengths, except Barrier. In our experiments, the message lengths 
are varied: 2, 4, …, 1024 bytes (21–210). In order to obtain precise results, all benchmarks 
were run five times, and we use the average result. 

Figures 12 and 13 show the results of running collective benchmarks. From the 
figures, we have the following observations: 

 In Scatter and Reduce benchmarks, the topology method obtains the best 
communication performance, i.e. has the least latency time under all the different 
message sizes. The same result is obtained in Alltoall, Bcast and Barrier as well 
(Table 4). 

 With the increasing of message size, the latency also increases, since nodes need 
more time to transfer messages. 

Instead of implementing collective operation algorithms, our optimisation method analyses 
the common topologies of collective operations and uses the topology information and 
the hierarchical model to optimise collective operations. The experimental results show 
the effectiveness of our topology-aware deployment method. 
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Figure 12 Results of collective operations when the number nodes is 15 (see online version  
for colours) 

 

Figure 13 Results of collective operations when the number of nodes is 14 (see online version  
for colours) 
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Table 4 Result of barrier (ms) 

 15 14 

 Topology Untopology Topology Untopology 

1 123.9 149.7 135.8 315.4 

2 115.1 145.3 140.9 141.2 

3 133.8 140.3 128.9 163.8 

4 140.3 128.9 144.8 199.5 

5 130.4 205.8 142.6 151.7 

Average 128.7 154.0 138.6 194.3 

5.5 Load experiment 

In this subsection, we analyse the load performance when deploying multiple 
applications on cloud nodes. As mentioned before, the topology method deploys an 
application based on the communication topology (cf. Figure 5). In this experiment, we 
use the topology method to deploy multi-applications on two clusters, and use the 
untopolgy method to deploy the same applications on one cluster (the untopology method 
cannot consider the communication topology of an application and only uses the best 
cluster). The deployment processes of these two methods are shown in Figure 14. 

Figure 14 Process of deployment 

 

In order to obtain precise results, we partitioned all the nodes into three and four clusters 
for two methods. The benchmarks used in this subsection are CG.4, CG.8 and CG.16. 
The number of topology structures of all benchmarks is two, which means we will deploy 
these applications on two clusters by using the topology-aware method. We change  
the number of deployed applications from five to ten with a step value of 1. The metrics 
used in this experiment are the values of decreasing percentages of communication 
performance and computing performance. Running more scientific applications needs 
more cloud resources, such as bandwidth and CPU. Therefore, the communication 
performance and the computing performance will be decreased. Since the topology 
method deploys applications in multiple clusters, we use the average decreased 
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percentage as the performance of decreasing use of the topology method. Figures 15 and 
16 show the results of decreasing percentages of computing and communication 
performances. 

Figure 15 Decreased percentage of computing performance. (a) Number of clusters is three;  
(b) number of clusters is four (see online version for colours) 

 
(a) 

 
(b) 

Figure 15(a) displays the results when partitioning all nodes into three clusters  
(cf. Section 4.2), and Figure 15(b) shows the results of partitioning nodes into four 
clusters. These results show that: 

 In all cases, the topology method obtains a lower value of decreasing percentage of 
computing performance. The reason is these applications are deployed on multiple 
clusters when using the topology method. This procedure can be viewed as a load 
balancing procedure. 

 With the increasing number of deployed applications, the computing performance is 
decreased gradually. The reason is more resources are consumed after deploying 
more applications. 
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Figure 16 Decreased percentage of communication performance. (a) Number of clusters is three; 
(b) number of clusters is four (see online version for colours) 

 
(a) 

 
(b) 

Figure 16 shows the results of decreasing percentages of communication performance, 
and the results are similar to those of the computing performance experiment. 

6 Conclusion and future work 

In this paper, we propose an automatic topology-aware deployment method for the 
scientific applications in cloud. By taking advantage of pre-execution and multi-scale 
clustering algorithms, our approach does not need cloud users to provide the 
communication patterns of applications. After obtaining topology information, an 
application will be deployed on cloud optimally. Extensive experiments are carried out, 
and the experimental results show that our method outperforms the existing un-topology 
methods. 
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In a cloud environment, scientific applications and cloud nodes have a special 
topology. Currently, we have not considered the user experiences when deploying 
application in cloud. Our next step includes the study of a user-collaboration-based 
method for deployment. In addition, online optimisation is importing schedule tasks on 
IaaS cloud system. Our future work also includes the study of online schedule technology. 
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