
Int. J. Web and Grid Services, Vol. 8, No. 1, 2012 31

A spectral clustering-based optimal deployment

method for scientific application in cloud

computing

Pei Fan, Ji Wang* and Zhenbang Chen

National Laboratory for Parallel and Distributed Processing,
National University of Defense Technology,
Changsha, 410073, China
E-mail: peifan@nudt.edu.cn
E-mail: wj@nudt.edu.cn
E-mail: zbchen@nudt.edu.cn
*Corresponding author

Zibin Zheng and Michael R. Lyu

Shenzhen Research Institute,
Department of Computer Science and Engineering,
The Chinese University of Hong Kong,
Hong Kong, China
E-mail: zbzheng@cse.cuhk.edu.hk
E-mail: lyu@cse.cuhk.edu.hk

Abstract: Similar to Grid computing systems, scientific applications in
cloud are large scale distributed systems that are deployed on distributed
cloud nodes. Scientific applications usually have a lot of communications
between the nodes for deployment. Therefore conventional ranking
methods are not appropriate for deploying scientific applications. The
reason is ranking methods do not consider the relations between nodes.
We propose a novel spectral clustering based deployment method that
takes not only the computing qualities of cloud nodes into account,
but also the communication performance between different nodes.
Experimental results show the effectiveness of our method for improving
the performance of scientific applications.

Keywords: grid computing; cloud computing; spectral clustering; optimal
deployment; scientific application; communication-intensive.

Reference to this paper should be made as follows: Fan, P.,
Wang, J., Chen, Z., Zheng, Z. and Lyu, M.R. (2012) ‘A spectral
clustering-based optimal deployment method for scientific application in
cloud computing’, Int. J. Web and Grid Services, Vol. 8, No. 1, pp.31–55.

Biographical notes: Pei Fan is a PhD candidate in the School of Computer
Science, The National University of Defense Technology. His main
research interest focus on Cloud Computing and Fault tolerance.

Copyright © 2012 Inderscience Enterprises Ltd.



32 P. Fan et al.

Ji Wang is a Professor at the National Laboratory for Parallel and
Distributed Processing in China. He is also the Deputy Director of the
National Laboratory for Parallel and Distributed Processing in China.
His research interests include high confidence software development,
software engineering and distributed computing. He served as in program
committees for many conferences including COMPSAC, APSEC, ATVA,
EMSOFT, HASE, QSIC, ICTAC, ICFEM, ISoLA, and SCAM. He is
on the editorial board of the Journal of Systems and Software. He has
authored and co-authored more than 80 research papers in journals,
conferences and workshops.

Zhenbang Chen is an Assistant Perofessor at the National Laboratory
for Parallel and Distributed Processing in China. His research
interests include formal methods for component-based system and
Service-Oriented Computing, new network computing techniques and
software verification.

Zibin Zheng is an Associate Research fellow at Shenzhen Research
Institute, The Chinese University of Hong Kong. He received his
PhD Degree from the Chinese University of Hong Kong in 2011.
He received ACM SIGSOFT Distinguished Paper Award at ICSE’2010,
Best Student Paper Award at 2010 ICWS’2010, First Runner-up
Award at 2010 IEEE Hong Kong Postgraduate Research Paper
Competition, adn IBM PhD Fellowship Award 2010–2011. He served as
program committee member for many conferences including CLOUD,
CLOUDCOMPUTING, SCC,etc. His research interests include service
computing, cloud computing and software reliability engineering.

Michael R. Lyu is an IEEE Fellow and an AAAS Fellow, for his
contributions to software reliability engineering and software fault
tolerance. He is also a Croucher Senior Research Fellow. He received
the PhD Degree in Computer Science from the University of California,
Los Angeles, in 1988. He is currently a Professor in the Department
of Computer Science and Engineering, Chinese University of Hong
Kong, Hong Kong, China. His research interests include software
reliability engineering, distributed systems, fault-tolerant computing,
mobile networks,Web technologies, multimedia information processing,
and E-commerce systems. He has published over 270 refereed journal and
conference papers in these areas. He served as in program committees for
many conferences including HASE, ICECCS, ISIT, FTCS, DSN, ICDSN,
EUROMICRO, APSEC, PRDC, PSAM, ICCCN, ISESE, and WI.

1 Introduction

Scientific computing involves the usages of mathematical models and numerical
solution techniques to solve scientific, social scientific and engineering problems
(Vecchiola et al., 2009). Running scientific applications usually not only need
high performance computing resources to perform large scale experiments but also
requires high bandwidth to transport data. With the development of virtualisation
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technology, cloud computing offers a new way to support scientific applications.
The term ‘Cloud Computing’ became popular in October 2007 when IBM and
Google announced collaboration in that domain (Lohr, 2007; Sims, 2007). Due to
the abilities to offer flexible dynamic IT infrastructures, QoS guaranteed computing
environments and configurable software services (Armbrust et al., 2010; Hayes,
2008), cloud computing becomes a hot topic. Compared with other computing
platforms, cloud computing is deemed as the next generation of IT platforms and
promising to be a cheaper alternative to supercomputers and specialised clusters,
and a much more scalable platform than the largest common clusters or resource
pools (Buyya, 2010; Foster et al., 2008; Kim, 2011). For example, for scientific
applications, cloud computing proposes an alternative in which resources are no
longer hosted by the computing facilities of researchers, but leased from big data
centres only when needed. This feature makes cloud computing systems be able to
provide a high performance and massive storage required by scientific applications,
but with a lower cost. Some work of doing science on cloud already exists, such as
Nimbus (Keahey and Freeman, 2008) and Cumulus (Wang et al., 2008). Especially,
in Deelman (2008) shows that cloud computing offers a cost-effective solution for
scientific computing.

Similar to traditional Grid computing systems (Caromel et al., 2007) and
component-based systems (Cortellessa and Grassi, 2007), cloud computing systems
are also composed by a number of cloud nodes (server, virtual machines or
mobile devices) (Rodriguez et al., 2011). When deploying a computing-intensive
scientific application (e.g., SETI@home) (Anderson et al., 2002) in a cloud, the
cloud service provider can simply rank the available cloud nodes based on their
QoS values and select the ones with the best performance for users. However,
communication-intensive scientific applications (e.g., Message Passing Interface
(MPI) applications) usually need the collaborations of cloud nodes, and there
are a lot of communications between these nodes. Thus, the communication
performance will impact the performance of an application very much. There are
some factors that can influence the communications between cloud nodes, for
example, the geography locations of cloud nodes, and the workloads of cloud nodes
and bandwidth limits. Therefore, the performance of a communication-intensive
scientific application is greatly affected by the network connections between the
selected nodes. For such kind of applications, selecting optimal cloud nodes by
using ranking-based methods is not suitable, since the communication performance
between nodes needs to be considered. For example, assuming a user wants to
deploy a MPI program on two cloud nodes, there are totally four available nodes in
the cloud. As illustrated in Figure 1, these four candidates form a communication

Figure 1 Cloud node ranking by average response time
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matrix, where each entry in the matrix is the response time between two nodes.
If we rank these available candidates via the average response time, then nodes A
and D will be selected for the MPI application. However, from the communication
matrix, we can see that the response time between A and D is 3 s. If the user selects
A and D, he or she may get a poor performance.

In this paper, we propose a spectral clustering analysis based method for
scientific application deployments in cloud computing. Three algorithms are used
in our method. Firstly, we construct a response time matrix, which represents
the communication performance of available cloud nodes, and conduct a spectral
clustering to partition the cloud nodes to different clusters based on the response
time matrix. Secondly, we select the initial centroid which is a key step of the cluster
analysis process. To get a better result, we proposed a density-based algorithm to
select initial centroids. Thirdly, a greedy algorithm is proposed to select the optimal
cloud nodes from clusters. The notations used in this paper are listed in Figure 2.

Figure 2 The notations used in this paper

This paper is an extension of our conference paper (Fan et al., 2011). Compared
with the work in Fan et al. (2011), there are following extensions:

• We refine the initial centroid selection method and redesign the method of
selecting nodes from clusters. These new methods can improve the
performance of the communication-intensive scientific applications on cloud
system.

• Extensive real-world experiments are conducted.
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The rest of this paper is organised as follows: Section 2 discusses the related
work; Section 3 defines the problem of scientific application deployment; Section 4
presents the clustering analysis algorithms that include spectral clustering, initial
centroid selection and greedy algorithm; Section 5 compares our method with other
methods and Section 6 draws the conclusion and gives our future work.

2 Related work

Selecting the cloud nodes for a communication-intensive scientific application is
important and challenging. In traditional distributed computing systems (e.g., Grid
systems, P2P systems and component-based), node or component schedule and
recommendation methods have been widely adopted. We divide the existing related
work into these following categories.

• Random: In Anderson (2004), Anderson proposes a volunteer computing
framework called BOINC, which uses a random method to select nodes for
deployment. XtermWeb (Malecot et al., 2006) is another volunteer computing
platform and also uses a random method.

• Ranking or Rating: RIDGE (Budati et al., 2007) is a reliability-aware system
that uses the prior performance and behaviour of a node to make more
effective scheduling decisions. Sonnek et al. (2007) propose schedule
algorithms that employ the estimated reliability ratings of nodes for task
allocations. QoS can be employed for describing the non-functional
information of cloud nodes (Sun et al., 2011; Zhang et al., 2010). Based on
QoS performance, a number of selection and schedule strategies have been
proposed. Liu and Yang (2008) propose a ranking-oriented approach to
collaborative filtering. CloudRank (Zheng et al., 2010a) is a QoS-driven
component ranking framework for cloud computing. Zheng et al. (2010b)
propose a component ranking method for fault tolerance in cloud
applications.

• Matching: Condor (Fery et al., 2002) is a specialised workload management
system for computing-intensive jobs, and uses matching to select resources.
In Caromel et al. (2007), Denis et al. propose a random walk method to
match available nodes for users.

Although it is easy to choose cloud nodes randomly, the results are often poor.
Ranking or rating and matching methods merely consider node performance,
without the relationship between nodes (e.g., the communication between cloud
nodes), which is important for communication-intensive scientific applications.
In this paper, we focus on analysing the relationship between cloud nodes to
optimally deploy communication-intensive scientific applications.

Communication-intensive scientific applications are usually deployed on clusters
or super computers. There are also some existing literatures for improving the
performance of communication-intensive applications. Qin et al. (2010) propose
a communication-aware load balancing method for improving the performance
of communication-intensive applications by increasing the effective utilisation
of networks in cluster environments. Taniar and Leung (2003) indicate load
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balancing gives enormous impact to execution scheduling and the needs for
parallel execution scheduling is reduced when load balancing achieved. Jimenez
et al. (2008) present a study of the sharing policies of information loading in
communication-intensive applications. Nishtala et al. (2009) shows that using
one-sided communications and overlaps offers advantages for communication-
intensive applications on BlueGene/P. Existing work usually conducts on clusters
and is focused on load balancing. Within a small cluster, communication
performance is not a big problem, because there are fast connections between nodes.
However, communication-intensive scientific application on cloud is designed for
scientists to collaborate, where large scale and distributed applications need to be
executed across several data centres. Our work focuses on the optimal deployment
of scientific applications on cloud platforms and the communication performance.

Recently, scientific applications in clouds have attracted great interests, since
clouds provide an alternative to clusters, grids and supercomputers for scientists
with a lower cost (Petruch et al., 2011). Hoffa et al. (2008) indicates that
the communication performance is important for scientific applications in cloud
computing. Ostermann et al. (2009) analyses the performance of the EC2 cloud
computing services for scientific computing. Nebulas (Chandra and Weissman,
2009) uses distributed voluntary resources to build cloud. Koehler et al. (2010)
integrating grid computing technologies with a Cloud infrastructure to support
the scheduling of dynamic scientific workflows. GEMS (Costantini et al., 2010;
Rampino et al., 2010) is a grid empowered molecular simulator on the european
grid platform. The sizes of data have seen exponential growth in the past, and
data has been distributed across the globe in a grid or cloud environment (Taniar
et al., 2008). To processing data effectively, some literatures discuss the large data
sets problem of scientific applications. Kwok et al. (2002) propose a parallel fuzzy
c-Means clustering algorithm for large data sets. Cope et al. (2009) propose a
data placement strategy for urgent computing environments to guarantee data
robustness. NUCA (Hardavellas et al., 2009) is a data placement and replication
strategy for distributed cache that can reduce data access latency. Yuan et al. (2010)
propose a data placement strategy in scientific cloud workflows with respect to the
dependencies of data. Different from this work, our work focuses on the optimal
deployment of science applications on cloud platforms. However, for data-intensive
applications, we believe our method is also feasible.

3 Problems analysis and architecture

In this section, we analyse the problem of deploying the communication-intensive
scientific applications on a cloud. We also introduce the framework of cloud nodes
selection.

Scientific applications run on a cloud platform, which is composed of many
distributed cloud nodes, and each connection between two cloud nodes has a
limited bandwidth. The cloud platform is denoted by a set of cloud nodes
C = {pi | i = 1, 2, . . . , n}, where pi is the ith cloud node. The performance of a
communication-intensive application relies on the communication between cloud
nodes. The response time between cloud nodes can be represented as an n by n
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matrix M , called response time matrix, where bij is the response time between the
nodes pi and pj . Apparently, bij is equals to bji.

The values in M may change dynamically, since the communication
performance between two cloud nodes depends on the state of each node.

M =




0 b12 · · · b1n

b21 0 · · · b2n

...
...

. . .
...

bn1 bn2 · · · 0


 .

The problem of deploying a communication-intensive scientific application can be
viewed as a problem of selecting cloud nodes. If we choose nodes randomly, the
performance will usually be poor. If we use a ranking-based method to select nodes
according to their QoS values as indicated by Figure 1, we will also probably
get a poor performance. Therefore, to get an optimal deployment of scientific
applications, a new method is needed, which can not only consider the order of
nodes, but also the relationship between cloud nodes.

Cloud nodes in a cloud platform form a communication graph like Figure 3,
in which the value of each edge represents the response time between two nodes.
Form Figure 3, we can restate the deployment problem of scientific applications
as follows: we want to find a partition of the graph such that the edges between
different groups have a higher values (which means that nodes in different clusters
are far away from each other) and the edges with a group have a lower values
(which means that nodes within a same cluster are close to each other).

Figure 3 Communication graph of cloud nodes



38 P. Fan et al.

For this problem, we propose an optimal cloud node selection framework that is
shown in Figure 4.

• A cloud user submits an application deployment request to the cloud
service provider with related information, such as computing-intensive or
communication-intensive.

• The cloud service provider gets the information of available nodes that is
stored in the clouds status database, and then uses our deployment method
that will be introduced in Section 4 to select the candidate nodes for the user.

• Cloud node status database records the information of available nodes,
including the size of free memory, heartbeat time, etc., and the information is
send by each cloud nodes periodically.

• Each node runs a monitor program, which takes charge of monitoring the
computing and communication performances of the cloud node. To measure
the computing and communication performance of a node, we use the
average value during a period as the value of each performance. More details
will be introduced in Section 5.

Figure 4 Cloud nodes selection framework

4 Cluster analysis

This section presents our spectral clustering based method of cloud node selection,
which is explained in three steps. At the beginning, we will introduce the spectral
clustering and give the basic steps of our node selection method. There exists a
key step in spectral clustering that uses a k-means algorithm to partition nodes.
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Therefore, we introduce the method of selecting initial centroids in detail at the
second step. Finally, we present how to select cloud nodes from the generated
clusters.

4.1 Spectral clustering

Clustering is one of the most widely used techniques for exploratory data analysis,
with applications ranging from statistics, computer science and biology to social
sciences and psychology (Jain et al., 1999). The intuition of clustering is to
separate points into different groups according to their similarities (Kaufman and
Rousseeuw, 2005). In this paper, we want to separate cloud nodes into different
clusters, and the nodes in a same cluster have a shorter response time.

Given a cloud platform C and the bandwidth matrix M we represent the
cloud nodes in the form of a similarity graph. Figure 5 shows a similarity graph.
A similarity graph is an undirected graph G = (V, E), where V is the vertex set
and E is the vertex relation set. Each vertex vi in V represents a cloud node. Two
vertices are connected if there is a relation between these two vertices in E, and the
edge is weighted by ωij to indicate the communication performance between two
cloud nodes. The weight of each relations is usually standardised into the range
[0, 1], and the standardisation is as follows.

ωij = 1 − bij − min bij

max bij − min bij
. (1)

From equation (1), we can observe that a higher value ωij means a shorter response
time. The similarity graph can be representing as a weighted adjacency matrix W
that is defined as.

W =




0 ω12 · · · ω1n

ω21 0 · · · ω2n

...
...

. . .
...

ωn1 ωn2 · · · 0


 .

Figure 5 Similarity graph
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If ωij is 0 it means that the vertices vi and vj are not connected (ωij = 0, and i = j
mean a nodes cannot connect to itself). As G is undirected we require ωij = ωji.
Let D denote a diagonal matrix defined as

D =




d1
d2

. . .
dn


 .

In the matrix D, di is the degree of a vertex vi and defined as

di =
n∑

j=1

ωij . (2)

A clustering analysis algorithm is designed to divide the cloud nodes into different
clusters, where the edges between different clusters have lower weight values and
edges within a cluster have higher values. Assume cloud nodes are divided into k
clusters, denoted by {A1, A2, . . . , Ak} where each Ai is a set of cloud nodes and
k ≥ 2, and the clusters should satisfy the following conditions:

• Ai �= ∅, where i = 1, 2, . . . , k;

• Ai ∩ Aj = ∅, where i, j = 1, 2, . . . , k and i �= j;

• ∪{Ai, A2, . . . , Ak} = V .

The method for spectral clustering is the graph Laplacian matrix. There exists a
whole field dedicated to the study of those matrices, called spectral graph theory
(Spielman, 2007). Laplacian matrix is defined as

L = D − W. (3)

An overview of its properties can be found in Mohar (1992), Mohar and Juvan
(1997). The following proposition summarises the most important facts of spectral
clustering (Luxburg, 2007).

• The smallest eigenvalue of L is 0, and the corresponding eigenvector is the
constant one vector 1.

• L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . λn.

Using spectral clustering algorithms for finding k clusters is shown in Algorithm 1
The algorithm includes the following steps:

• Step 1 (line 1): Use response time matrix M , equations (1) and (2) to
compute W and D.

• Step 2 (line 2–3): Get the graph Laplacian L via equation (3). L is an n by n
matrix, and we calculate the first k eigenvectors that means the eigenvectors
corresponding to the k smallest eigenvalues.
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• Step 3 (line 4–6): U is the matrix containing the eigenvectors u1, . . . , uk as
columns. In line 6, we use the k-means algorithm (Bach, 2003; Luxburg,
2007) to partition the rows of U to different clusters.

• Step 4 (line 7): Partition the cloud nodes to the relevant clusters

The basic idea of the spectral clustering can be explained as a graph cutting
problem, and more details can be referred to Hagen and Kahng (1992), Shi and
Malik (2000).

Algorithm 1: Spectral clustering algorithm
Input: Response time matrix M , number of k of clusters to partitioned
Output: k clusters
Computing W and D, then construct a similarity graph;1

Compute the Laplacian matrix L = D − W ;2

Compute the first k eigenvectors u1, u2, . . . , uk of L;3

Let U ∈ R
n×k be the matrix containing the vectors u1, u2, . . . , uk as columns;4

For i = 1, . . . , n let yi ∈ R
k be the vector corresponding to the ith row of U ;5

Cluster the nodes (yi)i=1,... ,n in R
k with the k-means algorithm into the6

clusters C1, . . . , Ck;
Cluster A1, . . . , Ak with Ai = {pj |yj ∈ Ci} j = 1, . . . , n;7

In the step 3 of the spectral clustering algorithm, a k-means algorithm to partition
cloud nodes is used. Choosing initial centroids is very important for the k-means
algorithm, which will be introduced in the next subsection.

4.2 Select initial centroid

Choosing initial centroids properly is a key step for cluster analysis. Although it is
easy to choose all initial centroids randomly, the result would be very poor. The
major problem of the random method is that the noises and outliers (e.g., cloud
nodes with longer response time) may be selected, which will greatly influence the
quality of the resulted clusters. In general, in a data space, the data objects in
a lower density area are usually regarded as noise objects (Ester et al., 1996). In
our previous work (Fan et al., 2011), we select centroids by using a density-based
method, which selects the initial centroids from high-density areas.

In the density-based method, U is the matrix containing the vectors u1, . . . , uk

as columns. ui can be denoted by ui = (ui1, ui2, . . . , uin), yi is the vector
corresponding to the ith row of U (cf. Algorithm 1). Y is defined as the set of yi

and denoted by Y = {yi|i = 1, 2, . . . , n}, and yi can be viewed as a point denoted
by yi = (yi1, yi2, . . . , yik). To judge whether a point is in a high-density area, we
give the following definition.

Definition 1: A point yi in a high density area should satisfy the following
condition

1
α

ūj ≤ |yij | ≤ αūj 1 ≤ i ≤ n, 1 ≤ j ≤ k (4)

where ūj is the average value of uj and denoted by ūj =
∑n

i=1 |uij |, α is the times.
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Based on Definition 1, we can get a set of points that are in the high-density areas,
and the rest points are in the low-density areas. Let H be the set of points in the
high-density areas, and H̄ is the set of points in the low-density areas. Apparently,
H ∪ H̄ = Y . We select the initial centroids from H , and impacts introduced by
noise points will be eliminated by this approach. The first centroid z1 we random
select from H , and the second centroid z2 is the point that has the greatest distance
from z1. We use response time between z1 and z2 to represent the distance between
z1 and z2, and denoted by dist(z1, z2) . The third one z3 has the greatest distance
from z1 and z2, which should satisfy the below condition:

min{dist(z3, z1), dist(z3, z2)}

= max{min{dist(yi, z1), dist(yi, z2)} | yi ∈ H}. (5)

Similarly, the kth centroid zk needs to satisfy the following condition, where k ≥ 2.

min{dist(zk, zi) | 1 ≤ i < k}

= max{min{dist(yj , zi)|1 ≤ i < k}|yj ∈ H}. (6)

The equation (6) implies that, in high-density areas, we select initial centroids that
are far away from each other.

In Fan et al. (2011), after selecting initial centroids, then use the clustering
method to partition all nodes into different clusters. However, there is a problem
for this method in some scenarios, since the points in low-density may influence the
quality of resulted cluster.

We use a simple example of two clusters in Figure 6 to demonstrate the
problem, where the left figures are node distribution figures and right figures are
the resulted (different shapes represent different clusters). From Figure 6, we can
observe that there are two high-density areas and a low-density area. Intuitively,
these two high-density areas should be in different clusters. However, as indicated
in Figure 6(a), we can observe that most of nodes in two high-density areas are
partitioned in a same cluster and the others in another cluster. The reason is that
the red points in low-density area influence the clustering process. To address this
problem, we refine the k-means algorithm, whose basic idea is to cluster the nodes
only in high-density areas. Figure 6(b) shows the result of only clustering the nodes
in high-density areas. Figure 8 is the detail of k-means algorithm.

The algorithm in Algorithm 2 is used at the line 6 of the Algorithm 1. In
Algorithm 2, we use k-means algorithm to cluster only the points in high-density
area and calculate the centre of each cluster (line 1–2). At the end of the algorithm
(line 3), we use Euclidean distance to calculate the distance between each point in
low-density area and the centre of each cluster, then assign the point to the closest
cluster. Based on this method, the influence introduced by the points in low-density
area is eliminated. The centre of a cluster Ci is denoted by C̄i, and defined as
follows, where d is the number of the points in Ci.

C̄i =
1
d

∑
j:yj∈Ci

yj (7)
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Figure 6 Clustering in all nodes and high-density areas: (a) clustering all nodes and
(b) clustering the nodes in high-density areas (see online version for colours)

Algorithm 2: Refined k-means algorithm

Input: set of points in high-density H , and low-density H̄.
Output: k clusters.
Cluster the points in H with the k-means algorithm into clusters Ci, . . . , Ck;1

Calculate the centre of Ci, where i = 1, . . . , k;2

Calculate the distance between yj ∈ H̄ and the centre of Ci, then assign the3

point yj ∈ H̄ to the closet cluster;

4.3 Greedy select algorithm

After clustering, cloud nodes are divided into different clusters, we use the
average response time (RTT ) of a cluster to represent the average communication
performance of the cluster, which is calculated as follows.

RTT =
1
n

n∑
j=1

Āij (8)

where Āi is similar calculated by equation (7). According to the RTT of each
cluster, one or more suitable clusters can be selected according to a user request.
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We use I to denote the set of selected cluster, each cluster is a set of cloud
nodes, and the performance of cloud nodes is represented as a matrix ψ ∈ R

|I|×|I|,
where |I| is the number of the cloud nodes in I . The value of elements in matrix
denoted by ψ(pi, pj) indicates the strength of a node pair and is defined as

ψ(pi, pj) = λ × Commij + (1 − λ) × Calcij . (9)

In the above formula, Commij is the value of the communication performance
between the cloud nodes pi and pj , Calcij is the value of the computing power
of the nodes, and λ is the value to tradeoff between communication performance
and computing power. Note that the values of Commij and Calcij , should be
standardised into the range [0, 1]. The method of obtain Commij and Calcij will
be introduced in Section 5.1. Matrix ψ is symmetric, and we set ψ(pi, pi) = 0 for
each cloud node.

Given a preference function ψ(pi, pj) that assigns a score to every pair of cloud
nodes, we want to choose a set of nodes from I that agrees with the pair-wise
preferences as much as possible. Let ρ be an optimal set of cloud nodes select from
I . We define an objective value function.

V ψ(ρ) =
∑
i,j∈ρ

ψ(i, j). (10)

Our goal is to produce a set ρ that maximises the above objective value function.
One possible approach is to search through the possible set and select the optimal
set ρ that maximises the value function. However, there are C

|ρ|
n possible cases

for n nodes, it is impossible to iterate all the cases when the value of n is large.
To address this problem, we propose a greedy algorithm to find an approximately
optimal set, and the algorithm is shown in Algorithm 3.

Algorithm 3: Greedy select algorithm
Input: a cluster set I , a matrix ψ, and a required number m of cloud nodes.
Output: an optimal set ρ.
F is assigned with the node set of I;1

foreach pi ∈ F do2

π(pi) =
∑

pj∈F ψ(pi, pj);3

end4

while |F | �= m do5

pt is the node in F with the smallest π(pt);6

F = F − {pt};7

foreach pk ∈ F do8

π(pk) = π(pk) − ψ(pk, pt);9

end10

end11

ρ = F ;12
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Algorithm 3 includes the following steps:

• Step 1(line 1–4): for each cloud node, calculate its sum of preference values to
all the other nodes. A node with less value indicates it is more likely to be
excluded from the node set for the deployment.

• Step 2 (line 5–11): cloud nodes are deleted by picking the node pt that has
the minimum preference value, and the preference values of the remaining
nodes are updated by removing the effect of the deleted node pt. This step
continues until the number of remain nodes is equal to m.

• Step 3 (line 12): at the end of this algorithm, the remained nodes are in F .
Thus we set ρ = F , which means F is the approximately optimal node set.

After using this algorithm, the required cloud nodes are selected, and the cloud
application can be deployed on these nodes. In the following section, we will take
some experiments to justify our method.

5 Experiments

In this section, we evaluate our spectral cluster based deployment method by some
real-world experiments and give a comprehensive performance comparison with
other methods. We first describe our experiment setup along with the benchmark,
followed by the evaluation results

5.1 Experiment setup and benchmark

We carried our experiments on PlanetLab (Chun et al., 2003), which is a global
overlay network for developing and accessing broad-coverage network services.
Since the nodes in PlanetLab are real machines and connected by the Internet,
we can conduct our experiments in a realistic real world environment. Our
experimental environment consists of 125 distributed nodes that serve as cloud
nodes. Our framework is implemented with JDK 1.6. The schedule node and
database server are also deployed on PlanetLab. In Section 4.3 we introduced
Commij and Calcij to represent the communication performance and computing
power of a node pair, To obtain the accurate values of Commij and Calcij ,
our framework measures the response time between two nodes periodically, and
uses the average response time during a period as the value of Commij . The
computing power of a cloud node pair is difficult to measure, since cloud nodes are
usually heterogeneous. To measure computing power, we run a benchmark (e.g.,
calculating π) on each cloud node periodically, and use the average execution time
of two nodes to as the value of Calcij . Our framework ran about 80 days, and we
conducted above 5700 times to measure computing power and above 4560 times
for communication performance.

In our experiments, we used different cloud node selection methods for two MPI
benchmarks: NPB (NAS Parallel Bechmarks) and IMB (Intel MPI Benchmark)
(Miguel et al., 2007). NASA NPB is a widely used MPI Benchmark, which consists
of programs designed to help evaluate the performance of supercomputers. The
benchmark is derived from computational fluid dynamics (CFD) applications. The
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Intel MPI Benchmarks, version 3.2, are designed to measure the performance (in
terms of latency and/or throughput) of the most representative MPI primitives
running on a given platform. We use IMB to test the communication performance
of selected cloud nodes. To compare the performance of our method against others,
we use the following two metrics via for NPB and IMB, respectively.

• Makespan for NPB: The makespan of a job is defined as the duration
between sending out a job and receiving a correct result.

• Latency for IMB: The latency defined as the average performance of latency
when run IMB on the selected cloud nodes.

To obtain precise results, all benchmark run 3 times, and we use the average results.

5.2 Performance comparison

To justify the effectiveness of our spectral cluster based method, we compare our
method with the following four methods:

• Random: random-based cloud node selection method. This method is used in
Anderson (2004) and Malecot et al. (2006).

• RankAll: using equation (9) to rank cloud nodes with respect to both the
computing power and the communication performance, then select the
k-highest nodes.

• Greedy: this method is proposed for ranking a set of cloud nodes, which
directly uses equation (9) and the Algorithm 3 to rank the cloud nodes and
select the k-highest nodes. This method is similar to Liu and Yang (2008)
that uses greedy algorithm to select resources.

• Cluster: The method is proposed by us (Fan et al., 2011).

We first conducted IMB experiments. The IMB applications include three
benchmarks (IMB-MPI1, IMB-EXT, IMB-I/O), and we wanted to run IMB
on 8 cloud nodes. In our experiments, we used IMB-MPI1 to evaluate the
communication performance between cloud nodes. IMB-MPI1 contains serials of
benchmarks, and we choose Allgather, Allgatherv, Alltoall and Alltoallv benchmark.
In IMB experiments, since IMB-MPI1 can only evaluate the latency between two
cloud nodes, we set the value λ to be 1 (cf. equation (9)), and partitioned the
available cloud nodes into 4 clusters. Each IMB benchmark should run with some
message lengths, in our experiments, the message lengths are varied from 1, 2, 4,
. . . , 2048 bytes (20–211).

Figure 7 shows the results of running IMB benchmarks. From the figure, we
have the following observation:

• In Allgather an Alltoall benchmark, spectral clustering method obtains the
best communication performance, i.e., has the least latency time under all the
different message sizes. Same result is gotten also in Allgatherv and Alltoallv.

• In most cases, the results of cluster-based method are only worse than those
of the spectral cluster method. On the contrary, the random method always
gets the worst result, which fits our intuition.
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Figure 7 Results of IMB: (a) allgather; (b) alltoall; (c) allgatherv and (d) alltoallv
(see online version for colours)

• With the increasing of message size, the latency of each cloud nodes pair
increases. In addition, we can observe that the performance of each method is
obvious greatly decrease under bigger message length condition, since nodes
should consume more time to transfer message.

NPB applications need to be compiled for a specific number of cloud nodes, and
a given problem size. Some benchmarks (e.g., CG, MG, LU, IS, EP) can only
run on a power-of-2 number of cloud nodes. The rest (SP and BT) can only run
on a square number of cloud nodes. We ran the experiments on 8 or 9 cloud
nodes for different benchmarks and 16 cloud nodes for all the benchmarks. In
NPB experiments we partitioned cloud nodes into 4 clusters and used the following
parameter setting: λ = 0.5 (NPB needs both communication and computing power).
The impact of different settings of these parameters will be provided at 5.4, 5.5
and 5.6.

Table 1 show the running of the NPB benchmarks. The numbers 8, 9 and 16
indicate the numbers of the used cloud nodes. These experimental results in Table 1
show that:

• Among all the methods, spectral clustering method obtains the best
performance (less execution time). The performance of cluster-based method
is only worse than our method. In most cases, the random method has the
worst performance. This conclusion is also valid for IMB benchmarks.

• With the increasing of the cloud nodes, the performance becomes better.
However, in some cases, the performance of using 16 cloud nodes is worse
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Table 1 Comparison of Makespan (s)

Spectral Random Rankall Greedy Cluster

EP 8 21.9 137.8 65.9 57.1 34.2
16 20.3 59.7 60.2 87.6 43.7

IS 8 60.5 83.9 720.8 685.3 174.2
16 40.4 3097.1 1771.5 2482.8 84.7

MG 8 28.2 785.4 470.0 282.3 239.1
16 90.7 441.8 158.3 163.0 117.5

CG 8 47.3 1420.6 605.3 689.9 320.2
16 317.5 2526.2 1957.0 1667.3 463.1

LU 8 245.9 3057.4 3033.3 2227.6 1317.0
16 814.3 3318.3 1784.0 1724.4 975.6

SP 9 56.0 189.6 321.0 376.9 63.3
16 39.3 610.2 218.6 304.6 88.3

BT 9 51.9 145.8 285.2 362.4 73.9
16 39.5 185.2 96.0 227.9 77.7

than 8 cloud nodes. It is because the nodes in PlanetLab are deployed over
Internet, and the cost of communication may increase greatly with more
internet connections.

• The performances of Ranking-based methods (RankAll and Greedy) are
worse than that of spectral cluster-based methods, since these ranking based
methods cannot consider the relations between cloud nodes.

Based on the results of IMB and NPB, we can observe that our spectral cluster
based method can obtain a better performance. On the contrary, because the
ranking-based methods cannot reflect the relationship between cloud nodes, the
performance of them is worse.

5.3 Compare of different clustering set method

In Section 4, we introduced the high-density based method to select initial
centroids and then clustering the cloud nodes in high-density areas. To justify the
effectiveness of this method, we compare it with the method in Fan et al. (2011)
(selecting initial centroids from high-density areas but clustering all cloud nodes).
The NPB benchmarks are used, and the parameters are set the same as in those
in Section 5.1. Table 2 and Figure 8 show the results. In Table 2, High means our
method, and Unhigh is the method in Fan et al. (2011). From Table II, we can
observe that our method gets a better performance. Unhigh method gets a similar
performance in some benchmark (EP, SP and BT), but in the other benchmarks
(IS, MG, CG, LU), the performance of Unhigh is worse. In Figure 8, we use
Allgather and Alltoall in the IMB benchmarks. And it is obvious that our method
(H-Allgather, H-Alltoall) is better.

In the result, Table 2 and Figure 8 indicate that selecting initial centroids
from high-density area and then clustering in high density can be have a better
performance.
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Table 2 Result of NPB (s)

EP IS MG CG LU SP BT

High 19.3 51.3 26.7 59.2 235.9 34.3 37.1
Unhigh 39.3 197.2 113.7 214.3 906.4 40.8 37.7

Figure 8 Result of IMB (see online version for colours)

5.4 Impact of α

In this subsection, we will analyse the impact of the values of α (cf. equation (4)),
since the value of α greatly affects the result of clustering. Therefore, it affects the
deployment of cloud application. To study the impact of α, we conducted a serial
of experiments. In these experiments, the values of α vary from 2 to 6.5 with a
step of 0.5 and we run the benchmark on 8 cloud nodes. Figure 9(a) shown the
result of EP and MG benchmarks in NPB. In Figure 9(a) we can observe that each
benchmark gets the worst performance (longest execute time) when α is between 2
to 3.5. The reason is some noisy points are partitioned in high-density areas and
affect the clustering result when α is set with small values. When α increase from 4
to 6.5, the execute time decrease. Figure 9(b) show the results of IMB with different
α (the message size is 8192 bytes and λ = 1). We can observe a similar result to
Figure 9(a) see that the results are not obvious like Figure 9(a). We can also find
that Allgather and Alltoall got the worse communication performance when α is
from 2 to 3.5. When α is from 4 to 6.5, both benchmarks have the best performance.
From these two figures, we can observe all benchmarks obtains the best
performance when α from 4 to 6.5.

5.5 Impact of λ

In this subsection, we analyse the impact of λ. In Fan et al. (2011), the value
of λ is indicated to greatly affect the performance of communication-intensive



50 P. Fan et al.

Figure 9 Impact of α: (a) results of NPB and (b) results of IMB (see online version
for colours)

cloud applications, since λ represents the tradeoff between computing and the
communication abilities. However, different application should have different
values of λ. To study the impact of this parameter, we also conducted a serial of
experiments. In these experiments, the value of λ varies from 0 to 1 with a step of
0.1 and 8 cloud nodes we used. The benchmark which used in this subsection is
same as Section 5.3. From Figure 10(a) we can observe that different benchmarks
obtain different performance under a same value of λ, e.g., MG has the worst
performance when λ = 0, but the performance of EP is better, On the contrary,
EP gets the worst performance when λ = 1, but MG has better performance. In
addition, we can found both benchmarks obtain better performance when the value
of λ falls into the range [0.4–0.6].

Figure 10(b) shows the results of IMB with different value of λ (the message
size is 8192 bytes). In Figure 10(b) Allgather and Alltoall obtain the worst
communication performance when λ = 0, because communication performance is
not considered. With the increasing of λ, the performance becomes better.

Figure 10 Impact of λ: (a) results of NPB and (b) results of IMB (see online version
for colours)

From the experimental results, we can observe that the value of λ is related
to the type of an application. For a computing-intensive application, λ should
be set as a small value. On the contrary, λ should be set a higher value when
the application is communication-intensive. Meanwhile, all benchmarks obtain an
acceptive performance when λ is in [0.4–0.8].
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5.6 Impact of cluster number

In this subsection, we analyse the impact of different number of clusters by
ranging it from 2 to 10 with the step value 1(the cluster number should be more
than 2), α = 5, λ = 0.5 for NPB and λ = 1 for IMB, all benchmark run on 8
nodes. Figure 11(a) shows that the spectral cluster based method obtains the best
performance when cluster number from is 2 to 7. When cluster number from 7 to
10, the performance gradually decreased, it is because the select nodes from clusters
may across multiple clusters if the cluster number is bigger. Similar to NPB, as
indicated in Figure 11(b), IMB (the message size is 8192 bytes) obtains the best
performance when cluster number from 2 to 9, and the performance gradually
decreased from 9 to 10.

Figure 11 Impact of cluster number: (a) results of NPB and (b) results of IMB
(see online version for colours)

6 Conclusion

In this paper, we propose a spectral clustering based cloud node selection
method for communication-intensive scientific applications. We model the scientific
applications deployment problem as a graph partition problem. Based on this
problem model, we use a spectral clustering analysis method to partition cloud
nodes in different groups. By taking the advantage of the spectral clustering
analysis, our approach not only considers the QoS values of cloud nodes, but
also the relationship (e.g., response time) between cloud nodes. Our approach
systematically combines clustering analysis and ranking methods. The experimental
results show that our approach outperforms other approaches.

In a communication-intensive application, nodes connect to each other with
a special topology structure, e.g., a node has more connections to certain nodes,
and fewer to other nodes. Currently, we have not considered the communication
topology structure of communication-intensive applications. More investigations
towards this direction will be our future work.
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