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Extracting and Selecting Distinctive EEG Features
for Efficient Epileptic Seizure Prediction
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Abstract—This paper presents compact yet comprehensive fea-
ture representations for the electroencephalogram (EEG) signal
to achieve efficient epileptic seizure prediction performance. The
initial EEG feature vectors are formed by acquiring the domi-
nant amplitude and frequency components on an epoch-by-epoch
basis from the EEG signals. These extracted parameters can re-
veal the intrinsic EEG signal changes as well as the underlying
stage transitions. To improve the efficacy of feature extraction, an
elimination-based feature selection method has been applied on
the initial feature vectors. This diminishes redundant and noisy
points, providing each patient with a lower dimensional and in-
dependent final feature form. In this context, our study is distin-
guished from that of others currently prevailing. Usually, these
latter approaches adopted feature extraction processes, which em-
ployed time-consuming high-dimensional parameter sets. Machine
learning approaches that are considered as state of the art have
been employed to build patient-specific binary classifiers that can
divide the extracted feature parameters into preictal and interictal
groups. Through out-of-sample evaluation on the intracranial EEG
recordings provided by the publicly available Freiburg dataset,
promising prediction performance has been attained. Specifically,
we have achieved 98.8% sensitivity results on the 19 patients in-
cluded in our experiment, where only one of 83 seizures across
all patients was not predicted. To make this investigation more
comprehensive, we have conducted extensive comparative studies
with other recently published competing approaches, in which the
advantages of our method are highlighted.

Index Terms—Amplitude and frequency modulation fea-
tures, electroencephalogram (EEG) signal representation, epileptic
seizure prediction, feature selection.

I. INTRODUCTION

A. Epilepsy

E PILEPSY affects around 1% of the world’s population [1].
This neurological disease is caused by sudden disturbances

of the brain function [2]. Prominent characteristics of epilepsy
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Fig. 1. Preictal–postictal stage transition in an epileptic seizure cycle mani-
fested by multiple-channel EEG signals.

are recurring seizures. During a seizure cycle, stage transitions
take place. The main stages are preictal—the period of time
before the seizure onset, ictal—the interval during which the
seizure occurs, postictal—the period immediately succeed the
end of a seizure, and interictal—the time between two consec-
utive seizures [3]. However, transitions from the interictal stage
to the ictal stage turn out to be not abrupt [4], [5]. Recent stud-
ies also indicate the existence of premonitory symptoms for a
majority of epilepsy patients [6], [7]. Experienced neurologists
can forecast upcoming seizures by inspecting changes in EEG
recordings [8]. The typical attributes of an EEG signal are its
rhythmic activity and transients [9]. An example of seizure stage
transitions conveyed by EEG signals is given in Fig. 1.

B. Seizure Prediction

Epileptic seizure event detection is concerned more with how
to accurately detect seizure occurrence, without considering
how late they were reported for medical treatment [10], while
seizure onset detection algorithms expect to make the earliest
possible alarms once a seizure takes place [11]. An even more
challenging seizure diagnosis task is prediction, which aims to
forecast impending seizure onset. A perfect epileptic seizure
predictor can make predictions with the highest possible sen-
sitivity as well as the least false alarms, and give warnings as
early as possible for urgent actions to be taken. The period of
time during which a seizure is supposed to occur is defined as
seizure occurrence period (SOP), while the time interval after
an alarm but before the SOP is called seizure prediction horizon
(SPH) [12]. The SPH can last from a few minutes to hours. This
minimum window of time between an alarm and the beginning
of the SOP is essential for rendering a therapeutic intervention
or a behavioral adjustment [13]. Once a seizure occurs within
the SOP, the prediction is regarded successful, otherwise, it is
determined as a false alarm.
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Nowadays, machine learning techniques are state of the art
approaches to perform seizure diagnosis tasks. Among them,
artificial neural networks [14], [15], Gaussian mixture models
[16], Adaboost [17], and support vector machines (SVMs) [18],
[19] have been employed widely. Under the machine-learning-
based framework, binary classifiers are trained to decide whether
a feature vector belongs to a preictal stage or an interictal stage.
Regarding feature extraction, currently reported EEG features
for seizure prediction tasks mostly consist of a large number
of parameters. For example, in [11] and [20], each 6-s EEG
epoch was characterized by a total of 432 spectral parameters,
and in [14] and [21], 6300 dimensional bivariate feature vectors
were generated for each 5-min time span. Besides these, the
power spectra of time- and space-differential EEG signals [22],
spatio-temporal correlation structures of multichannel EEG data
[18], wavelet coefficients [23], [24] and autoregression param-
eters [25] were also taken as seizure indicators. Considering the
sophisticated rhythmic activities and other physiological mecha-
nisms underlying an EEG signal, a parametric representation for
EEG signals is highly desirable. The amplitude–frequency mod-
ulation theory is found powerful in digging out dynamic mech-
anisms of narrow-band signals like speech resonances [26], and
EEG rhythms [27]. Therefore, in our previous work on seizure
prediction [28], we have made efforts to extract the most dom-
inant amplitude and frequency characteristics of EEG epochs
under the modulation theory to provide feature vectors, and
have proven their efficacy in seizure prediction tasks.

Seizure prediction algorithms are always expected to be not
only accurate but also employable in real-time scenarios. How-
ever, it is known that in biomedical applications involving a
large amount of data, the number of training patterns is no-
ticeably smaller than the dimensionality of the feature space,
whereas the learning and test on these huge parameter sets usu-
ally consume substantial computing resources and greatly limit
their engagement in real-world applications. On the other hand,
it was found in a variety of data mining studies that a portion of
features can be discarded without deteriorating the classification
performance [29], [30]. Dimension reduction, which reduces the
amount of features, speeds up the learning process, and enhances
model comprehensibility, is therefore, highly desirable for var-
ious classifiers, including SVMs. One commonly used method
is to project the data onto their first few principal directions,
thereby producing new features, which are linear combinations
of the original features. Methods in this class, like principal
component analysis have been applied, providing more compact
seizure prediction feature vectors [15], [18]. One disadvantage
of the projection methods, however, is that no original feature
parameters can be discarded. A pruning-technique-based feature
selection method is another important technique for dimension
reduction, in which process a subset of original features will be
selected according to relevant criteria. In this paper, to further
refine the features we have proposed in [28], and to improve
the efficiency of preictal/interictal feature classification models
in a diagnosis task in discovering new knowledge and making
intelligent decisions, we consider attaching a pruning-based fea-
ture selection step to the original feature extraction front-end.
This type of method, which can eliminate irrelevant or noisy
input features and retain a small subset of relevant features, has

achieved success in many application domains, such as gene se-
lection [31], EEG channel selection [32], and variable selection
for epilepsy diagnostics [17], [21], [33], [34]. One prominent
method in this category is recursive feature elimination (RFE)
[35], where the main principle is to include initially all attribute
points about a specific subject, and to gradually remove those
nondiscriminative points identified in the classification process,
and finally, retain a core set of distinctive features.

C. Research Highlights

In this paper, we make efforts to explore efficient and compact
EEG feature representations suitable for epilepsy prediction by
employing an integrated framework. At first, a feature extractor
is engaged that can decompose an EEG signal according to its
frequency contents and identify the most dominant amplitude
and frequency quantities therein. Second, the attached feature
selection module will discriminate and discard the less relevant
parameters from others in these extracted short-term amplitude–
frequency components. Eventually, the remaining parameters
constitute representational vectors of EEG features. In order to
examine the efficacy of the proposed framework, we demon-
strate experimentally that the parameters produced in this way
yield superior preictal/interictal classification performance and
are physically meaningful for the seizure prediction task. In
summary, the main contributions of this paper are highlighted
as follows.

1) Introduction of an analytical signal representation to ex-
tract primary EEG amplitude and frequency components.

2) Application of an integrated framework to produce a sys-
tematic feature extraction, selection, integration, and in-
telligent classification working program.

3) Derivation of comprehensive yet compact patient-specific
feature forms to capture distinctive seizure-related EEG
parameters.

4) Comparative studies with state of the art competing
seizure prediction approaches to provide a comprehen-
sive insight for researchers in relevant domains.

II. SEIZURE-RELATED PARAMETERS

In this section, we describe the process of generating seizure-
related feature parameters from EEG signals.

A. Modulation Feature Derivation

Conventional studies on rhythmic characteristics for seizure
diagnostic purposes are concerned more with extracting signal
energy and magnitude [11], [23], [36], rather than on the un-
derlying amplitude–frequency patterns in the EEG rhythms. An
analytic representation for EEG rhythms, on the other hand,
cares more about the inclusive components contained in the sig-
nal. In a monocomponent amplitude and frequency modulating
(AM–FM) signal like an EEG rhythm, the two determining pa-
rameters are the amplitude and frequency. Therefore, the kth
rhythm sk (n) in an EEG signal s(n) could be formulated as the
product of AM and FM terms as follows:

sk (n) = Ak (n)cos
[
Θk (n)

]
(1)
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Fig. 2. Manifestation of rhythms in two consecutive 10-s-long EEG segments.

with the EEG rhythm being characterized by two time-varying
sequences

1) Ak (n): amplitude;
2) Θk (n): phase.
Teagers explored speech resonance characteristics through

employment of a multicomponent AM–FM model [37]. Sim-
ilarly, a multicomponent EEG signal can be represented as a
summation of AM–FM components as follows:

s(n) =
K∑

k=1

Ak (n)cos[Θk (n)] + η(n)

=
K∑

k=1

Ak (n)cos

{[
Ωc(k)n +

n∑

r=1

qk (r)
]}

+ η(n). (2)

In this formulation, Ak (n) and Θk (n) denote the instanta-
neous amplitude and phase of the kth primary component, re-
spectively. By taking backward difference between Θk (n) and
Θk (n − 1), the instantaneous frequency sequence can be de-
fined as Ωk (n) = Ωc(k) + qk (n) = 2π

fs
fc(k) + qk (n), where fs

is the sampling frequency, and qk (n) is the frequency modula-
tion component. Ωc(k) = 2π

fs
fc(k) is the angular center fre-

quency of the kth AM-FM subband signal. η(n) stands for
additive noise and errors of the modeling.

B. Feature Extraction

We first inspect EEG characteristics by observing EEG
recordings from epilepsy patients. Two consecutive 10-s-long
EEG segments from the first preictal stage of Patient 1 in the
Freiburg database [38] are shown in Fig. 2. In this figure, the
EEG rhythms detected through a bank of filters have also been
illustrated. In Fig. 3, instantaneous amplitude and frequency es-
timates of these subbands from the first 10-s-long EEG signal
have been shown. We can see the decomposed signals in Delta
and Theta bands are of high amplitude, while the others are of
relatively small value. The estimates of instantaneous frequency
vary widely. However, the amplitude and frequency of each sub-
band are still dominated by a primary component, respectively.

Fig. 3. Instantaneous amplitude estimate A(n) and frequency estimate Ω(n)
in detected EEG rhythms of the first 10-s-long EEG signal.

TABLE I
FEATURE EXTRACTION PARAMETERS AND VARIABLES

Parameter Value Description

ns 1280 No. of samples per 5-s epoch
nc 6 No. of EEG channels
K 5 No. of subbands in signal decomposition
ne 60 No. of epochs contained by an 5-min AIE

or AIF vector
di 600 Dimension of AIEFI n i vector

Variable Range Description

α 10 ∼ 270 No. of AIE parameters contained by an
AIEFR e f vector

β 10 ∼ 270 No. of AIF parameters contained by an
AIEFR e f vector

dr = α + β 100, 200, or 300 Dimension of AIEFR e f vector; being
patient specific

We are, therefore, motivated to estimate these primary charac-
teristics as initial EEG features. Notations of the parameters and
variables engaged in producing the related feature vectors and
their values/ranges are provided in Table I.

By applying the multiband AM–FM model on the EEG signal,
two sets of characteristic sequences: the averaged instantaneous
envelope (AIE) and averaged instantaneous frequency (AIF)
parameters have been produced as follows.

1) Signal Segmentation: EEG signal in each channel seg-
mented into nonoverlapping 5-s epochs.

2) Signal Decomposition: 48th ordered finite impulse re-
sponse (FIR) filter bank employed to divide each epoch
into K = 5 subbands: delta (0–4 Hz), theta (4–8 Hz),
alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz).

3) Multiband Demodulation: Energy separation algorithm
proposed in [39] applied to obtain instantaneous envelope
(IE) sequence |A(n)| and instantaneous angular frequency
(IF) Ω(n) one epoch by another for each subband signal.

4) Sequence Smoothing: 21-point median filter applied to
remove abrupt impulses in IE and IF sequences.
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Fig. 4. False alarm rates obtained from AIEF feature vectors with various
durations: 1 min, 2 min, and 5 min.

5) Spatio-Temporal Averaging: Two-step calculation for fea-
ture generalization.

a) Temporal averaging: Averaging operation under-
taken on smoothed IE and IF sequences to remove
fluctuations over time. For each subband, a mean
parameter is produced to represent the IE and IF
sequences, respectively. The number of dimensions
goes from (K × ns × nc ) to (K × nc ). (Notations
explained in Table I.)

b) Spatial averaging: Temporal IE and IF mean values
averaged across different channels to compensate
for possible channel variability. As a result, the IE
and IF mean vectors across all channels are down-
sized to one, respectively. Therefore, for each EEG
epoch, the dimension of IE/IF feature vectors is
equal to the subband number K.

C. Initial Feature Form

The parameter sets AIE and AIF are generated from nonover-
lapping 5-s-long epochs of all five EEG subbands. Two aggrega-
tion procedures are taken on these 5-D vectors to acquire more
distinct and comprehensive feature forms. In the first step, we
incorporate a pair of AIE and AIF vectors one after another to
form an AIEF vector, whose dimension is, therefore, equal to
the sum of the individual ones. As suggested in [21] to con-
catenate consecutive chunks of EEG features sequentially in
time to provide longer decision interval, in the second step, we
search for a suitable concatenation degree for AIEF vectors in
a heuristic way. For this purpose, the 5-s-long AIEF vectors
are temporally integrated into 1-min, 2-min, and 5-min vector
forms to test their seizure prediction performance. In Fig. 4, the
false alarm results on six patients from these newly generated
AIEF features are shown. In this pilot study, the 5-min AIEF
feature vectors are found more discriminative than the others.
Therefore, we take 5-min durations for all AIE, AIF, and AIEF
features in the following evaluation studies.

III. SEIZURE PREDICTION FEATURES

In order to provide a compact feature form for the epilepsy
prediction task, this section describes the process we take to
screen the most discriminative parameters out of the feature
vectors produced in Section II.

A. Recursive Feature Elimination (RFE)

Machine-learning-based predictors trained from input fea-
tures often degrade when learning from many irrelevant param-
eters, which will finally deteriorate the performance of seizure
prediction results on unseen trials [35]. Therefore, screening the
input parameters for a more compact and discriminative subset
of features before performing machine learning tasks is of criti-
cal importance to obtain predictors with reliable generalization
performance.

In pattern recognition tasks, feature selection schemes are
combined with or take part in the feature extraction process
in order to reduce redundancy and dimensionality of the fea-
ture vectors. In our feature extraction front end, for an AIEF
vector of 5-min duration, the number of dimensions is 600.
Considering that the AIEF features may contain some irrelevant
or redundant information, and also considering the variability
among patients, we investigate performing elimination-based
feature selection on a patient-by-patient basis. Feature selection
schemes generally fall into three categories: filters, wrappers,
and embedded methods [35], [40]. Filter methods like sequen-
tial forward selection and backward selection (SFS/SBS) are
independent of classifiers involved in the classification tasks,
while wrapper methods like RFE incorporate feature selection
as parts of the training process to discard irrelevant features [35].
In biomedical/biological works such as gene selection, RFE was
widely applied to combine with classifiers like SVM to provide
effective classification [31]. In this paper, we consider an ap-
proach of RFE-SVM to eliminate noisy features, as well as to
take advantage of the discrimination power of SVM classifiers.
The basic philosophy of the RFE is to include initially all charac-
teristic points about a specific subject, and to gradually exclude
points that do not contribute in discriminating patterns from dif-
ferent classes. Whether a parameter in the current feature set
contributes enough to be retained is dependent on its weight
value resulted from training a classifier with the current set of
features. Feature elimination usually progresses gradually and
includes cross-validation steps. For each patient, in the leave-
one-record-out cross-validation process, the feature evaluation
and selection conducted in each validation iteration is indepen-
dent of others. The feature set that produces the best overall
performance among all iterations will be retained. The imple-
mentation of the RFE is carried out with the Spider toolbox for
MATLAB [41].

B. Feature Selection Strategy

According to Section II-C, an AIEF feature vector contains
the short-term AIE and AIF parameter sets first concatenated
sequentially with a ratio of 1:1, and then, aggregated into vec-
tors spanning over a continuous 5-min EEG duration along the
time line. Under this task, the candidate feature forms will have
to consider the following three factors in this patient-specific se-
lection process: the feature specification, the feature dimension,
and the time span coverage. Under a machine-learning-based
seizure prediction framework, these factors are expected to re-
sult in a threefold impact on the system: first, the dimensionality
can be reduced; second, the feature specifications can be patient
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Fig. 5. Feature selection scheme of forming an AIEFRef vector from corre-
sponding AIE, AIF parameter sets. For a 5-min long EEG signal, an AIEFI n i

vector is formed by concatenating 5-s AIE and AIF sets sequentially together.
These initial AIE/AIF parameters are subject to individual screening process
that ends up with α AIE parameters and β AIF parameters, respectively, and
determines the form of an AIEF[α ,β ] feature vector. AIEF[α ,β ] with the highest
performance in the prediction test will be picked out as the final form, noted as
AIEFRef .

specific; and third, the feature selection process can be automat-
ically performed.

Fig. 5 shows the process of selecting parameters from the
entire AIE and AIF sets to form a new AIEF feature vector. To
avoid ambiguity, we denote the initial 600-dimensional AIEF
vector as AIEFIni , and this refined version as AIEFRef . A sin-
gle AIE or AIF vector contains five parameters each, and is ex-
tracted from a continuous 5-s long EEG segment. As indicated
by Section II-C, these 5-s vectors are concatenated sequentially
to form a 300-dimension 5-min AIE or AIF vector. Parameters
extracted from these two information sources are very differ-
ent in magnitude; therefore, to ensure balance between these
two sources, we are motivated to perform a screening algo-
rithm on them separately. Two independent parameters α and
β are engaged to control the amount of AIE and AIF samples
that retain after the elimination process, respectively. As a re-
sult, the AIEFRef vector will contain α parameters from the
5-min AIE sequence and β parameters from the 5-min AIF se-
quence. The dimension d of AIEFRef vector is, therefore, equal
to α + β. The AIEFRef vector delivers AIE + AIF information
in a certain period, say, k minutes of EEG data. The screening
results largely depend on the choice of α and β. As a prelimi-
nary exploration, we set the following rules to decide these two
variables:

1) α : β (feature specification) = 1 : 9 ∼ 5 : 5 ∼ 9 : 1;
2) α + β (feature dimension) = 100, 200, or 300;
3) k (time span) = 10 s ∼ 5 min.
According to these rules, there are in total 27 sets of different

[α, β] explored in this study. The newly generated AIEF[α,β ]
features from each [α, β] set are evaluated under seizure pre-
diction protocol to compete their performance. To find out the
best-performed AIEF[α,β ] feature form for each patient, we take
an experimental method, which contains three steps: 1) screen-
ing: to retain α AIE and β AIF parameters by discarding those
less relevant points in the original AIE and AIF feature sets, re-
spectively; 2) integration: to combine the retained α AIE points

and β AIF points with a specific α : β to produce new vec-
tors AIEF[α,β ]; and (3) selection: to pick out the AIEF[α,β ]
feature set that outperforms others as the final form, namely
AIEFRef .

The time span k of a final form AIEFRef vector may vary from
10 s to 5 min. In the case of α : β = 1 : 9 and α + β = 100, ten
parameters are from AIE sequence. If it happens that all these
ten AIE parameters come from two consecutive AIE vectors,
then they actually convey the whole AIE information for a 10-s
EEG signal. The AIEFRef may convey the information from the
entire 5-min EEG interval in other cases. By varying weights α
and β following the described rules, a variety of cases may be
approached. Each subject can also have their own feature forms,
considering the feature selection and integration scheme is a
patient-specific process. The variables involved in this feature
selection process are also specified in Table I.

IV. PREDICTION EXPERIMENTAL PARADIGM

A. Database

The investigated Freiburg EEG database [38] is a popular
epileptic seizure dataset. It is a publicly available intracranial
EEG data set, which contains invasive EEG recordings of 21 pa-
tients suffering from medically intractable focal epilepsy. The
dataset was recorded during an invasive presurgical epilepsy
monitoring at the Epilepsy Center of the University Hospital of
Freiburg, Germany. The EEG data were acquired using a Neuro-
file NT digital video EEG system with 128 channels, a 256-Hz
sampling rate, and a 16-bit analogue-to-digital converter. For
each of the patients, there are two sets of data that contain EEG
signals from ictal and interictal stages, respectively. For predic-
tion purposes, at least 50 min of preictal data were retained prior
to each epileptic seizure. As for the interictal states, approxi-
mately 24 hour of EEG recordings without seizure activity were
provided. At least 24 hour of continuous interictal recordings
were available from 13 patients. For the remaining patients, in-
terictal invasive EEG data consisting of less than 24 hour were
joined together, so as to end up with at least 24 hour of interictal
recordings per patient. For each patient, the recordings of three
focal and three extra-focal electrode contacts were provided.

B. Automatic Seizure Prediction System Architecture

The physical monitoring of epileptic seizure is conducted
through observing physiological data continuously. For each tar-
geted subject, two models will be built: One is for the between-
seizure state (i.e., interictal) and the other is for the preictal state
immediately before an upcoming seizure. A subject-specific
binary classification is conducted continuously to classify the
input feature vectors into interictal or preictal groups [11], [42].
Once preseizure observations are found to last for a certain pe-
riod, which is 5 min in this study, alarms are raised to clinical
caregivers immediately. The binary classification scheme is im-
plemented with the SVM, where nonlinear decision boundaries
are generated to separate the data by using a radial basis function
(RBF) kernel [28].
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Fig. 6. Machine-learning-based disease diagnosis/monitoring system in a typical seizure prediction application. It mainly contains three modules: EEG data
acquisition, feature generation that includes parameter extraction, selection and integration, and seizure prediction with SVM-based classification. This infrastructure
provides necessary signal processing steps to handle various other physiological signals than EEG, such as electrocardiogram (ECG) and electromyogram (EMG).
By replacing the SVM-based pattern recognition module with other machine learning tools when necessary, it is extendable to new application scenarios.

Fig. 6 gives an overall illustration of a machine-learning-
based disease prediction experimental paradigm. The input data
are nc channel intracranial EEG measurements from the patients
with epilepsy on a continuous-time basis. These time-varying
sequences are then processed by a series of signal process-
ing steps, producing respective health profiles of the concerned
subject. Through implementing these sequentially connected
procedures, which include temporal segmentation, spectral de-
composition, and multiband demodulation on the EEG signals,
their instantaneous amplitude and frequency sequences, A(n)
and Ω(n), respectively, are picked out. The most dominant am-
plitude and frequency components present in the nc channel
signals are extracted as intrinsic characteristics, where the vari-
ability across channels are then compensated, and these charac-
teristics are aggregated as described in Section III-B to produce
forms of seizure indicators. To provide subject-centric medical
management, SVM classifiers are trained separately for each
subject. A separation boundary is learned from past datasets of
the subject regarding whether a seizure is impending or not.
Once a set of unseen data samples arrive, the categories they
should fall into will be decided accordingly. In case an upcom-
ing seizure is forecasted, alarms will be raised to notify the
concerned parties; otherwise, the system keeps monitoring the
health condition of the respective subject.

C. Evaluation Methodology

We measured the performance of our seizure prediction
framework in terms of sensitivity and specificity. In each test,
the sensitivity is calculated as the percentage of successfully
forecast seizures, while the specificity refers to the amount of
false alarms occurred per hour. To estimate the seizure predic-
tor’s performance for each patient, a leave-one-record-out cross-
validation scheme is employed. A record here indicates either a
50-min preictal recording or a 1-hour interictal recording in the
Freiburg EEG dataset. To establish an optimal SVM classifier
in training, five-fold cross validation is performed. Specifically,
a grid search is executed in each cross-validation training round
to seek optimal parameter set [C, γ], where C is the SVM cost
parameter and γ is the RBF kernel parameter. In this 21 × 21
grid search, the log2C and log2γ both vary between −10 and
10, respectively. The evaluation results are then generated by
adopting these selected parameters in relevant tests.

In a disease detection test that screens people for a disease,
each subject taking the test either has or does not have the
disease. The test outcome could be positive or negative, which
indicates that the subject is sick or not sick, respectively. The
test results for each subject in this setting can be as follows.

1) True positive (TP): Sick people correctly diagnosed
as sick.
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TABLE II
PATIENT-SPECIFIC SEIZURE PREDICTION RESULTS WITH INITIAL FEATURE SETS

Patient Id. Gender Age Seizure type Seizure No. Interictal Hr. Sen. (%) FA/hr

01 F 15 SP, CP 4 24 100 0.000
02 M 38 SP, CP, GTC 3 24 66.7 0.000
03 M 14 SP, CP 5 24 100 0.000
04 F 26 SP, CP, GTC 5 24 100 0.000
05 F 16 SP, CP, GTC 5 24 100 0.708
06 F 31 CP, GTC 3 24 100 0.042
07 F 42 SP, CP, GTC 3 25 100 0.000
09 M 44 CP, GTC 5 26 100 0.000
10 M 47 SP, CP, GTC 5 25 100 0.082
11 F 10 SP, CP, GTC 4 25 75.0 0.042
12 F 42 SP, CP, GTC 4 26 100 0.000
14 F 41 CP, GTC 4 25 100 0.294
15 M 31 SP, CP, GTC 4 25 100 0.200
16 F 50 SP, CP, GTC 5 24 100 0.208
17 M 28 SP, CP, GTC 5 25 100 0.083
18 F 25 SP, CP 5 27 100 0.232
19 F 28 SP, CP, GTC 4 25 100 0.041
20 M 33 SP, CP, GTC 5 25 60.0 0.284
21 M 13 SP, CP 5 26 100 0.401

Total Mean
19 83 473 95.2 0.138

2) False positive/alarm (FP/FA): Healthy people incorrectly
identified as sick.

3) True negative (TN): Healthy people correctly identified as
healthy.

4) False negative (FN): Sick people incorrectly identified as
healthy.

The sensitivity, specificity, and the overall accuracy are cal-
culated in the following manner:

Sensitivity =
∑

TP
∑

TP +
∑

FN

Specificity =
∑

TN
∑

FA +
∑

TN

Accuracy =
∑

TP +
∑

TN
∑

TP +
∑

FA +
∑

FN +
∑

TN
. (3)

On the other hand, the specificity in disease prediction tasks
is by usage referred to as 1 − Specificity, namely, the smaller
the better, while sensitivity indicates the same meaning as de-
fined in (3). In general, for this type of task, the data falling
into the two classes are typically unbalanced in number, which
makes the overall accuracy not an ideal choice in this condition.
Instead, Fβ measure is considered suitable to serve the purpose.
Being defined by the following equation, Fβ measures binary
classifiers from their TP, FN, and FA:

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FA
(4)

where β is a weighting factor. We set β to be 2 in this study.

V. PERFORMANCE

The previously described seizure prediction algorithm is ex-
amined on the Freiburg EEG dataset. 19 out of 21 patients with
no less than 3 recorded seizures are involved in the experiments.

Fig. 7. Individual seizure prediction sensitivity performance by three sets of
initially formed feature sets: AIE, AIF, and AIEFI n i (in %).

Relevant patient and EEG database characteristics are tabu-
lated in Table II. To make the performance evaluation outcome
more comprehensive, extensive comparisons with competing
approaches published recently are conducted and shown in sev-
eral aspects.

A. Initial Results

In evaluating the features, we have conducted two sets of
parallel experiments, of which ExpAcc is targeted to maximize
the overall accuracy, and ExpF 2 aims to optimize the F2 mea-
surement. These two sets of experiments are totally independent
of each other. Fig. 7 illustrates the prediction sensitivity for all
19 patients and their averaged results for the AIE, AIF, and
AIEFIni parameters, respectively, under ExpAcc test protocol.
It is observed that on average the AIF parameters demonstrate
greater discriminative power than that of the AIE parameters.
Besides, the aggregation of AIE and AIF parameter sets in the
form of AIEFIni vector cannot reflect and strengthen the ad-
vantage of AIE and AIF parameters in enhancing the prediction
outcome. Another observation is that by employing F2 measure
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TABLE III
PATIENT-SPECIFIC SEIZURE PREDICTION RESULTS WITH OUR REFINED FEATURE VECTORS AND IN OTHER COMPETING APPROACHES

Feature Dim. Brown (in 2011) Park (in 2011) Ayinala (in 2012) Williamson (in 2012) Proposed

120 1260 150 400 125

Patient Id. Sen. (%) FA/hr Sen. (%) FA/hr Sen. (%) FA/hr Sen. (%) FA/hr Sen. (%) FA/hr

01 100 0.095 100 0.080 100 0 100 0.040 100 0
02 N/A N/A N/A N/A N/A N/A 100 0 66.7 0
03 100 0.250 100 0 100 0 100 0 100 0
04 100 0.040 100 0.040 100 0 100 0 100 0
05 80.0 0.276 100 0.790 60.0 0.792 60.0 0.090 100 0.208
06 100 0.340 100 0.040 100 0.083 100 0.040 100 0
07 100 0.053 100 0.040 100 0 100 0.040 100 0
09 100 0.242 100 0.340 100 0.250 100 0 100 0
10 100 0.508 100 0.200 100 0.167 80.0 0 100 0.082
11 50.0 0.502 75.0 0.170 75.0 0 100 0.040 100 0.042
12 100 0.080 100 0.040 100 0 100 0.080 100 0
14 100 0.800 100 0.220 75.0 0.083 75.0 0.040 100 0.042
15 100 0.610 100 0.380 100 0.167 100 0.040 100 0
16 40.0 0.606 100 0.420 100 0.167 80.0 0 100 0
17 80.0 0.347 100 0 100 0.125 100 0 100 0.042
18 40.0 0.273 100 0.160 100 0.167 80.0 0 100 0.039
19 75.0 0.680 75.0 0.900 N/A N/A 50.0 0.090 100 0.041
20 60.0 0.685 100 0.680 N/A N/A 20.0 0.080 100 0.122
21 60.0 0.577 100 0.380 100 0.167 100 0.040 100 0.401

Average 81.3 0.386 97.5 0.271 91.5 0.135 85.5 0.033 98.8 0.054

rather than overall accuracy, most patients’ performance can be
evidently improved.

Table II provides detailed prediction results for all patients.
The results recorded therein are from the best performing feature
sets among AIE, AIF, and AIEFIni parameter sets. On average,
the overall sensitivity obtained across all patients is 95.2%, in
which 79 out of 83 seizures in the evaluation set have been
successfully predicted. Due to the fact that a significant amount
of isolated positive detections turn out to be false alarms, a
two-in-a-row filtering step is taken to diminish single positives,
leaving only consecutive positive alarms (at least two) counted in
the results. We end up achieving 0.138 FAs per hour specificity
result with these sorts of features. These initial results were
reported in our previous work [28].

B. Effects of Feature Selection

The final prediction outcomes in terms of sensitivity and
specificity after the feature selection process are shown in
Table III. In order to compare our approach with other com-
peting approaches published recently, and to evaluate them un-
der similar classification methods, Table III also includes their
performance for the convenience of readers.

1) Comparison with our Previous Results: In Fig. 8, we
compare our previous results recorded in Table II and the up-
dated results in Table III. The patient-by-patient sensitivity and
FA/h performance as well as their overall results are numeri-
cally noted. It is found that in terms of average sensitivity, the
AIEFRef features outperform the best performing feature set
from {AIE, AIF, and AIEFIni} with a relative improvement of
3.78%, while the overall specificity in FA/h is greatly improved
by 60.9%.

Fig. 8. Our current and previous sensitivity and specificity results, where
previous results come from the best among {AIE, AIF, and AIEFI n i}, and the
current results are produced by the AIEFRef features. Top: sensitivity rate in
%; bottom: specificity rate in FA/hr.

2) Comparison With Others: As indicated by Table III,
Brown et al. in [43] have recently applied a divergence
measurement-based feature selection process to retain a pool
of 120 features, and finally, achieved an overall sensitivity of
81.3% and 0.386 FA/h as a result. Ayinala et al. [17], on the
other hand, have employed Adaboost to make classification on
150-dimensional feature vectors and obtained a 91.5% sensitiv-
ity, 0.135 FA/h for a pool of 16 patients out of the 19 patients in
our evaluation set. By contrast, the performance of Park’s [36]
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Fig. 9. Amount of successful prediction cases for all referred approaches.
Perfect sensitivity/specificity rate indicates the percentage of patients for whom
no sensitivity/specificity errors appear during the test; successful patient rate
relates with the proportion of patients where the prediction is counted as a
success.

and Williamson’s [18] prediction systems involve a much larger
number of feature parameters than the aforementioned ones. As
a result, Park et al. have produced an overall sensitivity as high
as 97.5%, and Williamson et al. have reported a specificity result
as low as 0.033 FA/h. However, neither of them have achieved a
good balance between the prediction sensitivity and specificity,
that is, producing satisfactory results in both terms simultane-
ously. In comparison, the automatic feature integration method
proposed in this study not only produced feature vectors with
lower dimension, but also demonstrated more proficient overall
performance than other state of the art competing approaches.
Although slight differences on evaluation procedures among
approaches referred in Table III exist, the results are believed
to have faithfully reflected the practical situation. Further in-
spections on these results from different perspectives will be
addressed in Section V-C.

C. Results Analysis

1) Sensitivity and Specificity of Prediction: To make com-
prehensive inspections, we have discarded less test data than
other approaches, e.g., we used all 473 interictal hours of EEG
recordings involved in the Freiburg database to measure when
false alarms might occur (Brown and Park uses 433.2 hours, and
Williamson uses 448.3 hours), and we observed sensitivity on
83 marked seizures (Brown and Park uses 80 seizures, while
Ayinala uses 71 seizures). As per results in Table III, we
achieved perfect sensitivity, where all seizures have been suc-
cessfully forecast beforehand for 18 out of all 19 patients. On
average, the overall sensitivity obtained across all patients is
98.8%, in which 82 out of 83 seizures in the evaluation set
have been correctly predicted. We achieved perfect specificity
for 10 out of 19 patients, and this proportion is regarded as
the largest among existing methods in Table III. Fig. 9 shows
that for 95% patients we have achieved perfect sensitivity, and
for 53% patients no false alarms have been reported during the
whole interictal period. Our approach is clearly superior to the
others.

2) Receiver Operating Characteristics Curve: Receiver op-
erating characteristics (ROC) is one of the best-known indica-
tion of two-class discrimination in terms of TP rate as well as

Fig. 10. ROC curve: TP time (in %) versus FP time (in %).

FP rate in percentage. It provides a good measurement on over-
all separability of the relevant classifier. With ROC statistics, a
threshold is continuously updated to traverse all possible TP and
FP on a 0–1 space. With a varying threshold, the variation of TP
versus FP is recorded, and the resulting curve is termed as an
ROC curve. To quantify the degree to which two groups can be
discriminated by the classifier, the area under ROC curve (i.e.,
AUC) can be calculated. Varying between 0 and 1, the higher
the value of AUC the better, where AUC = 0.5 means a random
classification performance.

In this paper, we have evaluated our preictal/interictal classi-
fication algorithm by the ROC curve as well as AUC quantity
as shown in Fig. 10. In this figure, the proportion of instances
with TP detections versus those with FP detections is indicated.
Two ROC curves have been given, which are both obtained from
the summary results of all 19 patients. On a patient-by-patient
basis, the best performing [α, β] sets in each patient’s test are
recorded, and their discrimination results accumulated together
produce the curve with a � mark, while without a selection pro-
cess, test results obtained from all sets mark the ROC curve
with †. The AUC values indicate an improvement from 0.758 to
0.784.

3) Successful Patient Rate: Chiang et al. [32], [44] have
proposed another evaluation scheme to compare the success of a
seizure prediction algorithm, where the proportion of successful
patients among all test populations is considered as an essential
metric. If satisfying the following two conditions, a patient is
counted as a successful patient.

1) False alarm rate per hour is less than 0.2.
2) Each single seizure has been predicted beforehand.
According to these criteria, the amount of successful patients

for the referred approaches in Table III are shown in Fig. 9. It is
found that the proposed method in this study achieved the high-
est successful patient rate, which is 16/19 = 84.2%. It means,
in a general scenario, our method can provide early warnings
for all seizures that occur, and can report false alarms below
a threshold rate, for 84.2% of the patients involved. The suc-
cessful patient rate, rather than overall sensitivity or specificity
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TABLE IV
PATIENT-SPECIFIC STATISTIC RESULTS ON FREQUENCY OF SUCCESS FOR THE REFERRED METHODS OF BROWN, PARK, AYINALA, WILLIAMSON, AND OUR

PROPOSED APPROACH

01 02 03 04 05 06 07 09 10 11 12 14 15 16 17 18 19 20 21

Brown � N/A X � X X � X X X � X X X X X X X X
Park � N/A � � X � � X � X � X X X � � X X X
Ayinala � N/A � � X � � X � X � X � � � � N/A N/A �
Williamson � � � � X � � � X � � X � X � X X X �
Proposed � X � � X � � � � � � � � � � � � � X
Freq. of success 1.0 0.50 0.80 1.0 0 0.80 1.0 0.40 0.60 0.40 1.0 0.20 0.60 0.40 0.80 0.60 0.25 0.25 0.40
Hard patient? No Yes No No Yes No No Yes No Yes No Yes No Yes No No Yes Yes Yes

would better indicate the predictor’s performance in practical
engagements.

D. Patient-Specific Study

An ideal predictor is expected to produce a sensitivity as
high as possible, and the lowest possible FAs measured in FA/h.
By giving an observation along with all the evaluated patients,
and across different approaches on their prediction outcome
shown in Table III, it is obvious that for some patients, good
performance results are always hard to obtain. According to the
patient-specific records, we have made some statistics on the
frequency of success across different approaches referred to in
Table III, and the relevant observations are shown in Table IV.

In Table IV, the frequency of success for each patient is cal-

culated as # of successful predictions
# of predictions . If a patient’s frequency

of success falls below 0.5, he/she is counted as a hard patient.
Therefore, the following nine patients are found harder than
others in making successful prediction: Patients 2, 5, 9, 11, 14,
16, 19, 20, and 21. Considering that 1) Patients 2, 19, and 20
are discarded from evaluation in some of the mentioned works,
and 2) Patients 9, 11, 14, and 16 are considered successful in
our approach, the typical hard patients with the poorest results
turn out to be Patients 5 and 21.

E. Feature Selection Parameters

α and β variables control the screening of raw AIE and AIF
parameters in constituting an AIEF[α,β ] vector. The [α, β] set
that yields optimal performance determines the final form of
AIEFRef for a certain subject. Considering the fact that the
feature selection for AIE and AIF parameters are conducted
separately, α and β together evidently affect the final prediction
outcomes. With the dimension dr of AIEFRef varying among
patients, we have an average dr equal to 125 calculated over all
patients involved in the evaluation pool.

Fig. 11 shows a brief illustration on the experimentally de-
termined [α, β] sets over the evaluation database. It is found
that the majority of patients can rely on an amount of AIE/AIF
parameters as small as 100 to achieve satisfactory prediction
results. Only 2 out of the 19 patients engage the entire AIE and
AIF parameter sets to provide final outcomes. To find out a suit-
able proportion of AIE and AIF parameters in feature selection,
the ratios between α and β in the finally selected AIEFRef vec-
tors are also noted. Sightly more than a half (10 out of 19) of

Fig. 11. Statistics on feature dimension dr and ratio α/β in the final forms
of AIEFRef feature vectors over all patients.

the patients have their β larger than α, that is, α/β < 1, which
is consistent with our previous observations on sole AIE and
AIF vectors. These resultant statistics on feature selection pa-
rameters are expected to offer new observations on EEG signal
feature derivation.

VI. CONCLUSION

Timely and accurate predictions of impending seizures are
crucial for epilepsy patients and others caring for them. To
carry out efficient analysis and prediction on seizure activities,
distinct seizure-related representatives from EEG signals are
highly desirable. Under a machine-learning-based binary clas-
sification protocol, this paper focuses on deriving compact yet
comprehensive feature vectors from EEG signals to perform ef-
ficient prediction. We first present a new EEG representation
to extract primary amplitude and frequency components under-
lying an EEG signal. We subsequently examine the relevance
of these two sources of information with a patient’s seizure oc-
currence. In order to diminish potential redundancy within the
amplitude and frequency components, we execute a parameter
screening process on them. Considering personal variety might
exist, the feature selection process is carried out on a patient-
specific basis. The screened feature vectors not only benefit
from the discriminative power of the dominant EEG amplitude
and frequency components in a flexible manner, but are proven
more effective than the raw vectors. Through theoretical anal-
ysis and experimental evaluation on a standard EEG dataset,
the proposed EEG features are found very promising in making
timely predictions with very low false alarm rates. In comparison
with state of the art methods under similar setup conditions, our
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approach is identified as being much superior in several aspects
including prediction sensitivity, prediction specificity, and suc-
cessful patient rates. As a result, the presented feature extraction
method leads to an overall sensitivity as high as 98.8%, and a
false alarm rate as low as 0.054 FA/h. In particular, we have
ended up with perfect (100%) sensitivity for 18 out of all the
19 patients included in our experiment, only missing one from
83 involved seizures across all patients. The study described
in this paper is distinguished from most of the current seizure
prediction approaches, which employ high-dimensional and ex-
haustive feature extraction processes. It is, therefore, expected
to provide new perspectives in modern disease diagnostics. Con-
sidering the finding that simple narrowband features can provide
good prediction performance, the investigation on combining
the feature vectors proposed here with other conventional mul-
tivariate features might be one of the future directions.
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