
ARF-Predictor: Effective Prediction of
Aging-Related Failure Using Entropy

Pengfei Chen , Yong Qi,Member, IEEE, Xinyi Li, Di Hou, and Michael Rung-Tsong Lyu, Fellow, IEEE

Abstract—Even well-designed software systems suffer from chronic performance degradation, also known as “software aging”, due to

internal (e.g., software bugs) or external (e.g., resource exhaustion) impairments. These chronic problems often fly under the radar of

software monitoring systems before causing severe impacts (e.g., system failures). Therefore, it is a challenging issue how to timely

predict the occurrence of failures caused by these problems. Unfortunately, the effectiveness of prior approaches are far from

satisfactory due to the insufficiency of aging indicators adopted by them. To accurately predict failures caused by software aging which

are named as Aging-Related Failure (ARFs), this paper presents a novel entropy-based aging indicator, namely Multidimensional

Multi-scale Entropy (MMSE) which leverages the complexity embedded in runtime performance metrics to indicate software aging. To

the best of our knowledge, this is the first time to leverage entropy to predict ARFs. Based upon MMSE, we implement three failure

prediction approaches encapsulated in a proof-of-concept prototype named ARF-Predictor. The experimental evaluations in a Video on

Demand (VoD) system, and in a real-world production system, AntVision, show that ARF-Predictor can predict ARFs with a very high

accuracy and a low Ahead-Time-To-Failure (ATTF). Compared to previous approaches, ARF-Predictor improves the prediction

accuracy by about 5 times and reduces ATTF even by 3 orders of magnitude. In addition, ARF-Predictor is light-weight enough to

satisfy the real-time requirement.

Index Terms—Software aging, performance degradation, multi-scale entropy, failure prediction, availability

Ç

1 INTRODUCTION

SOFTWARE is becoming the backbone of modern society.
Especially with the development of cloud computing,

more and more software systems are deployed in the cloud
and work in a distributed way. Two common characteristics
of those software systems, namely long-running and high
complexity, increase the risks of resource exhaustion and
faults. With the accumulation of faults or resource con-
sumption, software systems may suffer from chronic perfor-
mance degradation, failure rate/probability increase and
even crashes. This phenomenon is known as “software
aging” [1], [2], [3], [4], [5] or “Chronics” [6].

Software aging has been extensively studied for two deca-
des since it was first quantitatively analyzed in AT&T lab in
1995 [7]. This phenomenon has beenwidely observed in vari-
ant software systems such as cloud computing infrastructure
(e.g., Eucalyptus) [8], [9], virtual machine monitors (VMMs)
[10], [11], operating systems [1], [12], Java Virtual Machines
(JVMs) [5], [13], web servers [4], [14] and so on. Currently,
the fundamental mechanism of software aging has been par-
tially uncovered [15]. Moreover, a common point is that soft-
ware aging is a complex process influenced by many factors

such as software bugs [15], [16], resource utilization [1], [2],
[17], workload [18], [19], [20], [21], etc. In a long-running soft-
ware system, resource exhaustion is not an uncommon phe-
nomenon. For instance, the disk space is exhausted due to
continuous logging. As the degree of software aging
increases, software performance degrades gradually, result-
ing in QoS (e.g., response time) violations. When the QoS is
lower than a preset threshold, the software system steps into
an unserviced state which is also called “pseudo failure”
[20]. For instance, for a web server, when the response time
exceeds a preset threshold (e.g., 20 seconds), the system is
unable to provide normal service any more. As the accumu-
lation of new requests, the system goes to failure quickly.
The unplanned outage caused by software aging in enter-
prise systems especially in cloud platforms can lead to con-
siderable revenue loss. A recent survey shows that the IT
downtime on an average can reach 14 hours of downtime
per year, leading to $26.5 billion lost [22]. Therefore, predic-
tion and counteracting the failures caused by software aging
are of essence for building a reliable software system.

An efficient and commonly used counteracting software
aging strategy is “software rejuvenation” [3], [4], [5], [23],
which proactively recovers the system before the occurrence
of failures to a completely or partially new state by cleaning
the internal state. The benefit of rejuvenation strategies
heavily relies on the time conducting rejuvenation actions.
Frequent rejuvenation actions may cause a negative impact
on the system availability due to the non-ignorable planned
downtime or overhead caused by such actions. Instead, an
ideal rejuvenation strategy is to recover the system when the
system gets near to a failure . The failure caused by software
aging is referred to as the “Aging-Related Failure” (ARF)

� P. Chen, Y. Qi, X. Li and D. Hou are with the Department of Computer
Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China.
E-mail: chenpengfei@outlook.com, {qiy, houdi}@mail.xjtu.edu.cn, xingga.
li@stu.xjtu.edu.cn.

� M.R. Lyu is with the Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
E-mail: lyu@cse.cuhk.edu.hk.

Manuscript received 4 Aug. 2015; revised 26 June 2016; accepted 14 Aug.
2016. Date of publication 30 Aug. 2016; date of current version 6 July 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2016.2604381

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018 675

1545-5971� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4891-4971
https://orcid.org/0000-0003-4891-4971
https://orcid.org/0000-0003-4891-4971
https://orcid.org/0000-0003-4891-4971
https://orcid.org/0000-0003-4891-4971
mailto:
mailto:
mailto:
mailto:
mailto:

[24]. Different from sudden crashes with no warnings, e.g.,
segment faults or hardware failures, ARF is a kind of
“chronics” [6] which means some durable features can help
us predict system crashes. However, to effectively predict
such failures, we confront the following three challenges:

� Different from fail-stop problems, non-crash prob-
lems caused by software aging, where the server does
not crash but fails to process the request compliant
with the SLA constraints, have no observable and suf-
ficient symptoms to indicate them. These problems
often fly under the radar of monitoring systems.
Hence, finding out an indicator to reveal the hidden
software aging state becomes the first challenge.

� The internal changes (e.g., memory leak) and exter-
nal changes (e.g., workload variation) make the run-
ning system extraordinarily complex. Hence, the
running system can be described neither by a simple
linear model nor by a single performance metric.
How to handle the complexity and multi-dimension
in the aging indicator is the second challenge.

� Fluctuations or noises may be involved in collected
performance metrics due to the highly dynamic
property of the running system. And the emerging
cloud computing exacerbates the dynamics due to
its elasticity and flexibility (e.g., VM creation and
deletion). These noises may confuse the distinction
between transient anomaly and ARF leading to addi-
tional rejuvenation cost. Thus, how to mitigate the
influence of noise and keep the prediction approach
noise-resilient is the third challenge.

The ARF prediction procedure is constructed on two
bases. The first basis is an aging indicator. The other one is
the prediction approach built on the aging indicator. Hence,
an efficient aging indicator is the cornerstone of ARF predic-
tion. However, the aging indicator is overlooked in previous
work. To the best of our knowledge, very few studies focus
on this topic. A commonly used aging indicator in previous
studies [1], [13], [21], [25], [26] is trend embedded in the per-
formance metrics. trend is adopted to predict the onset of
software aging. If a downtrend or an uptrend is found,
aging occurs. However, trend shows a weak power to pre-
dict ARFs. Because it aims to capture the long-term behav-
ior of a software system rather than the short-term changes,
which hinders the wide usage of trend in real-time ARF pre-
diction. What is worse, there may be no significant increas-
ing/decreasing trends in performance metrics when a
failure occurs. This paper focuses on predicting ARFs rather
than detecting the onset of software aging. To address the
aforementioned challenges and the drawbacks of current
studies, we conjecture that an ideal aging indicator should
have Monotonicity property to reveal the hidden aging state,
Integration property to comprehensively describe aging pro-
cess, and Stability property to tolerate system fluctuations.
In previous study [16], the authors stated that a concurrent
bug was also the reason of software aging. Due to the
uncertainty of the concurrent bug, the aging process may
not have the monotonicity property and the ARF becomes
unpredictable. In this paper, we restrict our approach to
detecting such ARFs that have the feature of gradual
degradation. Nevertheless, the aging problems caused by

concurrent bugs can be resolved with the approaches com-
ing from the effort of software engineer (e.g., [27]).

In this paper, we are the first to propose a novel entropy-
based aging indicator, namely Multidimensional Multi-
scale Entropy (MMSE). According to our experiments and
practice, MMSE is capable of reflecting the hidden software
aging state. MMSE is a complexity oriented and model-free
indicator without deterministic linear or non-linear model
assumption. In addition, the multi-scale feature mitigates
the influence of system fluctuations and the multi-dimen-
sion feature makes MMSE effective in describing software
aging. As we will see, MMSE satisfies the three properties
namely Stability, Monotonicity and Integration, which we
conjecture that an ideal aging indicator should have. Based
upon MMSE, we develop three ARF prediction approaches
encapsulated in a proof-of-concept prototype named ARF-
Predictor.

The experimental evaluations in a VoD system deployed
in a controlled environment and in a real production
system, AntVision,1 show that ARF-Predictor has a strong
power to predict ARFs with a high accuracy and a small
ATTF . Compared to previous approaches, ARF-Predictor
increases the prediction accuracy by about 5 times and
reduces the ATTF significantly even by 3 orders of magni-
tude. The contribution of this paper is three-fold:

� We demonstrate that entropy increases with soft-
ware aging. Moreover, the empirical results show
that this tends to be the case.

� We first put forward a novel aging indicator named
MMSE. MMSE employs the complexity embedded
in multiple runtime performance metrics to measure
software aging, and leverages multi-scale and multi-
dimension integration to tolerate system fluctua-
tions, which makes MMSE satisfy the key properties,
namely Stability,Monotonicity and Integration.

� We design and implement a proof-of-concept proto-
type named ARF-Predictor, and evaluate our appro-
ach in a real-world system with convincing results.

The rest of this paper is organized as follows. We demon-
strate the motivations of this paper in Section 2. Section 3
demonstrates the proposedMMSE aging indicator. Section 4
describes the detailed design of ARF-Predictor including
metric selections and ARF prediction approaches. Section 5
shows the evaluation results and comparisons to previous
approaches. In Section 6, we state the related work briefly.
Section 7 concludes this paper.

2 MOTIVATION

The accuracy of Aging-Rriented Failure prediction approa-
ches heavily relies on aging indicators. Moreover, the pre-
diction result determines the rejuvenation cost. If the
rejuvenation actions are always triggered at the time close
to failures, the rejuvenation cost will tend to be optimal. But
unfortunately, prior prediction approaches based upon
explicit aging indicators such as free memory [1], [14], [26],
memory usage [2], [5], [28], used swap space [1], [4],
response time [25], [29] and so on do not function well

1. www.antvision.net

676 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

http://www.antvision.net

especially in the face of dynamic workloads. They either
miss some failures or mistake some normal states as fail-
ures. The insufficiency of previous indicators motivates us
to seek new indicators.

As mentioned in [20], the aging level of a software sys-
tem over time is denoted by DðtÞ; t > 0. The failure at time
t is equivalent to the aging level that exceeds a critical level
Df at time t [20]. Therefore, a threshold is always required
to set on DðtÞ in order to predict ARFs. However, DðtÞ is
always a hidden process. Suppose I is an aging indicator. I
not only can indicate the onset of aging but also the aging
level. To some extent, the degradation path of IðtÞ � the
degradation path of DðtÞ. Thus, we can set a threshold on
IðtÞ to predict ARFs. Traditionally, the threshold is always
set on explicit aging indicators. We refer to the performance
metrics which can be observed by common monitor tools as
explicit aging indicators. For instance, take CPU utilization
as an aging indicator. The CPU utilization increases with
the aging level. When it exceeds 90 percent, an ARF occurs.
However, it is not always the case. The explicit observations
do not always accurately reveal the hidden aging levels.

For example, a real-world campus Video on Demand
(VoD) system which is in charge of sharing movies amongst
students runs for 52 days until a failure occurs. By manually
investigating the reason of failure, we attribute it to an ARF
as the quality of video broadcasting degrades gradually and
no exceptions are thrown out in a console or in a log file.
During the system running, the CPU utilization is recorded.
Fig. 1 shows the CPU utilization of the first four days
(Day1; Day2; Day3; Day4) and the last four days (Day49;
Day50; Day51; Day52). A failure happened on Day52. How-
ever, the CPU utilization at the failure point seems normal
(lower than 10 percent), meaning that the CPU utilization
does not increase monotonically with the aging level in
Helix Server. Thus, it is difficult to predict failures using
this metric as an aging indicator. Moreover, we observe that
other indicators such as RealMemoryFree [26], usedSwap-
Space [1], [12], [26], Resident Set Size (RSS)[17] and Heap
Usage Size (HUS) [17] indeed have an increasing/decreas-
ing trend. But they do not satisfy a monotonicity property,
meaning that it is difficult to determine when an ARF
occurs. Therefore, we need a novel aging indicator.

Conjecture. According to the above observation, we pro-
vide a high level abstraction of the properties that an ideal

aging indicator should have. Monotonicity: As proposed in
[30], the aging effect is not reversible without external
intervention. Moreover, it depends on the clock time [30].
Thus, software aging is a gradual deterioration process,
which is a common assumption in prior articles, e.g., [20].
Given an aging indicator IðtÞ, we have IðtÞ � Iðtþ 1Þ or
IðtÞ � Iðtþ 1Þ for every t. As the most essential property,
the monotonicity is fundamental to predict an ARF. But it is
extraordinarily difficult to find such an aging indicator sub-
ject to a monotonic constraint due to system noises and fluc-
tuations. Stability: To robustly indicate software aging, the
indicator should be tolerant to the noises and fluctuations
involved in the runtime performance metrics. Namely, the
indicator changes with time smoothly. The variance of IðtÞ
during an interval ½t1; t2�, t1 < t2, is small. Integration: As
software aging is a complex process affected by multiple
factors, the indicator should cover these influences from
multiple data sources, which means it is the fusion of
multiple runtime metrics. In other words, IðtÞ ¼ fðX1ðtÞ;
X2ðtÞ; . . . ; XnðtÞÞ, where XiðtÞ denotes a performance metric
(e.g., CPU utilization). These properties may not be com-
plete, and any new property which can strengthen the pre-
diction power of aging indicators can be complemented.
In reality, it is very difficult to find such an aging indi-
cator strictly satisfying these properties. But we can find a
workaround.

3 MULTIDIMENSIONAL MULTI-SCALE ENTROPY

To predict ARFs, the first step is to find an appropriate
aging indicator satisfying the three properties mentioned in
Section 2. As claimed in [14] and [31], the performance met-
rics exhibit chaotic behaviors during software aging. They
show that the complexity increases along with the aging lev-
els. A well-known measurement of system complexity is the
classical Shannon entropy [32]. However, Shannon entropy
is only concerned with the instant entropy at a specific time
point. It cannot capture the temporal structures of one time
series completely leading to statistical characteristic loss
and even false judgment.

To resolve this problem, Multi-scale Entropy (MSE) is
proposed by Costa et al. [33]. MSE is used to quantify the
amount of structures (i.e., complexity) embedded in the
real-world time series. A structure reveals the correlation in
the time series. For example, let XðtÞ be a time series. If
Xðt� 3Þ is highly correlated with XðtÞ (e.g, the Pearson cor-
relation coefficient of XðtÞ and Xðt� 3Þ is high), then this
pair of correlation is called a structure. In other words, XðtÞ
can be described by Xðt� 3Þ. But multiple structures
may co-exist in a time series, namely Xðt� 1Þ; Xðt� 2Þ; . . . ;
Xðt� iÞ; . . . or the linear or non-linear combinations of
these variables are all possibly correlated with XðtÞ. In that
case, it is extremely difficult to figure out an individual lin-
ear or nonlinear model to describe XðtÞ. Actually, XðtÞ is a
combination of multiple models or processes embedded in
the original time series. These models or processes involve
different structures. For example, supposeXðtÞ is composed
by two models. One model involves two explanatory
variables: Xðt� 1Þ and Xðt� 2Þ. While the other one
involves another two explanatory variables: Xðt� 4Þ and
Xðt� 6Þ. The complexity of a time series increases with the

Fig. 1. The CPU utilization of a real VoD system. In this figure, we only
show the CPU utilization of the first four days and the last four days.

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 677

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

number of structures. Thus, it becomes difficult to conduct
prediction on a time series when the number of structures is
large. As software aging is a gradual deterioration process
with time, the observed time series contain multiple struc-
tures ranging from short-term correlations to long-term cor-
relations. Therefore, MSE is a potential indicator to indicate
and measure software aging.

MSE calculates the sample entropy [34] of a coarse-
grained univariate time series. The rational of coarse-grain-
ing procedure is to construct temporal scales. Thus, a time
series without structures would exhibit a significant entropy
decrease with an increasing time scale. Sample entropy [34]
which stems from approximate entropy [34] is introduced to
quantitatively and numerically measure the regularity or
complexity of a time series with limited length. Sample
entropy achieves this by calculating the repetitive patterns in
a time series. Given a positive numberm, a random variable
X and a time series X ¼ fXð1Þ; Xð2Þ; . . . ;XðNÞg with length
N , X is partitioned into consecutive segments. Each segment
is represented by an m-length vector: umðtÞ ¼ fXðtÞ;
Xðtþ 1Þ; . . . ; Xðtþm� 1Þg; 1 � t � N �mþ 1, where m
could be recognized as the embedded dimension and recom-
mended as m ¼ 2 [34]. Fig. 2 shows the segmentation proce-
dure when m ¼ 2 and m ¼ 3 in a sample time series. Let
nm
i ðrÞ denote the number of segment, umðjÞ, that are similar

to umðiÞ satisfying dðumðiÞ; umðjÞÞ � r; i 6¼ j, where i 6¼ j
guarantees that self-matches are excluded, r is a preset
threshold indicating the tolerance level for two segments to
be considered similar and recommended as r ¼ 1:5 � s [34],
where s is the standard deviation of the original time series.
dð	Þ ¼ maxfjXðiþ kÞ �Xðjþ kÞj : 1 � k � m� 1g represents
the maximum of the absolute values of differences between
umðiÞ and umðjÞ, measured by Euclidean distance adopted in
this paper. If dð	Þ � r, then umðiÞ and umðjÞ are similar. Let

Cm
i ðrÞ ¼ nm

i
ðrÞ

N�m represent the probability that any segment

umðjÞ is close to segment umðiÞ, whereN �m denotes all the
other segments in the time series. The average of Cm

i ðrÞ is
expressed as

FmðrÞ ¼
PN�mþ1

i Cm
i ðrÞ

N �mþ 1
: (1)

FmðrÞ denotes the probability that any two segments are
within the tolerant level r of each other. Eckmann et al. fur-
ther improved FmðrÞ using lnCm

i ðrÞ to substitute Cm
i ðrÞ [33].

To ensure Fmþ1ðrÞ is defined in any particular N-length
time series, N �mþ 1 is changed to N �m in FmðrÞ.
Finally, the sample entropy is formalized as

SEðm; r;NÞ ¼ �ln
Fmþ1ðrÞ
FmðrÞ : (2)

A lower SEðm; r;NÞ means more regular or lower com-
plexity, while a higher SEðm; r;NÞ means less regular or
higher complexity. Sample entropy has been widely used
(e.g., [35], [36]) in the time series with modest data length as
it is less dependent on time series length and yields more
consistent complexity estimators. However, due to the
structural complexity at different scales, sample entropy is
not enough to capture these hidden characters. Therefore,
MSE is proposed [37]. MSE extends the conventional sam-
ple entropy from one scale to multiple scales with an addi-
tional coarse-graining procedure.

Suppose t is the scale factor, the consecutive coarse-
grained time series Y t is constructed in the following two
steps: i). Divide the original time series X into consecutive
and non-overlapping windows of length t; ii). Average the

data points inside each window. Finally we get Y t ¼ fytj j :
1 � j � bN

t
cg and each element of Y t is defined as

ytj ¼
Pjt

i¼ðj�1Þtþ1 XðiÞ
t

; 1 � j � bN
t
c: (3)

When t ¼ 1, Y t degenerates to the original time series X.
Then MSE of the original time series X is obtained by calcu-
lating the sample entropy of Y t at all scales. Fig. 3 demon-
strates the coarse-graining procedure when t ¼ 3.

However, the conventional MSE is designed for single
dimensional analysis. While software aging process shows
complexity not only in temporal scale but also in spatial
scale (multivariate). Currently, MSE doe not satisfy the
property Integration of an aging indicator. To this end, we
extend MSE to MMSE via several modifications.

Modification 1. The collected multi-dimensional perfor-
mance metrics usually have different scales and numerical
ranges. For example the CPU utilization metric stays in
the range of 0
 100 percent while the total memory utiliza-
tion may vary in the range 1
4 GB. Thus, the distance
between two segments may be biased by the performance
metrics with large numerical ranges, which further results
in MSE bias. To avoid that bias, we normalize all the perfor-
mance metrics to a unified numerical range, namely 0
 1.
Suppose X is a Nxp data matrix where p is the number of
performance metrics, N is the length of the data window
and each column of X denotes the time series of one
particular performance metric, then X is normalized in the
following way:

X
0
ji ¼

Xji �minðXiÞ
maxðXiÞ �minðXiÞ ; 1 � i � p; 1 � j � N: (4)

Modification 2. In MSE algorithm, we quantify the similar-
ity between two segments via maximum norm [35] of two
scalar numbers. A novel quantification approach is neces-
sary when MSE is extended to MMSE. Each element in the

Fig. 2. The segmentation procedure whenm ¼ 2 andm ¼ 3.

Fig. 3. The coarse-graining procedure when t ¼ 3.

678 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

maximal norm pair:maxfjXðiþ kÞ �Xðjþ kÞj : 1 � k � m� 1g
such that Xðiþ kÞ is replaced by a vector Xðiþ kÞ where
each element represents the observation of one specific per-
formance metric at time iþ k. Thus the scalar norm is trans-
formed to the vector norm. The embedded dimension m
should also be vectorized when the analysis shifts from sin-
gle dimension to multiple dimensions. The vectorization
brings a nontrivial problem in the calculation procedure of

sample entropy that is how to obtain Fmþ1ðrÞ. Assume that
the embedding vector m ¼ ðm1;m2; . . . ;mpÞ denotes the
embedded dimensions for p performance metrics respec-
tively. A new embedding vector mþ which has one addi-
tional dimension compared to m can be obtained in two
ways. According to the embedding theory mentioned in
[38], mþ can be achieved by adding one additional dimen-
sion to only one specific embedded dimension in m, which
leads to p different alternatives. mþ can be any one of the

set fðm1;m2; . . . ;mk þ 1; . . . ;mpÞ; 1 � k � pg. FmþðrÞ is cal-
culated in a naive way or a rigorous way, both of which are
depicted in detail in [35]. The other approach is very simple
and intuitional, that is, adding one additional dimension to
every embedded dimension in m. There is only one alterna-
tive for mþ, namely fðm1 þ 1;m2 þ 1; . . . ;mk þ 1; . . . ;mp þ
1Þ; 1 � k � pg. This simple approach implies that each
embedded dimension is identical, which may be a strong
constraint. However, compared to the former approach, the
latter one has negligible computation overhead and works
well in our experiment. The former approach will be dis-
cussed in our future work.

Modification 3. In MSE algorithm, the threshold r is set as
r ¼ 0:15 � s. In MMSE algorithm, we need a single number
to represent the variance of the multi-dimensional perfor-
mance data in order to apply it directly in the similarity cal-
culation procedure. Here we employ the total variance
denoted by trðSÞ, which is defined as the trace of the covari-
ance S of the normalized multi-dimensional performance
data, to replace s.

Modification 4. We argue that an ideal aging indicator
should be expressed as a single number in order to be read-
ily used in failure prediction. The output of the conven-
tional MSE is a vector of entropy values at multiple scales.
We need to use a holistic metric to integrate all the entropy
values at multiple scales. Thus a composed entropy (CE) is
proposed. Let T denote the number of scales and the vector
E ¼ ðe1; e2; . . . ; eT Þ denote the entropy value at each scale
respectively. Then CE is defined as the euclidean norm of
the entropy vector E,

CE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiXT
i¼1

e2i
2

vuut ; (5)

CE could be regarded as the euclidean distance between
E and a “zero” entropy vector which consists of 0 entropy
values. A “zero” entropy vector represents an ideal sys-
tem state meaning, that the system runs in a healthy state
without any fluctuations. Thus the more E deviates from
a “zero” entropy vector, the worse the system perfor-
mance is. It is worth noting that CE is not the unique
metric which can integrate the entropy values at all
scales. Other metrics also have the potential to be aging

indicators. For example, the average of E is another alter-
native, although we observe that it has a consistent result
with CE.

For the sake of clarity, we demonstrate the pseudo code
of MMSE calculation procedure in Algorithm 1. Does
MMSE satisfy the proposed three properties, namely Mono-
tonicity, Stability and Integration? First of all, we show that
entropy caters to Monotonicity during software aging via
empirical verifications. As MMSE is built on Shannon
entropy [32], the properties of Shannon entropy are inher-
ited by MMSE. For example, both of them are the measure-
ments of complexity. Therefore, we only show that the
system Shannon entropy increases with the degree of soft-
ware aging. In this paper, we aim to predict ARFs before a
failure occurs. Therefore, we are only concerned about two
aging states, namely the normal working state (sw) and the
failure state (sf). The hidden aging process dominates the
observed performance metrics. For instance, if the aging
process shows a degradation trend, the observed perfor-
mance metrics such as the response time have a decreasing
trend correspondingly; if the complexity of the aging pro-
cess increases, then certain observed performance metrics
do so. The empirical verification is shown in Appendix A.
This result tells us that the system entropy tends to increase
when the failure probability (pf) is smaller than the proba-
bility of working state (pw). In most situations, the system
cannot provide acceptable services or goes to failure very
soon once pw < pf . When pw < pf , the Monotonicity prop-
erty of entropy in software aging tends to be the case.

Algorithm 1.MMSE Calculation Procedure

Input m: the embedded dimension; T : the number of scales; N :
the length of data window; X: a NXp data matrix where
each p denotes the number of performance metrics and
each column Xi; 1 � i � p denotes the time series of one
specific performance metric with length N .

Output: The aging degree metric CE
1: Normalize the original time series into the range [0,1]

according to equation (4)
2: == Preset the similarity threshold r
3: S ¼ CovðX0 Þ == Cov denotes the matrix covariance
4: r ¼ trðSÞ == tr denotes the trace of a particular matrix
5: for t ¼ 1; t ¼ T ; t þþ do
6: == Coarse-graining procedure
7: for i ¼ 1; i ¼ p; iþþ do
8: for j ¼ 1; j ¼ bN

t
c; jþþ do

9: Yji ¼
Pjt

k¼ðj�1Þtþ1
X

0
ki

t

10: end for
11: end for
12: EðtÞ ¼ ExtendedSampleEntropyðm; r; Y Þ
13: == The similarity calculation between two
14: == segments has been extended from scalar
15: == to vector in ExtendedSampleEntropyð	Þ
16: end for
17: CE ¼

ffiPT
i¼1 EðiÞ22

q

We apply MSE to the CPU utilization data series shown
in Fig. 1. Fig. 4 shows the entropy values of the first four
days (i.e., Day1; Day2; Day3; Day4) and the last four days
(i.e., Day49; Day50; Day51; Day52). We observe that the

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 679

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

entropy values of the last four days are much larger than the
ones of the first four days nearly at all scales. Especially, the
entropy values of Day52 when the system failed are signifi-
cantly higher than others. Actually, the similar entropy
increase phenomenon can also be observed in previous
articles such as Fig. 3 in [31] and Fig. 5 in [39]. Although we
cannot give the precise entropy values of these data due to
lack of their detail, we can intuitively observe that the sys-
tem goes from a steady state to a fluctuation state, which
implies an entropy increase. However, the strict monotonic-
ity may be biased by external interventions e.g., garbage
collection.

Due to the inherent “multi-scale” nature of MMSE, the
Stability property is obtained. Via multi-scale transforma-
tion, some noises are filtered out or smoothed. In addition,
the combination of entropy values at multiple scales further
mitigates the influence of noises. MMSE is a fusion of MSE
on multiple performance metrics (e.g., Memory utilization)
and can readily cover more metrics. Hence, MMSE satisfies
the Integration property. Based upon MMSE, we have
implemented several approaches to predicting ARFs. To
evaluate the effectiveness of these approaches, we design
and implement a proof-of-concept prototype named ARF-
Predictor. The details of ARF-Predictor will be depicted in
next section.

4 SYSTEM DESIGN

The architecture of ARF-Predictor is shown in Fig. 5. ARF-
Predictor mainly contains four modules: data collection, met-
ric selection, MMSE calculation, and failure prediction. The
data collection module collects runtime performance metrics
from multiple data sources including applications, processes
and operating systems. The collected data are stored in a time
series database named InfluxDB [40]. Amongst the rawperfor-
mance metrics, collinearity is thought to be commonmeaning
that some metrics are redundant. What is worse, a significant
overhead is caused if all of these performance data are ana-
lyzed. Thus, it is necessary to select a subset of the original
metrics without major loss of quality. The selected metric
subset is fed into the MMSE calculation module to calculate
the sample entropy at multiple scales in real time. Then
the entropy values are leveraged to predict anARF by the fail-
ure prediction module. We will describe the details in the
following parts.

4.1 Metric Selection

To get rid of the collinearity amongst the high-dimensional
performance metrics and to reduce computational over-
head, we select a subset of metrics which can be used as a

surrogate for a full set of metrics without significant loss of
information. Assuming there are M metrics, our goal is to
select the best subset of any size k from 1 to M. To this end,
Principal Component Analysis (PCA) variable selection
method is introduced.

As a classical multivariate analysis approach, PCA is
always used to transform orthogonally a set of variables
which may be correlated to a set of variables which are line-
arly uncorrelated (i.e., principal component, or PC). Let X
denote a column centered nxM matrix, where M denotes
the number of metrics, n denotes the number of observa-
tions. Via PCA, the matrix X could be reconstructed approx-
imately by k PCs, where k � M. Mathematically, X is
transformed into a new nxk matrix of principal component
scores T by a loading or weight kxM matrix W if keeping

only the k principal component, namely T ¼ XWT where
each column of T is called a PC. The loading factor W can

be obtained by calculating the eigenvector of XTX or via sin-
gular value decomposition (SVD) [41]. In this paper, we

adopt the former method. XTX is first transformed to a diag-
onal matrix L. The values on the diagonal line of L are the
eigenvalues. The eigenvectors corresponding to the k-larg-
est eigenvalues constitute W. Instead, we leverage PCA to
select variables rather than to reduce dimensions.

In order to achieve this goal, we first introduce a well-
defined numerical criterion in order to rank the subset of
variables. Three kinds of criteria, namely RM [42], [43], Gen-
eralized Coefficient of Determination (GCD) [43], [44] and
RV [43], are proposed in previous literatures. RM and RV
are defined as matrix correlations between an nXM data
matrix and projections of its columns on some subspace of
Rn which is spanned by k original variables. While GCD is a
measurement of the proximity of two subspaces spanned
by different variable sets. In this paper, GCD is a measure-
ment of similarity between the principal subspace spanned
by the k specified PCs and the subspace spanned by a given
p-variable subset of the original M-variable data set. By
default, the specified PCs are usually the first k PCs and the
number of variables and PCs is the same (k ¼ p). In other
words, RM and RV involve all the PCs (i.e., usually n PCs
for an nXM matrix) while GCD only involves k PCs. Thus,
the computational overhead of GCD is lower than the ones
of RM and RV especially when n is large and k is small.
Moreover, we observe that the effectiveness of GCD is com-
parable with the ones of RM and RV when local search heu-
ristics (e.g., simulated annealing) are adopted according to
the experimental results in [42]. These two points are also

Fig. 4. The entropy values of a real VoD system at 30 scales.

Fig. 5. The architecture of ARF-Predictor.

680 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

empirically verified in our experiments. Therefore, we
choose GCD [43], [44] as a criterion. The detailed descrip-
tion of GCD can be found in [43].

Then we need a search algorithm to select the best p-vari-
able subset of the full data set. In this paper, we adopt a heu-
ristic simulated annealing algorithm to search for the best p-
variable subset. The algorithm is described in detail in [42].
In brief, an initial p-variable subset is fed into the simulated
annealing algorithm, then the GCD criterion value is calcu-
lated. Further, a subset in the neighborhood2 of the current
subset is randomly selected. The alternative subset is chosen
if its GCD criterion is larger than the one of the current sub-
set. However, to avoid getting stuck in local optima, we

choose a worse alternative subset with a probability e
ac�cc

t if
the GCD criterion of the alternative subset (ac) is smaller
than the one of the current subset (cc), where t denotes the
temperature and decreases throughout the iterations of the
algorithm. The algorithm stops when the number of itera-
tions exceeds the preset threshold. The merit of the simu-
lated annealing algorithm is that the best p-variable subset
can be obtained with a reasonable computation overhead,
even the number of variables may be very large. With the
well-defined GCD criterion and the simulated annealing
search algorithm, we can reduce the high-dimensional run-
time performance metrics (e.g., 76) to a very low-dimen-
sional data set (e.g., 5) with very little information loss.
Therefore, the MMSE overhead will be mitigated signifi-
cantly. The selected metrics are fed into the MMSE calcula-
tion module to calculate CE using the proposed MMSE
algorithm in real time.

4.2 ARF Prediction Based upon MMSE

Based upon the proposed aging indicator MMSE, it is easy
to design algorithms to predict ARFs in real time. Accord-
ing to the survey [45], there are three kinds of approaches
including time series analysis, threshold-based and machine
learning to detecting the onset of aging or predicting the
occurrence of ARFs. In this paper, we only discuss the
time series and threshold-based approaches, and leave the
machine learning approach to our future work. But before
that we need to determine a sliding window in order to
calculate MMSE in real time. As mentioned in previous
work [34], bN

t
c should stay in the range 10m to 30m. Thus

the sliding window heavily depends on the scale factor t.
In previous studies [33], [35], the authors usually set the
scale factor t in the range 1
 20, leading to a huge data
window, say 10,000, especially when t ¼ 20. A large slid-
ing window not only increases the computational overhead
but also makes prediction approaches insensitive to fail-
ures. Thus we constrain the sliding window in an appro-
priate range, say no more than 1,000, by limiting the range
of t. In our experiment we set t in the range 1
 10. So a
moderate data window N ¼ 1; 000 can cater for the basic
requirement.

Threshold Based Approach. As a simple and straightfor-
ward approach, the threshold based approach is widely
used in aging failure prediction [46], [47]. If the aging level
exceeds a preset threshold, a failure occurs. However, an

essential challenge is how to identify an appropriate thresh-
old. Determining a threshold from empirical observations is
a feasible approach. This approach learns a normal pattern
when the system runs in the normal state. If the normal pat-
tern is violated, a failure occurs. We call this approach
FailureThreshold (FT). Assume that CE ¼ fCEð1Þ; CEð2Þ;
CEð3Þ; . . . ; CEðnÞg represents a series of normal data where
each element CEðtÞ denotes a CE value at time t. The failure
threshold ft is defined as ft ¼ b �maxðCEÞ, where b is a
tunable fluctuation factor which is used to cover the unob-
served value escaped from the training data. If there are a
bunch of aging failure records, b could be set optimally
according to a heuristic method. First initialize b ¼ b0 (e.g.,
b0 ¼ 1) and set the search space, namely b 2 ½b0;b1�; then
iteratively calculate the prediction result using FT approach
with b ¼ bþ D in each iteration; choose the b value which
has the best prediction result as the optimal b. In this paper,
b 2 ½1; 2� and D ¼ 0:1. If there are not enough aging failure
records, b is set to 1.5 by default. The search space and
default value only work in the ARF prediction approaches
based on MMSE. Different systems and different appro-
aches based on other aging indicators should be considered
separately. As mentioned above, MMSE increases with the
degree of software aging. Thus a failure occurs only when
the new observed CE exceeds ft, something like upper
boundary test. For the aging indicators which have a down-
trend such as AverageBandwidth, the max function in (9) will
be replaced by min, something like lower boundary test. A
failure occurs if the newly observed CE is lower than ft.

FT can be further extended to be an incremental version
named FT -X in order to adapt to the ever changing running
environment. FT -X learns ft incrementally from historical
data. Once a new CEðtþ 1Þ is obtained and the system
is assured to stay in the normal state, then we com-
pare CEðtþ 1Þ with previously trained maxðCEðtÞÞ. If
CEðtþ 1Þ < maxðCEðtÞÞ then ft ¼ b �maxðCEÞ; else
ft ¼ b � CEðtþ 1Þ. Besides the real-time advantage, FT -X
needs very little memory space to store the new CE and
previously trained maximum of CE.

Time Series Approach. Although the threshold based
approach is simple and straightforward, identifying the
threshold is still a thorny problem. Thus, to bypass the
threshold setting dilemma, we need a time series approach
which requires no threshold or adjusts a threshold dynami-
cally. To compare with existing approaches, we leverage the
extended version of Shewhart control charts algorithm pro-
posed in [31] to predict ARF. But one difference exists. In
[31], the authors adopt the deviation dn between the local
average an and the global mean mn to predict aging failures.
dn is defined as

dn ¼
ffiffiffiffiffiffi
N 02

p

sn
ðmn � anÞ; (6)

where N
0
is used to represent the sliding window on

entropy data calculated by MMSE algorithm in order to dis-
tinguish it from the sliding window N in MMSE algorithm,
and the meaning of other relevant parameters can be found
in [31]. The authors pointed out that H€older exponent
decreased with the degree of software aging. Therefore,
they only took into account the scenario of mn > an. In this

2. The neighborhood of a subset S is defined as a group of k-variable
subsets which differ from S by only a single variable.

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 681

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

paper, we empirically show that MMSE increases with the
degree of software aging. Thus, we only take into account
the scenario of mn < an. dn is redefined by substituting
mn � an with an � mn. To make the prediction more resilient
to system noises, we empirically determine that a change
occurs when dn > � holds for p consecutive points where �
and p can be tuned in different experiments. In our experi-
ments, we observe that a change is assured when p ¼ 4. So

N
0
and � are the primary factors affecting the prediction

results. In [31], the second change in H€older exponent
implies a system failure. By observing the MMSE variation
curves obtained from Helix Server test platform and real-
world AntVision system shown in Section 5, we find out
that these curves can be roughly divided into three phases:
slowly rising phase, fast rising phase, and failure-prone
phase. Moreover, when the system steps into the failure-
prone phase, a failure will come soon. Therefore, we also
assume that the second change in MMSE data implies a sys-

tem failure. Here we provide a heuristic method to set N
0

and �, which is similar to the b setting method in threshold
based approach. First set a search space gridded by

N
0 2 ½N 0

0; N
0
1� and � 2 ½�0; �1�; then find N

0
and � which pro-

duce the best prediction result from the search space. In this
paper, the search space is a 20� 7 grid comprised by

N
0 2 ½1; 20� and � 2 ½1; 7�. N 0

and � are set to 10 and 6 respec-
tively by default.

5 EXPERIMENTAL EVALUATION

We have designed and implemented a proof-of-concept
prototype named ARF-Predictor and deployed it a con-
trolled environment. To monitor the common process and
operating system related performance metrics such as CPU
utilization and context switch, we leverage some off-the-
shelf tools such as Windows Performance Monitor shipped
with Window OS or Hyperic [48]. To monitor other applica-
tion related metrics such as response time and throughput,
we develop several probes from scratch and deploy them in
the test environment. The sampling interval in all the moni-
toring tools is 1 minute. All the collected data are stored the
InfuxDB [40] in order to obtain the metric data in a specific
time interval by a simple query language.

In the following experiments, we will address five ques-
tions: DoesMMSE satisfy the property ofmonotonicity in prac-
tice? (Answer in Section 5.2); Which performance metrics are
selected by PCA variable selection algorithm? (Answer in
Section 5.3); Are the proposed ARF prediction approaches
based on MMSE effective in the controlled test system and in
the real-world system? (Answer in Section 5.4); Does MMSE
outperform other explicit and implicit aging indicators?
(Answer in Section 5.5); What is the overhead of ARF-
predictor? (Answer in Section 5.6). Next, wewill demonstrate
the details of our experimental methodology and evaluation
results in a VoD system, namely Helix Server, and in a real-
world production system, namelyAntVision.

5.1 Evaluation Methodology

To make comprehensive evaluations and comparisons from
multiple angels, we deploy ARF-Predictor in a controlled
VoD test environment. To evaluate the effectiveness of

ARF-Predictor in real-world systems, we use ARF-Predictor
to predict ARFs in AntVision system. We believe ARF-Pre-
dictor shows similar ARF prediction results in other sys-
tems (e.g., web servers [4], [14], JVMs [5] and Windows
Operating Systems [31]), where aging phenomena have
been observed.

VoD System. We choose a VoD system as our test plat-
form because more and more services involve video and
audio data transmission. What is more, the “aging” phe-
nomenon has been observed in such kinds of applications
in our previous work [49], [50]. We leverage Helix Server
10.0 [51] as a test platform to evaluate our system due to its
open source and wide usage. Helix Server as a mainstream
VoD software system is adopted to transmit video and
audio data via RTSP/RTP protocol. At present, there are
very few VoD benchmarks. Hence, we develop a client emu-
lator named HelixClientEmulator employing RTSP and
RTP protocols from scratch. HelixClientEmulator involves
three threads, one for audio processing (e.g., coding and
decoding), one for video processing, and the third for ses-
sion management (e.g., start and stop a file request). It can
generate multiple concurrent clients to access media files on
a Helix Server. Our test platform consists of one server host-
ing Helix Server, three clients hosting HelixClientEmulator
and one Gigabit switch connecting the clients and the server
together. 100 rmvb media files with different bit rates are
deployed on the Helix Server machine. The topology of our
test system is demonstrated in Fig. 6. Each client machine is
configured with one Intel dual core 2.66 Ghz CPU and 2 GB
memory and one Gigabit NIC, and runs 64-bit Windows 7
operating system. The server machine is configured with
two 4-core Xeon 2.1 GHZ CPU processors, 16 GB memory, a
1 TB hard disk and a Gigabit NIC, and runs 64-bit Windows
server 2003 operating system.

We have deployed 100 rmvb media files with different
bit rates on the Helix Server machine. HelixClientEmulator
is adopted to generate different types of workloads.
Each workload is represented by a tuple ðclient count;
access distribution type; sleep timeÞ where client count
denotes the concurrent number of emulated clients,
access distribution type denotes the request distribution on
the 100 media files in order to distinguish their popularity
and sleep time denotes the time interval in second between
two continuous requests generated by the same client.
access distribution type has 3 choices: 0, 1, 2 where “0” rep-
resents random access, meaning that the 100 files are
accessed randomly, “1” represents Poisson access, meaning
that the 100 files are accessed according to Poisson distribu-
tion, and “2” represents single file access, meaning that only

Fig. 6. The framework of Helix Server test system.

682 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

one file in the 100 files can be accessed. In this paper, the
access distribution type is set to 0 by default. Through 20
experiments, we observe that the Helix Server always
restarts itself automatically and the transmission speed
drops immediately when the concurrent number of clients
reaches 900. Thus, 900 is the capacity of our test platform
and the number of emulated clients will not exceed this
limit in the following experiments. But to accelerate the
aging process, we make the system run under a high
pressure workload (i.e., client count � 500), which is also
adopted in [20].

During system running, thousands of performance coun-
ters can be monitored. In order to trade off betweenmonitor-
ing effort and information completeness, we only monitor
part of the runtime information at four different levels: Helix
Client, OS, Helix Server, and server process with corre-
sponding probes. At Helix Client level, we record the perfor-
mance metrics such as Jitter, Average Response Time, etc., with
the probes embedded in HelixClientEmulator. At OS level,
we monitor Network Transmission Rate, Total CPU Utilization,
etc., via Windows Performance Monitor. At Helix Server
level, we monitor the application relevant metrics such as
Average Bandwidth Output Per Player(bps), Players Connected,
etc., from the log produced by Helix Server. Finally, at pro-
cess level, we monitor some of metrics related to the Helix
Server process like Process Working Set. Due to the limited
space, wewill not show the 76 performancemetrics.

AntVision System. Besides the evaluations in a controlled
environment, we further apply ARF-Predictor to predict
failures in AntVision system. AntVision is a complex sys-
tem which is used to monitor and analyze public opinions
and information from social networks like Sina Weibo. The
whole system consists of hundreds of machines in charge
of crawling information, filtering data, storing data and so
on. More information about this system can be found in
www.antvision.net. With the help of system administra-
tors, we have obtained 7-day logs from AntVision. The log
data not only contain performance data but also failure
reports. Although the performance trace only involve two
metrics i.e., CPU and memory utilization, it is enough to
evaluate the failure prediction power of ARF-Predictor.
According to the failure reports, we observe that one
machine crashed on the 6th day without throwing excep-
tions in the console log and application log. After manual
investigation, we conclude that the outage is likely caused
by software aging. Because the query response time on this
machine decreases gradually, and the CPU utilization
exhibits an increasing trend.

In the controlled environment, we conducted 50 experi-
ments by varying the workload parameters. In each experi-
ment, the client count parameter is randomly selected from
f500; 550; 600; 650; 700; 750; 800g, the access distribution type
parameter is randomly selected from f0; 1; 2g and the
sleep time is fixed as 1. In this paper, we aim to evaluate the
effectiveness of ARF prediction approaches using the aging
traces generated by different workloads rather than to discuss
the impact of workload parameters on software aging. There-
fore, the workload parameters are chosen randomly and 50
experiments are enough. Moreover, we guarantee the system
runs to “failure” in each experiment. Here “failure” not only
refers to system crashes but also resource exhaustion and

severe performance degradation. As pointed in [20], when the
degradation path DðtÞ exceeds a critical level Df , a failure
occurs. This kind of failure is also called “pseudo-failure”
[20].Df is always defined as the maximum degradation level
that the system can tolerate. For example, [20] defines a
pseudo-failure when the total memory used by Apache web
server exceeds 400 MB (Df ¼ 400 MB). In our VoD system, if
theAverageBandwidth is lower than 30 bps,Helix server cannot
provide normal services any more because video and audio
frames are severely lost at that moment. Hence, we set
Df ¼ 30bps. To get the ground truth, we manually label the
pseudo-failure point in each experiment. We search the fail-
ure point on the AverageBandwidth subject to the following
constraints: i), lower than Df for several consecutive times;
ii), happen for the first time; iii), no increasing trends after the
failure point. However, due to the ambiguity of manual label-
lings and the insensitivity of the sliding window, the failure
prediction approaches may not predict the failure points pre-
cisely. Thus, we stipulate the prediction is correct if the pre-
dicted failure falls in a “decision window”. The decision
window is defined as a data window with a specific length
whose right boundary is the “failure” point. [5] adopts a simi-
lar skill named “security margin” to judge the prediction
result. A large decision window will enlarge ATTF . While a
small one will result in inaccurate prediction results. There-
fore, we set the length of decisionwindow as 10 percent of the
MMSE sliding window (i.e., 100 in this paper) as the decision
window will not significantly affect the calculation of MMSE
in this situation.

We leverage Recall, Precision, F1-measure and ATTF to
quantitatively evaluate the effectiveness of ARF-Predictor.
The former two metrics are defined as

Recall ¼ Ntp

Ntp þNfn
; Precision ¼ Ntp

Ntp þNfp
;

where Ntp, Nfn, and Nfp denote the number of true posi-
tives, false negatives, and false positives respectively. It is
worth noting that Ntp, Nfn, Nfp are the aggregated numbers
over 50 experiments respectively. To represent the accuracy
in a single value, F1-measure is leveraged and defined as

F1�measure ¼ 2 �Recall � Precision
Recallþ Precision

:

ATTF is defined as the time span between the first failure
report and the real failure. In a real-world system, once a
failure is detected, the system may be rebooted or offloaded
for maintenance. Thus, we choose the first failure report as
a reference point. If the first failure report falls in the deci-
sion window,ATTF ¼ 0. A large ATTF may cause excessive
system maintenance, leading to availability decrease and
operation cost increase. Therefore, a lower ATTF is
preferred.

5.2 Monotonicity of MMSE

In this section, we show that MMSE satisfies the monotonic-
ity property with the experimental data sets obtained from
the Helix Sever system and the real-world trace data
obtained from the AntVision system. In the Helix Server
system, the phenomenon of “software aging” is observed in

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 683

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

http://www.antvision.net

each experimental data set. For example Fig. 7 demonstrates
the AverageBandwidth and MemoryUtilization variation
curves along with time under workload ð700; 0; 1Þ in the
Helix Server system. Even a cursory glance at these curves,
a decreasing trend in AverageBandwidth and an increasing
trend inMemoryUtilization can be observed. To exhibit these
trends more clearly, we leverage Lowess [52] method to
smooth these two time series. From the smoothed curves,
we observe that software aging indeed occurs in VoD sys-
tem and the system goes to “failure” when serious video
and audio frame losses occur.

In Appendix A, the monotonicity of MMSE has been
empirically verified. The observations in our experiments
support our conclusion. Fig. 8 demonstrates the MMSE vari-
ation along with time in the the Helix Server system under
different kinds of workloads. Fig. 9 demonstrates the CPU
utilization and the corresponding MMSE values in the Ant-
Vision system. From these figures, we observe that the
MMSE indicator shows a better monotonicity than some
conventional aging indicators such as AverageBandwidth and
MemoryUtilization. Especially before the system is close to a
failure, it is nearly strictly monotone. But from Fig. 7, we
observe that the Helix Server system is suffering from low
AverageBandwidth even at a normal state. In the AntVision
system, a failure occurs while the CPU utilization is lower
than the preset threshold 0.9 and even lower than the CPU
utilization at a normal state. Therefore, it is difficult to draw
a line between normal and failure state based upon Average-
Bandwidth or CPU utilization. However, it becomes easy for
MMSE. The high accuracy of the failure prediction
approaches proposed in this paper is mainly attributed to
themonotonicity property of MMSE.

5.3 Performance Metric Selection

In this section, we select a subset of performance metrics
from the high-dimensional performance data collected from
the controlled test system using PCA variable selection
algorithm. By investigating all the performance metrics, we
find that many metrics are highly correlated. Therefore, a
small subset of metrics can be used as a surrogate of the full
data set without significant information loss via PCA vari-
able selection method presented in Section 4.1. We calculate
the best GCD scores of different variable sets with specific
cardinalities (e.g., k ¼ 3) with the simulated annealing algo-
rithm. The number of iteration is set to 10. Fig. 10 shows the
variation of the best GCD sore along with the number of
variables. From this figure, we observe that the GCD score
does not increase significantly any more when the number
of variables reaches 5. Hence, these five variables are
already capable of representing the full data set. They are
Total CPU Utilization, AverageBadwidth, Process IO Operations
Per Second , Process Virtual Bytes Peak, and Jitter respectively.
In the following experiments, we will use them to evaluate
ARF-Predictor.

5.4 ARF Prediction

In this section, we will demonstrate the effectiveness of ARF
prediction of ARF-Predictor using both of the experimental
data sets and the real-world trace data. In the MMSE algo-
rithm, we set the embedded dimension m ¼ 2, the sliding
window N ¼ 1;000, and the number of scales T ¼ 10. For
approach FT , we need to prepare the training data and
determine the fluctuation factor b first. Due to the lack of
prior knowledge, the training data selection is full of ran-
domness. To unify the way of training data selection, we
leverage the slice of MMSE data ranging from the system
starting point to the point where 200 time slots away from
the right boundary of the decision window as the training
data. We leave the remaining 200 time slots to conduct and

Fig. 7. Performance degradation in the Helix Server system under work-
load ð700; 0; 1Þ. (a) denotes the degradation of Average Bandwidth and
(b) denotes the increase of memory utilization. The red dash line
denotes the smoothed curve using Lowess:

Fig. 8. The MMSE variations along with time in Helix Server system
under under different workloads, namely ð700; 0; 1Þ (a), ð600; 0; 1Þ (b),
ð650; 0; 1Þ (c),ð750; 0; 1Þ (d) respectively.

Fig. 9. The CPU utilization and its MMSE values in AntVision system.

Fig. 10. The variation of GCD score along with the number of variables.

684 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

compare to FT -X approach. Fig. 11 shows an example of
training data selection in one experimental data set. In this
figure, we set the 800th time slot as the pseudo-failure point.
The decision window spans across the range 700
 800.
Thus, the data slice in the range 0
 500 is selected as the
training data.

Another problem is how to determine b. With the histori-
cal performance metrics and failure records, it is possible to
achieve an optimal b according to the b setting method in
Section 4.2. Fig. 12a demonstrates the failure prediction
results of FT with different b values using the experimental
data sets. From this figure, we observe that Recall keeps a
perfect value 1 when b varies in the range 1
 2, i.e.,Nfn ¼ 0

and the other two metrics: Precision and F1-measure
increase with b. From Fig. 11, we can find some clues to
explain these observations. In Fig. 11, the training data in the
range 0
 500 are much smaller than the data in the decision
window. Hence, no matter how b varies in the range 1
 2,
the failure threshold ft is lower than the data in the decision
window. The advantage is that all of the failures can be pin-
pointed (i.e., Nfn ¼ 0). While the disadvantage is that many
normal data are mistaken as failures (i.e.,Nfp is large). More-
over, Precision has an increasing trend due to the decreasing
ofNfp with b. Similarly, the prediction results FT -Xwith dif-
ferent b values are shown in Fig. 12b. But quite different
from the observations in Fig. 12a, Precision keeps a perfect
value 1 (i.e., Nfp ¼ 0) while the other two metrics Recall and
F1-measure decrease with b in Fig. 12b. Fig. 11 is also capa-
ble of explaining these observations. The failure threshold ft
is updated by FT -X incrementally according to the system
state. As the system runs normally in the range 500
 700,
these data are also used to train ft. Hence, maxðCEÞ calcu-
lated by FT -X is much bigger than the one calculated by FT .
A bigger b can guarantee the detected failures are the real
failures (i.e., Nfp ¼ 0) but may result in a large failure

missing rate (i.e., Nfn is large). From these two figures, we
observe that FT achieves an optimal result when b is large,
say b ¼ 2, but FT -X achieves an optimal result when b is
small, say b ¼ 1:1. To carry out fair comparisons, we set
b ¼ 2 for FT and b ¼ 1:1 for FT -X, namely their optimal
results. However, in real-world systems, the optimal b is con-
siderably difficult to attainwhen failure records are scarce. In
that case, b is set to 1.5 by default.

Although the extended version of Shewhart control charts
is capable of identifying failures adaptively, it is still neces-
sary to determine two parameters, namely the sliding win-
dow N

0
and �, in order to obtain an optimal prediction

result. We leverage the method proposed in Section 4.2 to

obtain the optimal N
0
and � with the experimental data sets.

Fig. 13, 14, 15, and 16 demonstrate the Recall, Precision,

F1-measure, and ATTF variations along with � and N
0

respectively. The variation zone is organized as 20X7 mesh
grid. From Fig. 13, we observe that in the area where

Fig. 11. Training data selection in FT approach.

Fig. 12. The variations of Recall; Precision and F1-measure along with b
values using the experimental data sets. (a) and (b) demonstrate the
variations in FT approach and FT -X approach respectively.

Fig. 13. Recall variations.

Fig. 14. Precision variations.

Fig. 15. F1-measure variations.

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 685

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

2 � N
0 � 6 and 4 � � � 7, some values are 0 (i.e., Ntp ¼ 0) as

there are no deviations exceeding the threshold �. Accord-
ingly, Precision and F1-measure are 0 too. But in other
areas, all the failure points are detected (i.e., Recall ¼ 1).
Thus F1-measure changes consistently with Precision.
Here we choose the optimal result when N ¼ 6 and � ¼ 6:5
according to F1-measure. At this point, Recall ¼ 1,
Precision ¼ 0:99, F1-measure = 0.995 and ATTF ¼ 6. In the
following experiments, we will compare the prediction
results of FT , FT -X and the extended version of Shewhart
control charts when they achieve the optimal results in the
Helix Server system and in the real-world AntVision sys-
tem. In different systems, we will determine the optimal
results for different approaches separately.

Fig. 17 depicts the failure prediction results obtained by
FT , FT -X and the extended Shewhart control charts in the
Helix Server system. From Fig. 17a, we observe that the
extended version of Shewhart control chart achieves the best
result, F1-measure = 0.995; FT -X achieves the second best
result, F1-measure = 0.9795; FT achieves the worst result,
and F1-measure = 0.8899. The prediction results of the
extended Shewhart control chart and FT -X have about 0.1
improvement compared to the one of FT . Meanwhile, a
lower ATTF is obtained by the adaptive approaches such as
FT -X, shown in Fig. 17b. Via these comprehensive compari-
sons, we find that the adaptive approaches outperform the
statical approaches due to their adaptation to the ever
changing runtime environment.

Fig. 18 shows one slice of MMSE time series in the range
1;100
 1;320 in the AntVision system. The failure reports
generated by FT , FT -X and Shewhart control chart fall in
the range 1;213
 1;320, 1;217
 1;320 and 1;219
 1;320
respectively. It is intuitively observed that the Shewhart
control chart approach achieves the best prediction result as
almost all of its failure reports fall in the decision window.

The prediction results achieved by FT and FT -X are very
similar. This is because there are no significant changes
for MMSE in the range 1;000
 1;220, which results in the
optimal threshold determined by FT and FT -X are very
similar, namely 0.233 and 0.4 respectively. Fig. 19 demon-
strates the failure prediction results in terms of Recall,
Precision, F1-measure and ATTF . The results also show
that the adaptive approach tends to be capable of
achieving a better prediction accuracy and a lower ATTF .
To make a broad comparison with the approaches based
upon other aging indicators, we conduct the following
experiments.

5.5 Comparison

In this section, we will compare the failure prediction results
obtained by the approaches based upon MMSE and the
approaches based upon other explicit or implicit aging indi-
cators in different systems. In previous studies, QoS metrics
(e.g., response time) or resource related metrics (e.g., CPU
utilization) are more often than not adopted as explicit aging
indicators. Accordingly, we employ AverageBandwidth as an
explicit aging indicator in the Helix Server system and CPU
utilization as an explicit aging indicator in the AntVision sys-
tem. H€older exponent mentioned in [31] is adopted as an
implicit aging indicator in these two systems. For different
aging indicators, the failure prediction approaches vary a lit-
tle. For AverageBandwidth and H€older exponent indicators,
we employ a lower boundary test in the threshold based
approach and the extended version of Shewhart control chart
proposed in [31] in the time-series based approach both of
which are depicted in Section 4.3, due to their downtrend
characteristics. It is worth noting that b should vary in the
same range (e.g., 1
20 in this paper) for FT and FT -X in
order to conduct fair comparisons. All of comparisons are
conducted in the situations when these failure prediction
approaches achieve optimal results.

Fig. 16. ATTF variations.

Fig. 17. The failure prediction results obtained by FT , FT -X and
Shewhart control charts in Helix Sever system.

Fig. 18. One slice of MMSE data and the failure reports generated by
FT , FT -X and Shewhart control chart in AntVision system.

Fig. 19. The comparisons of the failure prediction results obtained by FT ,
FT -X and Shewhart control charts in AntVision system.

686 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

We first determine the optimal conditions when these
approaches achieve their optimal results in the Helix Server
system. Table 1 demonstrates these optimal conditions.
Fig. 20 shows the comparison results for different indicators
in terms of Recall, Precision, F1-measure and ATTF
respectively.

From Fig. 20a, we observe that the extended version of
Shewhart control chart approach achieves an ideal recall (i.e.,
Recall ¼ 1) no matter which indicator is chosen. However,
for FT and FT -X approaches, the prediction result heavily
depends on aging indicators. The Recall of FT and FT -X
based upon MMSE are 1 and 0.91 respectively, much higher
than the results obtained by the approaches based upon
AverageBandwidth, namely 0.52 and H€older, namely 0.62.
The effectiveness of MMSE is even more significant than the
other two indicators in terms of Precision. We observe that
Precision of failure prediction approaches based upon
MMSE is up to 9 times higher than the one of FT or FT -X
based upon H€older, and 5 times higher than the one of FT
or FT -X based upon AverageBandwidth, shown in Fig. 20b.
Accordingly, the MMSE is much more powerful to predict
ARF than H€older and AverageBandwidth in F1-measure
demonstrated in Fig. 20c. From the point of view of ATTF ,
the approaches based upon MMSE obtain up to 3 orders of
magnitude improvement than the ones based upon the
other two indicators. For example in Fig. 20d, for FT -X
approach, ATTF based upon AverageBandwidth and H€older
are 1,570 and 1,700 respectively, but the ATTF based upon
MMSE is 0. The extraordinary effectiveness of MMSE is
attributed to its three properties: monotonicity, stability and
integration. However, the single runtime parameter cannot
comprehensively reveal the aging state of the whole system

and the fluctuations involved in this indicator result in
much prediction bias.

Fig. 21 shows a representative AverageBandwidth varia-
tions from system start to pseudo-failure in an experimental
data set. We observe that the AverageBandwidth is low even
at a normal state. TheH€older exponent indicator also suffers
from this problem. Although a downtrend indeed exists in
H€older exponent indicator indicating that the complexity is
increasing, which is compliant with the result in [31] (shown
in Fig. 22), its instability hinders to achieve a highly accurate
failure prediction result. From above comparisons, we find
out the prediction results obtained by FT and FT -X based
upon AverageBandwidth or H€older are the same. That is
because the minimum points of the aging indicators are
involved simultaneously in the training data of FT and
FT -X demonstrated in Figs. 21 and 22 respectively. There-
fore, the optimal threshold values calculated by FT and
FT -X are the same.

The optimal conditions for these failure prediction
approaches based upon CPU Utilization, MMSE and H€older
exponent in the AntVision system are listed in Table 2.

An interesting finding is that the optimal condition of
FT -X based upon CPU Utilization indicator is “b ¼ �”,
which means we cannot find an optimal b in the range
1
 20. By investigating the prediction results, we observe
that Recall, Precision and F1-measure are all 0 no matter

TABLE 1
The Optimal Conditions for Different Approaches Based upon

Different Aging Indicators in Helix Server System

FT FT-X Shewhart control chart

AverageBandwidth b ¼ 1:8 b ¼ 1:8 N
0 ¼ 440, � ¼ 8

MMSE b ¼ 2 b ¼ 1:1 N
0 ¼ 4, � ¼ 6

H€older b ¼ 5:3 b ¼ 5:3 N
0 ¼ 40, � ¼ 5

Fig. 20. The comparison results of the prediction approaches based
upon different aging indicators in the Helix Server system. Here “AB” is
short for AverageBandwidth.

Fig. 21. The AverageBandwidth data from system start to “failure”.

Fig. 22. The H€older data from system start to “failure”. The curve fitted
by Lowess [49] is used to present the downtrend.

TABLE 2
The Optimal Conditions for Different Approaches Based upon

Different Aging Indicators in the AntVision System

FT FT-X Shewhart control chart

CPU Utilization b ¼ 1 b ¼ � N
0 ¼ 75, � ¼ 17

MMSE b ¼ 2 b ¼ 1:3 N
0 ¼ 8, � ¼ 7

H€older b ¼ 4:0 b ¼ 19 N
0 ¼ 165, � ¼ 8

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 687

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

which value b is chosen in the range 1
 20. Fig. 9 provides
the reason why we get this observation. The maximal CPU
utilization involved in the training data in FT -X falling in
the range 1
 1;200 exceeds all the CPU Utilization in the
decision window. Therefore, according to the threshold cal-
culated by FT -X, we cannot predict any failures (i.e.,
Ntp ¼ 0). While for FT approach, the maximal CPU utiliza-
tion in the training data is lower than the maximal CPU uti-
lization in the decision window. Hence, some failure points
can be detected by FT . This is the reason why FT outper-
forms FT -X based upon CPU Utilization in the AntVision
system. This could also be regarded as a drawback of non-
monotonicity of the CPU Utilization indicator.

Fig. 23 demonstrates the prediction results of the failure
prediction approaches based upon different aging indica-
tors using the real-world trace data. From this figure, we
observe that F1-measure achieved by MMSE-based
approaches are higher than 0.95, which is much better than
the one achieved by CPU Utilization-based andH€older expo-
nent-based approaches. Meanwhile, ATTF is significantly
reduced from a large number (e.g., 2,300) to a very small
number (e.g., 1) by MMSE-based approaches. We also
observe that the extended version of Shewhart control chart
approach performs better than the other two approaches no
matter which indicator is chosen.

Trend analysis is a common approach to predicting ARFs
in previous work [1], [3]. This approach first leverages Man-
Kendall test to check whether there is a trend in the time
series. If there is a trend, Sen’s slope [1], [3] is adopted
to estimate the resource consumption speed. Then, the
resource exhaustion time (i.e., the occurrence of ARF) is esti-
mated by a linear formula [1], [3]. But the traditional Mann-
Kendall-Sen approach is designed to work offline. To con-
duct real-time prediction, we leverage this approach to esti-
mate the degradation speed in a sliding window which has
the same length (i.e., 1,000) as the MMSE calculation data
window. In the Helix Server system, we use this approach
to estimate the failure time when AverageBandwidth
degrades to 30 bps. If the estimated failure time falls in the
decision window, the prediction is correct. However, if it
exceeds the length of the data, we say the prediction is still
correct since no failure alarms or rejuvenation actions will

be triggered. In the AntVision system, the CPU utilization
threshold is set to 90 percent by the operation team. But we
observe that even the maximum CPU utilization in the trace
data does not exceed the threshold, which means we may
not predict any ARFs using trend analysis. Therefore, we
set an aggressive threshold to compare trend analysis with
our approach. The CPU utilization threshold is set as the
value with which FT obtains the optimal prediction result
shown in Table 2, namely 55 percent. Another more
advanced trend estimation approach, namely Hodrick-Pre-
scott filter (HP filter), is adopted in [25]. To compare with
this approach, we leverage HP filter to estimate the trend
value. But different from Sen’s slope method, HP filter
extracts the trend value at each time point. These trend val-
ues form a non-linear curve which is hardly described by an
explicit model (e.g., polynomial function) [25]. Therefore,
we calculate the slope between the last two trend values,
and use this slope to predict the occurrence of an ARF. To
stress the advantages of our approaches, we predict ARFs
with the default configurations (i.e., b ¼ 1:5 in FT and

FT �X, � ¼ 6 and N
0 ¼ 10 in shewhart control chart

approach) rather than the optimal configurations. The com-
parison is shown in Table 3, where F1 denotes
F1�measure, Ant denotes AntVision, Sen and HP denote
the trend analysis based on Sen’s Slope and HP filter respec-
tively, and Band denotes AverageBandwidth. From this
table, we observe that our ARF prediction approaches out-
perform the trend based approaches. Trend analysis has a
strong power to detect the onset of trend and characterize
the degradation [25]. But it is weak in predicting ARFs due
to its insensibility to the short-term system changes. More-
over, trend analysis is a univariate approach, which is not
sufficient to determine the occurrence of an ARF [17].
Through comprehensive comparisons above, we conclude
that MMSE-based approaches are superior to several state-
of-the-art approaches. The high effectiveness of our
approaches results from MMSE’s three properties, namely
Monotonicity, Stability, and Integration.

5.6 Overhead

The whole analysis procedure of ARF-Predictor except data
collection is conducted on a separate machine. Hence, it
results in a very little resource footprint in the production
system. To evaluate whether ARF-Predictor satisfies the
real-time requirement, we calculate the execution time of
the whole procedure using the experimental data sets.
The average execution times of different modules of

Fig. 23. The comparison results of the prediction approaches based
upon different aging indicators in AntVision system. Here “CPU” means
CPU utilization.

TABLE 3
The Comparison Between Trend Analysis and Our Approaches

Method System Indicator Recall Precision F1 ATTF

FT VoD MMSE 1 0.51 0.675 50
FT-X VoD MMSE 0.825 1 0.904 5
Shewhart VoD MMSE 0.86 0.95 0.903 10
Sen VoD Band 0.35 0.6 0.442 80
HP VoD Band 0.51 0.82 0.629 60
FT Ant MMSE 1 0.88 0.936 15
FT-X Ant MMSE 1 0.94 0.961 6
Shewhart Ant MMSE 0.98 0.97 0.975 3
Sen Ant CPU 0 0 0 2,300
HP Ant CPU 0.04 0.18 0.065 80

688 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

ARF-Predictor in the Helix Server system are shown in
Table 3, where MS stands for Metric selection, and MMSE-C
means MMSE calculation. Even the most computation-
intensive module, namely Metric selection module, only
consumes 0.875 second, and the whole procedure consumes
a little more than 1 second. Therefore, ARF-Predictor is
light-weight enough to satisfy the real-time requirement.

Discussion. First of all, ARF-Predictor is a pervasive tool. It
can work in an extensive range of systems. However, to con-
duct effective prediction in real systems, several parameters
should be taken into account carefully. The first parameter is
the length of the sliding window N in MMSE calculation. A
small sliding window can bias the sample entropy [34], but a
large one increases the computational overhead and makes
prediction approaches insensitive to failures. As mentioned
in Section 4.2, we set N ¼ 1;000. The embedding dimension
m is set m ¼ 2 which is validated in [35], [37] As recom-

mended in [34], bN
t
c should stay in the range 10m to 30m.

Hence, t varies in the range 1
 10 ifN ¼ 1;000. The parame-
ters of prediction approaches can also impact the prediction
results. If there are enough failure traces, the optimal param-

eters, namely b, N
0
and � can be obtained via heuristic meth-

ods proposed in Section 4.2. But if the failure traces are

scarce, b ¼ 1:5 and N
0 ¼ 10 and � ¼ 6 by default. Amongst

the proposed approaches, we observe that “Shewhart chart
control + MMSE” seems a best choice. It is worth noting that
the parameters of prediction approaches depend on the
MMSE parameters. If N or the number of metrics change, b,

N
0
and � need to be recreated. Generally speaking, the recom-

mended parameter configurations need to be regulated
silently in order to work well in different systems. In the
future work, we will design adaptive machine learning
based approaches to bypass parameter setting.

6 RELATED WORK

As the first line of defending software aging, an effective
prediction of ARF is essential. A large quantity of work has
been done in this area. Here we briefly discuss related work
that has inspired and informed our design, especially work
not previously discussed. The ARF prediction approach is
based on two points, namely an aging indicator and a con-
crete prediction method. Most of previous work focus
on the design and implementation of a concrete prediction
method. While, the aging indicators are overlooked. Acco-
rding to the type of aging indicators, we roughly classify
the related work into two categories: explicit indicator based
method and implicit indicator based method.

Explicit Indicator Based Method:The explicit indicator
based method usually uses the directly observed perfor-
mance metrics as the aging indicators and develops aging
detection or prediction approaches based upon these indica-
tors. Actually according to our review, most of prior studies
(e.g., [1], [2], [25], [29]) fall to this class. In [1], the authors
leverage two memory resource related metrics, usedSwap-
Space and realMemoryFree, to model the degradation of oper-
ation software systems. If the memory resource is
exhausted, the system is rejuvenated. Grottke et al. [4] also
adopt usedSwapSpace and realMemoryFree as an aging indica-
tor of HTTP web servers and proposed a time series method
which allowed seasonal pattern to predict aging. To detect

and predict the aging phenomenon in JVMs, Alonso
et al. [5] leverage totalConsumedMmeory to indicate the aging
degree of JVMs. Moreover, a machine learning method is
also introduced to predict aging. Similarly, the authors of
[12], [26], [29], [53] also leverage memory resource related
metrics as aging indicators. Different from these explicit
system-specific aging indicators, other work leverage the
application-specific metrics (e.g., response time) as aging
indicators. Jia et al. [14] use ResponseTime as the aging indi-
cator of HTTP web servers and propose an non-linear
method to describe the aging process of web servers. In
[13], [54], the authors leverage the number of execution
event as the aging indicator of JVMs. Moreover, Silva et al.
[55] adopt requestPerSecond as the aging indicator of SOAP
servers. Recently, Matias Jr. et al. [17] propose a fast and
robust software aging prediction approach towards the soft-
ware systems which are suffering memory leak. They claim
Resident Set Size (RSS) and Heap Usage (HUS) are the
important indicators of software aging. Whether the sys-
tem-specific aging indicators or the application-specific
aging indicators, they can be observed directly.

Based on these indicators, ARFs can be detected or pre-
dicted via time-series analysis such as trend analysis [9],
[12], [26], machine learning [5], [55], [56] or threshold-based
approach [46], [47]. A common drawback of these
approaches is embodied in the aging indicators’ insuffi-
ciency due to their weak correlation with software aging.
For instance, trend analysis requires a large data window as
the fluctuation may bias the prediction result with a small
data window, which hinders the wide usage of trend in real
time prediction. What is worse, there may be no significant
degradation or rising trend in performance metrics when
software goes to failure. Hence, the prediction results can-
not reach a satisfactory level, no matter what approaches
are employed. Against this drawback, we propose a new
aging indicator, namely MMSE, which is extracted from the
directly observed performance metrics.

Implicit Indicator Based Method:Contrary to the explicit
indicator based method, the implicit indicator based
method leverage aging indicators embedded in the directly
observed performance metrics. These aging indicators are
declared to be more sufficient to indicate software aging.
Our method falls into this class. Cassidy et al. [57] and Gross
et al. [58] leverage “residual” between the actual perfor-
mance data (e.g., queue length) and the estimated perfor-
mance data obtained by a multivariate analysis method
(e.g., Multivariate State Estimation Technique) as the aging
indicator. Then the fault prediction procedure uses a
Sequential Probability Ratio Test (SPRT) technique to deter-
mine whether the residual value behaved abnormally. Sher-
eshevsky et al. [31] propose another implicit aging
indicator: H€older exponent. They show that the H€older
exponent of memory utilization decreased with the degree
of software aging. By identifying the second breakdown of
H€older exponent data series through an online Shewhart
algorithm, the ARF was detected. Although Jia et al. [14]
do not introduce any implicit aging indicator, they show
that software aging process is nonlinear and chaotic.
Hence, some complexity-related metrics such as entropy,
Lyapunov exponent, etc, are possible to be aging indicators.
Our work is inspired by Shereshevsky et al. [31] and

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 689

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

Jia et al. [14]. However, the prior studies give no empirical
verifications of their implicit aging indicators, no abstrac-
tion of the properties that an ideal aging indicator should
have, and no multi-scale extension. Moreover, the effective-
ness of H€older exponent is only evaluated under emulated
increasing workload and a thorough evaluations under real
workloads are absent in the their paper. These defects will
result in bias in prediction results, which is shown in the
real experiments in Section 5.

Another implicit indicator is MSE, which has been widely
used tomeasure the irregularity variation of pathological data
such as electrocardiogram data [33], [35], [59]. Motivated by
these studies, we first introduce MSE to software aging area.
However, we argue that software aging is a complex proce-
dure affected by many factors. Hence, to effectively measure
software aging, a multi-dimensional approach is necessary.
We extend the conventionalMSE toMMSEvia severalmodifi-
cations. Wang et al. [60] also adopt entropy as an indicator of
performance anomaly. But they measure the entropy using
the traditional Shannon entropy rather thanMSE.

7 CONCLUSION

In this paper, we propose a novel implicit aging indicator,
namely MMSE, which leverages the complexity embedded
in runtime performance metrics to indicate software aging.
Through empirical verifications, we demonstrate that
MMSE satisfies the properties of Monotonicity, Stability, and
Integration. Based upon MMSE, we design and develop a
proof-of-concept prototype named ARF-Predictor, which
contains three failure prediction approaches, namely FT
and FT -X and the extended version of Shewhart control
chart. The experimental evaluation results in a VoD system
and in a real-world production system, AntVision, show
that ARF-Predictor can achieve extraordinarily high accu-
racy and a very small ATTF . Compared to previous
approaches, the accuracy of failure prediction approaches
based upon MMSE is increased by up to 5 times, and ATTF
is even reduced by 3 orders of magnitude. In addition, ARF-
Predictor is light-weight enough to satisfy the real-time
requirement. We believe that ARF-Predictor is an important
complement to conventional failure prediction approaches.

APPENDIX A
EMPIRICAL VERIFICATION OF ENTROPY INCREASE IN

SOFTWARE AGING

Before introducing the empirical verification of entropy
increase with the degree of software aging, we first give a

qualitative explanation from the point of view of software
execution paths. Fig. 24 demonstrates a code snippet
taken from Connection.c of BarrelFish [61] source code. If
BarrelFish runs without any exceptions, the state transition
is: ð1Þ ! ð2Þ ! ð4Þ ! ð1Þ shown in Fig. 25a. As the system
runs, exceptions may be thrown out continuously. So a
branch stems from ð2Þ: one path goes to ð3Þ and the other
path goes to ð4Þ. In Fig. 25a the transition probabilities: P12,
P24 and P41 are all 1. Hence the system entropy is

�ðP12 � lnðP12Þ þ P24 � lnðP24Þ þ P41 � lnðP41ÞÞ ¼ 0:

While in Fig. 25b, the transition probabilities: P23 and P24

are not 1. Thus the system entropy is greater than 0. From
this angle, we say the system entropy increases indeed when
the system runs from a normal state to an abnormal state
gradually. Next, wewill show the empirical verification.

The empirical verification is based on three basic
assumptions:

Assumption 1. The software system only exhibits binary states
during the whole running procedure: normal working state sw
and failure state sf .

Assumption 2. The probability of sf increases monotonously
with the degree of software aging.

Assumption 3. If the probability of sw is less than the probability
of sf , the system goes to a failure or be rejuvenated very soon.

A software system may exhibit more than two states dur-
ing running, but here we only take into account two states,
normal working state and failure state, as we only take recov-
ery actions when the system steps into a failure-prone state.
This is compliant with the classical two-state agingmodel, i.e.,
up, down mentioned in [7], [19], [62] without considering the
rejuvenation state. According to the description of software
aging stated in the introduction section, the failure rate incr-
eases with the degree of software aging. Thus Assumption 2
is reasonable. Actually increasing failure probability is also a
common assumption in previous studies [18], [19], [62], [63],
[64], [65] in order to obtain an optimal rejuvenation schedul-
ing. For a software system, it is unacceptable if only a half or
even less of the total requests are processed successfully espe-
cially in modern service oriented systems. A software system
is forced to restart before it enters into a non-service state.
Therefore, Assumption 3 is proposed.

If the software system is represented as a single compo-
nent, the system entropy at time t is defined as

EðtÞ ¼ �ðpwðtÞ � lnðpwðtÞÞ þ pfðtÞ � lnðpfðtÞÞÞ; (7)

Fig. 24. A code snippet taken from Connection.c of BarrelFish [61]
source code. Some code above line (1) is truncated. The code at line (3)
located in the gray region is triggered by abnormalities.

Fig. 25. Different state transitions under normal state and abnormal
state. (a) represents the state transition without any exceptions and (b)
represents the state transition with exceptions.

690 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

where pwðtÞ and pfðtÞ represent the probability of normal
state sw and failure state sf at time t respectively, and

pwðtÞ þ pfðtÞ ¼ 1. At the initial stage, namely t ¼ 0; pwð0Þ ¼
1, we say the system is completely new. At this moment, the
entropy EðtÞ equals 0. As software performance degrades,
pwðtÞ decreases from 1 to 0 while pfðtÞ increases from 0 to 1.

We assume the failure rate hðtÞ conforms to a Weibull
distribution with two parameters which is commonly used
in previous studies [18], [19], [62]. The distribution is
described as

hðtÞ ¼ b

a

�
t

a

�b�1

e�ð taÞb ; (8)

where b denotes the shape parameter and a denotes the
scale parameter. Because

hðtÞ ¼ dF ðtÞ=dt
1� F ðtÞ ¼

pfðtÞ
1� F ðtÞ ; (9)

where F ðtÞ denotes the cumulative distribution function
(CDF) of pfðtÞ. Moreover,

F ðtÞ ¼ 1� e

R t

0
hðtÞdt ¼ 1� e�ð taÞb : (10)

Therefore, pfðtÞ could be expressed as

pfðtÞ ¼ b

a

�
t

a

�b�1

e�2ð taÞb : (11)

In [62], the authors determined a and b via parameter
estimation and gave a confidence interval for a and b

respectively. Based upon their result, we set a ¼ 5:4E5 and
b ¼ 11 in this paper. The failure probability, pfðtÞ, from

time 0 to time 4:5E5 (system crash assumed) is depicted in
Fig. 26. Accordingly the entropy, EðtÞ, is demonstrated in
Fig. 27. From these two figures, we observe that entropy
increases monotonously during the life time of the running
system. In this case, the failure probability curve is trun-
cated at the system crash, far from the point where
pfðtÞ ¼ pwðtÞ. In some corner cases, pfðtÞ can reach the point

where pfðtÞ ¼ pwðtÞ. However, the system suffers from SLA

violations and restarts very soon when pfðtÞ > pwðtÞ. Thus
we only take into account the scenario when pfðtÞ < pwðtÞ.
In this scenario, the system entropy tends to increase
monotonously. Therefore, Theorem 1 is true as long as pfðtÞ
or pwðtÞ changes monotonously.

Theorem 1. If pfðtÞ increases monotonously, the system entropy
EðtÞ monotonously increases with the degree of software aging

when pfðtÞ < pwðtÞ or pfðtÞ < 1
2

Proof. When pfðtÞ ¼ 0 or pfðtÞ ¼ 1, lnð1� pfðtÞÞ or lnðpfðtÞÞ
is not defined. Hence, we assume pfðtÞ 2 ð0; 1Þ. Substitute
pwðtÞwith 1� pfðtÞ in Equation (7), we get

EðtÞ ¼ �ðð1� pfðtÞÞ � lnð1� pfðtÞÞ þ pfðtÞ � lnðpfðtÞÞÞ
¼ �lnð1� pfðtÞÞ þ pfðtÞ � ðlnð1� pfðtÞÞ � lnðpfðtÞÞÞ:

Regard pfðtÞ as an variable, the first order derivative and
second order derivative of EðtÞ are

EðtÞ0 ¼ lnð1� pfðtÞÞ � lnðpfðtÞÞ (12)

EðtÞ00 ¼ �1

ð1� pfðtÞÞ � pfðtÞ : (13)

As pfðtÞ 2 ð0; 1Þ, EðtÞ00 < 0. Therefore, EðtÞ achieves the

maximum value when EðtÞ0 ¼ 0, namely lnðpfðtÞÞ ¼
lnð1� pfðtÞÞ. Finally, we get pfðtÞ ¼ 1

2. As pfðtÞ increases
monotonously, EðtÞ increases monotonously when

pfðtÞ < 1
2. Hence, Theorem 1 is proved. tu

ACKNOWLEDGMENTS

The work is supported by the National Natural Science
Foundation of China under grant No. 61672421 and No.
60933003, the National Key Research and Development Pro-
gram of China under grant No. 2016YFB1000604, and the
Research Grants Council of the Hong Kong Special Admin-
istrative Region of China under grant No. CUHK 415212.
Moreover, the authors thank the anonymous reviewers.
Yong Qi is the corresponding author.

REFERENCES

[1] K. Vaidyanathan and K. S. Trivedi, “A measurement-based
model for estimation of resource exhaustion in operational software
systems,” in Proc. 10th Int. Symp. Softw. Rel. Eng., 1999, pp. 84–93.

[2] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi,
“Analysis and implementation of software rejuvenation in cluster
systems,” in Proc. of ACM SIGMETRICS Performance Eval. Review,
2001, vol. 29, no. 1, pp. 62–71.

[3] K. Vaidyanathan and K. S. Trivedi, “A comprehensive model for
software rejuvenation,” IEEE Trans. Dependable Secure Comput.,
vol. 2, no. 2, pp. 124–137, 2005.

[4] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of
software aging in a web server,” IEEE Trans. Reliability, vol. 55,
no. 3, pp. 411–420, Apr.–Jun. 2006.

[5] J. Alonso, J. Torres, J. L. Berral, and R. Gavalda, “Adaptive on-line
software aging prediction based on machine learning,” in Proc.
40th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2010,
pp. 507–516.

Fig. 26. pf ðtÞ variation curve.
Fig. 27. EðtÞ variation curve.

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 691

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

[6] S. P. Kavulya, S. Daniels, K. Joshi, M. Hiltunen, R. Gandhi, and
P. Narasimhan, “Draco: Statistical diagnosis of chronic problems
in large distributed systems,” in Proc. 42nd Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., 2012, pp. 1–12.

[7] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software
rejuvenation: Analysis, module and applications,” in Proc. 25th
Int. Symp. Fault-Tolerant Comput., 1995, pp. 381–390.

[8] J. Araujo, et al., “Software aging in the eucalyptus cloud com-
puting infrastructure: Characterization and rejuvenation,”
ACM J. Emerg. Technol. Comput. Syst., vol. 10, no. 1, 2014, Art.
no. 11.

[9] J. Araujo, R. Matos, P. Maciel, R. Matias, and I. Beicker,
“Experimental evaluation of software aging effects on the euca-
lyptus cloud computing infrastructure,” in Proc. 12th Int. Middle-
ware Conf. Ind. Track Workshop, 2011, pp. 1103–1108.

[10] K. Kourai and S. Chiba, “Fast software rejuvenation of virtual
machine monitors,” IEEE Trans. Dependable Secure Comput., vol. 8,
no. 6, pp. 839–851, Nov./Dec. 2011.

[11] K. Kourai and S. Chiba, “A fast rejuvenation technique for server
consolidation with virtual machines,” in Proc. 37th Annu. IEEE/
IFIP Int. Conf. Dependable Syst. Netw., 2007, pp. 245–255.

[12] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “Software
aging analysis of the linux operating system,” in Proc. 21st Int.
Symp. Softw. Rel. Eng., 2010, pp. 71–80.

[13] D. Cotroneo, S. Orlando, and S. Russo, “Characterizing aging phe-
nomena of the java virtual machine,” in Proc. 26th IEEE Int. Symp.
Reliable Distrib. Syst., 2007, pp. 127–136.

[14] Y.-F. Jia, L. Zhao, and K.-Y. Cai, “A nonlinear approach to model-
ing of software aging in a web server,” in Proc. 15th Asia-Pacific
Softw. Eng. Conf., 2008, pp. 77–84.

[15] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of
software aging,” in Proc. IEEE Int. Conf. Softw. Rel. Eng. Workshops,
2008, pp. 1–6.

[16] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo, “On
the aging effects due to concurrency bugs: A case study onMySQL,”
inProc. 23rd IEEE Int. Symp. Softw. Rel. Eng., 2012, pp. 211–220.

[17] R. Matias, A. Andrzejak, F. Machida, D. Elias, and K. Trivedi, “A
systematic differential analysis for fast and robust detection of
software aging,” in Proc. 33rd IEEE Int. Symp. Reliable Distrib. Syst.,
2014, pp. 311–320.

[18] Y. Bao, X. Sun, and K. S. Trivedi, “A workload-based analysis of
software aging, and rejuvenation,” IEEE Trans. Rel., vol. 54, no. 3,
pp. 541–548, Sep. 2005.

[19] K. S. Trivedi, K. Vaidyanathan, and K. Goseva-Popstojanova,
“Modeling and analysis of software aging and rejuvenation,” in
Proc. 33rd Annu. Simulation Symp., 2000, pp. 270–279.

[20] R.Matias, P.A. Barbetta, K. S. Trivedi, and P. J. F. Filho, “Accelerated
degradation tests applied to software aging experiments,” IEEE
Trans. Rel., vol. 59, no. 1, pp. 102–114,Mar. 2010.

[21] A. Bovenzi, D. Cotroneo, R. Pietrantuono, and S. Russo,
“Workload characterization for software aging analysis,” in Proc.
22nd IEEE Int. Symp. Softw. Rel. Eng., 2011, pp. 240–249.

[22] B. Sharma, P. Jayachandran, A. Verma, and C. R. Das, “Cloudpd:
Problem determination and diagnosis in shared dynamic clouds,”
in Proc. 43rd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
2013, pp. 1–12.

[23] V. Castelli, et al., “Proactive management of software aging,” IBM
J. Res. Develop., vol. 45, no. 2, pp. 311–332, Mar. 2001.

[24] M. Grottke and B. Schleich, “How does testing affect the availabil-
ity of aging software systems?” Performance Eval., vol. 70, no. 3,
pp. 179–196, Mar. 2013.

[25] P. Zheng, Y. Qi, Y. Zhou, P. Chen, J. Zhan, and M. Lyu, “An auto-
matic framework for detecting and characterizing performance
degradation of software systems,” IEEE Trans. Rel., vol. 63, no. 4,
pp. 927–943, Dec. 2014.

[26] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A
methodology for detection and estimation of software aging,” in
Proc. 9th Int. Symp. Softw. Rel. Eng., 1998, pp. 283–292.

[27] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu, “Automated con-
currency-bug fixing,” in Proc. 11th USENIX Symp. Operating Syst.
Des. Implementation, 2012, pp. 221–236.

[28] J. Zhao, Y. B. Wang, G. R. Ning, K. S. Trivedi, R. Matias, and K. Y.
Cai, “A comprehensive approach to optimal software rejuve-
nation,” Performance Eval., vol. 70, no. 11, pp. 917–933, Nov. 2013.

[29] J. Zhao, K. S. Trivedi, M. Grottke, J. Alonso, and Y. Wang,
“Ensuring the performance of apache HTTP server affected by
aging,” IEEE Trans. Dependable Secure Comput., vol. 11, no. 2,
pp. 130–141, Mar. 2014.

[30] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of
software aging,” in Proc. IEEE Workshop Softw. Aging Rejuvenation
Conjunction ISSRE, 2008, pp. 1–6.

[31] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y. Liu,
“Software aging and multifractality of memory resources,” in
Proc. 33rd Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw., 2003,
pp. 721–730.

[32] C. E. Shannon, “A mathematical theory of communication,” Bell
Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948.

[33] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy
analysis of biological signals,” Physical Rev. E, vol. 71, no. 2, 2005,
Art. no. 021906.

[34] S. M. Pincus and A. L. Goldberger, “Physiological time-series
analysis: what does regularity quantify?” Amer. J. Physiology,
vol. 266, pp. H1643–H1643, 1994.

[35] M. U. Ahmed and D. P. Mandic, “Multivariate multiscale entropy:
A tool for complexity analysis of multichannel data,” Physical Rev.
E, vol. 84, no. 6, 2011, Art. no. 061918.

[36] D. E. Lake, J. S. Richman, M. P. Griffin, and J. R. Moorman,
“Sample entropy analysis of neonatal heart rate variability,”
Amer. J. Physiology-Regulatory Integrative Comparative Physiology,
vol. 283, no. 3, pp. R789–R797, 2002.

[37] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy
analysis of complex physiologic time series,” Physical Rev. Lett.,
vol. 89, no. 6, 2002, Art. no. 068102.

[38] L. Cao, A. Mees, and K. Judd, “Dynamics from multivariate time
series,” Physica D: Nonlinear Phenomena, vol. 121, no. 1, pp. 75–88,
1998.

[39] L. Li, K. Vaidyanathan, and K. S. Trivedi, “An approach for esti-
mation of software aging in a web server,” in Proc. IEEE Int. Symp.
Empirical Softw. Eng., 2002, pp. 91–100.

[40] (2013). [Online]. Available: https://influxdb.com/
[41] I. Jolliffe, Principal Component Analysis. Hoboken, NY, USA: Wiley,

2005.
[42] J. Cadima, J. O. Cerdeira, and M. Minhoto, “Computational

aspects of algorithms for variable selection in the context of princi-
pal components,” Comput. Statist. Data Anal., vol. 47, no. 2,
pp. 225–236, 2004.

[43] J. F. Cadima and I. T. Jolliffe, “Variable selection and the interpre-
tation of principal subspaces,” J. Agricultural Biol. Environ. Statist.,
vol. 6, no. 1, pp. 62–79, 2001.

[44] J. Ramsay, J. ten Berge, and G. Styan, “Matrix correlation,” Psycho-
metrika, vol. 49, no. 3, pp. 403–423, 1984.

[45] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey
of software aging and rejuvenation studies,” ACM J. Emerging
Technol. Comput. Syst., vol. 10, no. 1, 2014, Art. no. 8.

[46] L. M. Silva, J. Alonso, and J. Torres, “Using virtualization to
improve software rejuvenation,” IEEE Trans. Comput., vol. 58,
no. 11, pp. 1525–1538, Nov. 2009.

[47] J. Alonso, �I. Goiri, J. Guitart, R. Gavalda, and J. Torres, “Optimal
resource allocation in a virtualized software aging platform with
software rejuvenation,” in Proc. 22nd IEEE Int. Symp. Softw. Rel.
Eng., 2011, pp. 250–259.

[48] (2008). [Online]. Available: http://www.sourceforge.net/
projects/hyperic-hq

[49] P. Chen, Y. Qi, P. Zheng, J. Zhan, and Y. Wu, “Multi-scale entropy:
One metric of software aging,” in Proc. 7th IEEE Int. Symp. Service
Oriented Syst. Eng., 2013, pp. 162–169.

[50] P. Zheng, Y. Zhou, M. R. Lyu, and Y. Qi, “Granger causality-
aware prediction and diagnosis of software degradation,” in Proc.
11th IEEE Int. Conf. Services Comput., 2014, pp. 528–535.

[51] (2002). [Online]. Available: http://www.helix-server.
helixcommunity.org/

[52] L. Jiang and G. Xu, “Modeling and analysis of software aging and
software failure,” J. Syst. Softw., vol. 80, no. 4, pp. 590–595, 2007.

[53] J. Zhao, Y. Jin, K. S. Trivedi, R. Matias, and Y. Wang, “Software
rejuvenation scheduling using accelerated life testing,” ACM J.
Emerging Technol. Comput. Syst., vol. 10, no. 1, pp. 1–23, 2014.

[54] D. Cotroneo, S. Orlando, R. Pietrantuono, and S. Russo, “A mea-
surement-based ageing analysis of the JVM,” Softw. Testing Verifi-
cation Rel., vol. 23, no. 3, pp. 199–239, 2013.

[55] A. Andrzejak and L. Silva, “Using machine learning for non-intru-
sive modeling and prediction of software aging,” in Proc. IEEE
Netw. Operations Manage. Symp., 2008, pp. 25–32.

[56] J. P. Magalhaes and L. Moura Silva, “Prediction of perfor-
mance anomalies in web-applications based-on software aging
scenarios,” in Proc. 2nd Int. Workshop Softw. Aging Rejuvenation,
2010, pp. 1–7.

692 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

https://influxdb.com/
http://www.sourceforge.net/projects/hyperic-hq
http://www.sourceforge.net/projects/hyperic-hq
http://www.helix-server.helixcommunity.org/
http://www.helix-server.helixcommunity.org/

[57] K. J. Cassidy, K. C. Gross, and A. Malekpour, “Advanced pattern
recognition for detection of complex software aging phenomena
in online transaction processing servers,” in Proc. 32nd IEEE/IFIP
Int. Conf. Dependable Syst. Netw., 2002, pp. 478–482.

[58] K. C. Gross, V. Bhardwaj, and R. Bickford, “Proactive detection of
software aging mechanisms in performance critical computers,”
in Proc. 27th Annu. NASA Goddard/IEEE Softw. Eng. Workshop,
2002, pp. 17–23.

[59] M. U. Ahmed and D. P. Mandic, “Multivariate multiscale entropy
analysis,” IEEE Signal Process. Lett., vol. 19, no. 2, pp. 91–94, Feb.
2012.

[60] C. Wang, V. Talwar, K. Schwan, and P. Ranganathan, “Online
detection of utility cloud anomalies using metric distributions,” in
Proc. IEEE/IFIP Netw. Operations Manage. Symp., 2010, pp. 96–103.

[61] (2010). [Online]. Available: http://www.barrelfish.org/
[62] J. Zhao, Y. Jin, K. S. Trivedi, and R. Matias, “Injecting memory

leaks to accelerate software failures,” in Proc. 22nd IEEE Int. Symp.
Softw. Rel. Eng., 2011, pp. 260–269.

[63] A. Bobbio, M. Sereno, and C. Anglano, “Fine grained software
degradation models for optimal rejuvenation policies,” Perfor-
mance Eval., vol. 46, no. 1, pp. 45–62, 2001.

[64] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, “Analysis of
software cost models with rejuvenation,” in Proc. 5th IEEE Int.
Symp. High Assurance Syst. Eng., 2000, pp. 25–34.

[65] R. E. Barlow and R. A. Campo, “Total time on test processes and
applications to failure data analysis,” Rel. Fault Tree Anal., SIAM,
Philadelphia, pp. 451–481, 1975.

Pengfei Chen received the PhD degree from
Xi’an Jiaotong University, China, in 2016. His
research interests include dependable comput-
ing, cloud computing, and distributed computing.

Yong Qi received the PhD degree from Xi’an
Jiaotong University, China. He is currently a full
professor with Xi’an Jiaotong University. His
research interests include operating systems,
distributed systems, and cloud computing. He is
a member of the IEEE.

Xinyi Li is working toward the PhD degree at
Xi’an Jiaotong University, China. Her research
interests include cloud computing, distributed
computing, and Internet of things.

Di Hou is currently an associate processor with
Xi’an Jiaotong University. His research interests
include big data, cloud computing, and database.

Michael Rung-Tsong Lyu received the PhD
degree in computer science from the University
of California, Los Angeles, in 1988. He is now a
professor in the Department of Computer Sci-
ence & Engineering, The Chinese University of
Hong Kong. He initiated the First International
Symposium on Software Reliability Engineering,
in 1990. His research interests include software
reliability engineering, distributed systems, fault-
tolerant computing, data mining, and machine
learning.He received the IEEE Reliability Society
2010 Engineer of the Year Award. He is a fellow
of the IEEE and AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: ARF-PREDICTOR: EFFECTIVE PREDICTION OF AGING-RELATED FAILURE USING ENTROPY 693

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 13:56:02 UTC from IEEE Xplore. Restrictions apply.

http://www.barrelfish.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

