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Summary & Conclusions - This paper describes the software 
testing & analysis tool, “ATAC (Automatic Test Analysis for C)”, 
developed as a research instrument at Bellcore to measure the ef- 
fectiveness of testing data. It is also a tool to facilitate the design 
& evaluation of test cases during software development. To 
demonstrate the capability & applicability of ATAC, we obtained 
12 program versions of a critical industrial application developed 
in a recent universitylindustry N-Version Software project, and 
used ATAC to analyze & compare coverage of the testing on the 
program versions. Preliminary results from this investigation show 
that ATAC is a powerful testing tool to provide testing metria and 
quality control guidance for the certification of high quality soft- 
ware components or systems. 

In using ATAC to derive high quality test data, we assume 
that a good test has a high data-flow coverage score. This hypothesis 
requires that we show that good data-flow testing implies good soft- 
ware, viz, software with higher reliability. One would hope, for 
example, that code tested to 85% c-uses coverage would have a 
lower field-failure rate than similar code tested to 20% c-uses 
coverage. The establishment of a correlation between good data- 
flow testing and a low (or zero) rate of field failures is the ultimate 
& critical test of the usefulness of data-flow coverage testing. We 
demonstrated by ATAC that the 12 program versions obtained from 
the U. of Iowa & Rackwell N V S  project (a project that has been 
subjected to a stringent design, implementation, and testing pro- 
cedure) had very high testing coverage scores of blocks, decisions, 
e-uses, and p-uses. Results from the field testing (in which only 
one fault was found) confirmed this belief. 

The ultimate question that we hope ATAC can help us answer 
is a typical question for all software reliability engineers: “When 
is a program considered acceptable?” Software reliability analysts 
have proposed several models to answer this question. However, 
none of these models address the issues of program structure or 
testing coverages, which are important in understanding software 
quality. 

1. INTRODUCTION 

Software reliability analysts have traditionally proposed 
several models [ 1 - 31 to help decide when a software program 
is ready to be released. However, these methods have typically 
not considered the program structure. ATAC (Automatic Test 
Analysis for C) is a software tool which considers program 
structure and supports data-flow coverage testing for C programs 
[4,5,20]. Coverage testing, 1) helps the tester create a thorough 
set of tests, and 2) gives a measure of test completeness. Each 
of the structural coverage criteria proposed in the literature [6 
- 81 attempts to capture some important aspect of a program’s 
behavior. Rapps & Weyuker [8] define a family of data-flow 
coverage criteria for an idealized programming language. Frankl 
& Weyuker [9] extend these definitions to a subset of PASCAL 
and describe a tool, ASSET, to check for test completeness bas- 
ed on the data-flow coverage criteria. We have adapted these 
data-flow coverage definitions to define realistic data-flow 
coverage measures for C programs. 

The concepts of coverage testing are well-described in the 
literature, but there are few tools that actually implement these 
concepts for common programming languages [9, lo]. Even less 
evidence is found of the application of these concepts to realistic 
projects in obtaining meaningful results. ATAC is a data-flow 
testing tool which, to our best knowledge, incorporates the most 
complete set of coverage measures for any common language. 
To investigate ATAC in a realistic project, we apply the tool 
to the 12 program versions developed by a recent university/in- 
dustry joint project [l 11. This project started as an N-version 
programming investigation on a critical automatic flight con- 
trol application. We consider the multiple program versions ob- 
tained from the project as an abundant resource for studying 
testing-coverage and quality-metrics. ATAC facilitates this 
study. Preliminary results showed that, by using ATAC to 
analyze coverage of programs during testing, various program 
execution aspects are revealed easily. Not only is an indicator 
of testing quality revealed, but the nature of program structure, 
or its testability (whether a program is easy to test or not), 
becomes visible through the resulting measures. As shown by 
the comparisons among the multiple program versions tested 
with the same set of data, the structure of different programs 
can have a major impact upon the faith in testing upon these 
programs. 

Section 2 presents ATAC in terms of its purpose, its im- 
plementation, and its uses. Section 3 describes a recent industrial 
project to obtain 12 program versions for a critical flight soft- 
ware system. Section 4 discusses some experience & results ob- 
tained in applying ATAC to the final program versions obtain- 
ed in the project. 

We intend later to investigate the relationship between the 
quality of data-flow testing and the subsequent detection of field 
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faults, and hopefully, a unified technique combining testing 
methodology and reliability theory could emerge to address the 
program acceptance problem. We believe that ATAC can 
facilitate software reliability researchers & practitioners to 
establish the relationship in between structure-based testing 
schemes and software reliability measurement techniques. 

Acronyms & Abbreviations 

ATAC Automatic Test Analysis for C 
c-use computational-variable use 
p-use predicate-variable use 
NVP N-version programming 
UlIowa University of Iowa. 

2. ATAC SOFTWARE-COVERAGE TOOL 

ATAC is a tool for evaluating test set completeness based 
on data-flow coverage measures. ATAC allows the program- 
mer to create new tests intended to improve coverage by ex- 
amining code not covered. The steps to use ATAC are: 

Prepare a program for testing with a preprocess-compile-link 
phase. This creates an instrumented object module and data- 
flow tables used during run-time. 
Run tests and collect trace & coverage data with the ATAC 
run-time routine. 
Execute an analysis phase which provides feedback on the 
tests that have been run. 
Use ATAC to browse the code not covered. This allows the 
programmer to understand the incompleteness of the tests and 
to design new tests that enhance coverage. 

The ATAC preprocessor analyzes C source code and pro- 
duces a file containing data-flow information about the source 
program for use in the analysis phase. The preprocessor also 
creates a modified version of the source code instrumented with 
calls to the ATAC run-time routine. 

During testing, the ATAC run-time routine, invoked from 
the modified program, maintains a compact coverage trace for 
use in the analysis phase. In the analysis phase, the tester can: 

request coverage values on the preceding test for any of the 

display source code constructs not covered by the tests. 

Blocks not covered are displayed in a context of surrounding 
source code. Other constructs are also displayed by highlighting 
the constructs not covered in the context of their surrounding 
code. 

Coverage analysis can be performed for each C function, 
for each test, or some combination of tests and C functions. 
Multiple source-files can be tested together or one at a time. 
There are no explicit limits on the size of programs tested with 
ATAC. However, for very large programs, testing can be con- 
strained by, 1) available memory and disk space, and 2) test 
execution time. The program-constructs measured by ATAC 
include blocks, decisions, c-uses, and p-uses. 

data-flow coverage measures, 

Block coverage counts the branch free executable code 
fragments that are exercised at least once. A block can be 
more than one C statement if there is no branching between 
statements. A statement can contain multiple blocks if there 
is branching inside the statement. An expression can also con- 
tain multiple blocks if branching is implied in the expression 
(eg,  a conditional expression or logical-and or logical-or ex- 
pression). If block coverage is less than 100%, then some 
statements are not exercised by any test. 
Decision coverage counts the number of branches that have 
been followed at least once. If a decision is not covered dur- 
ing testing, an error in the decision predicate can not be reveal- 
ed. Completely adequate decision coverage implies complete- 
ly adequate block coverage except for functions with no 
branches. 
c-use coverage counts the number of combinations of an assign- 
ment to a variable and a use of the variable in a computation 
that is not part of a conditional expression. Since functions & 
statements need not use or assign any variables, c-use coverage 
is not comparable to most of the other measures. 
p-use coverage counts the number of combinations of an 
assignment to a variable, a use of the variable in a conditional 
expression, and all branches based on the value of the condi- 
tional expression. 

The idea behind c-use & p-use coverage is that when a 
variable can be assigned a value in more than one way, a good 
test set insures that the uses of that variable are exercised for 
each possible assignment. Completely adequate p-use coverage 
implies completely adequate decision coverage except when 
there are predicates that do not contain any variables (eg, “while 
(getchar() ! = ’\\n’);”). 

2.1 Purposes of ATAC 

testing process: 
ATAC can achieve the following objectives in the software 

1. objectively measure test-set or test-session completeness, 
2. display non-covered code to aid in test creation, 
3. select effective randomly-generated tests, 
4. reduce regression test-set size by eliminating redundant 

Objective #1 is useful in evaluating the quality of the testing 
procedure, and in establishing a level of assurance in the quali- 
ty of tested programs. A low coverage-score indicates that the 
tests do not effectively exercise the program. A high coverage- 
score establishes faith that the program, in passing the tests, 
works correctly. 

Objective #2 is a programmer aid for unit testing. Since 
a thoroughly-done unit-testing job can vastly reduce the overall 
cost of testing a software system, a programmer can use the 
coverage displays to reveal code constructs that have not been 
covered by unit testing. By examining the code, the program- 
mer can discover tests that will cause these, as yet not covered, 
constructs to be covered. After running these additional tests, 
the programmer can check which constructs are newly covered, 
and examine the remaining non-covered constructs. 

tests. 

r 
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Objective #3 provides a mechanism for determining an ef- 
fective, small subset of the many automatically generated tests. 
For many applications it is possible to generate tests automatical- 
ly [12 - 141. Coverage-measures provide a basis for such a 
mechanism. While the number & complexity of data-flow ob- 
jects associated with a program can pose a problem to the pro- 
grammer trying to devise tests for the program, we see no 
similar problem in our use of automatic test-selection. 

Objective #4 relates to the tests run over the life of a pro- 
gram that are collected into a regression test set. The regres- 
sion test set is re-run each time the program is modified, to 
verify that the modifications have not adversely affected the pro- 
gram. A regression test set can grow so large that it is not prac- 
tical to run the whole set of tests after small program modifica- 
tions. Hence, this objective uses the coverage measure to select 
a subset of the regression tests which can achieve a high level 
of coverage. This technique can identify tests that add no 
coverage at all to the regression tests, and are therefore can- 
didates for deletion. 

2.2 Design & Implementation of ATAC 

ATAC is implemented as 5 C programs consisting of 
about 36K lines of source code, several shell scripts, and 
a run-time routine. ATAC is in its third incarnation. Version 
#1 analyzed C properly but only did block-coverage. Version 
#2 was rather complete but consisted of over 50K lines of 
poorly engineered code. Version #3 (current) is well-engineered 
and is designed to accommodate changes & extensions. ATAC 
is running in a variety of UNIX environments (Sun 3, Sun 
SPARC, Dec 3100, Vax 8650, Pyramid, erc) in several Bellcore 
divisions and at Purdue University. It is reasonably easy to 
port & install. ATAC has been run successfully on programs 
up to lOOK lines. Disk-space utilization is, in our experience, 
less than (3  +n) times the space needed for a “debug” (-8) 
version of the test program (n = number of test runs). Execu- 
tion time can increase appreciably (in one case by a factor 
of 36), but usually less than a factor of 2 and commonly 
20-30%. ATAC has never exceeded available memory on 
an 8 MB system. 

2.2.1 Preprocessor 

The ATAC preprocessor is the heart of ATAC. The 
preprocessor parses & analyzes C source code, and outputs, 
1) an instrumented version of the source code, and 2) a file con- 
taining static data-flow information. The C parser was originally 
part of a language-based editor for C [ 151. A parser generated 
by the YACC [16] parser generator tool creates an abstract syn- 
tax tree in memory for each C function. A data-flow graph is 
created for this syntax tree using well known techniques. A table 
of DEF/USE information is generated from the data-flow graph 
to be included with the instrumented source code. In order to 
instrument the source code, a mark is placed in the syntax tree 
for each node in the flow graph. The syntax tree is then de- 
parsed to create the instrumented source code. Marks in the syn- 
tax tree are translated to calls to the ATAC run-time routine. 
Each call to the ATAC run-time routine mntains a block number 

and a pointer to the current context. The context contains, 1) 
pointers to the DEF/USE tables, 2) information about constructs 
already covered, and 3) dynamic function call level. 

To create the static data-flow information file, the data- 
flow graph is searched for data-flow coverage constructs that 
might be covered during testing. These constructs are saved in 
a file with their original source-code positions. 

2.2.2 Source Code Positions 

In order to display non-covered constructs in the source 
code, it is necessary to store original source-code positions in 
the static data-flow information file. This is complicated by the 
presence of C preprocessor macros and include files which are 
expanded before the ATAC preprocessor reads the code. The 
standard C preprocessor inserts line directives in the preprocess- 
ed code to reveal the original source-file name and line number 
of included code. However, this does not help with macros 
which expand within a given line. To handle this problem we 
have modified a C preprocessor to insert an escape sequence 
(into the code) indicating which text is part of a macro expan- 
sion and the size of the original text. The ATAC preprocessor 
decodes these escape sequences and the line directives to get 
original source-code positions which are saved in the static data- 
flow information file. 

2.2.3 Run-time Routine 

The ATAC run-time routine recognizes data-flow con- 
structs during execution of a test, and notes the first occurrence 
of each construct in the trace file. The mechanism for this is 
simple. For DEF/USE constructs it proceeds as follows. 

Tables generated during source-code instrumentation indicate 
which variables are defined & used in a given block. 
The run-time routine keeps track of each variable that has 
been defined and the block at which it was defined. 
When a block that uses a defined variable is encountered, the 
definition & use are recorded in the trace file. Multiple oc- 
currences of the same DEF/USE pair are not recorded. 
Because a single procedure can be invoked recursively, the 
run-time routine maintains a separate list of defined variables 
for every active procedure being tested. When the final block 
of a procedure is executed, the list of defined variables for 
that procedure is freed. 
The methods for recording the other constructs (decisions, 
c-uses, p-uses) are similar. 

2.2.4 Analysis 

The ATAC analysis program reads, 1) the static data-flow 
information for each source file being tested, and 2) the trace 
file from the execution of the tests. Constructs in the trace file 
are matched with constructs in the data-flow information file 
to determine, for each function, 1) the total number of constructs 
in the function, and 2) the number of constructs executed by 
the tests. The analysis results can be broken down by test files 
or by program modules. 
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2.3 Uses of ATAC 

ATAC is a coverage-testing tool and does not directly aid 
in functional testing. Therefore, the first step in testing a program 
is for the tester to create tests which are intended to ascertain that 
the program meets the functional characteristics of the specifica- 
tions. ATAC can then be used to measure the coverage of those 
functional tests. For example, for the 5K line Spiffprogram [17], 
the functional tests presented the following coverage profile: 

blocks decisions c-uses p-uses 

62 % 54 % 46 % 42 % 
1OO9/ 1622 471/869 1023/2242 69 1 / 1664 

This means that 62% of the blocks, 54% of the decisions, 46% 
of the c-uses, and 42 % of p-uses were covered by the tests which 
were deemed adequate to gauge that the program implemented 
the functions required in the specifications. If the tester is 
satisfied with this coverage, then ATAC is of no further use. 
Otherwise ATAC can aid in the selection of new tests. 

The tester who wishes to improve coverage by hand- 
crafting tests can request that ATAC display the code while 
highlighting non-covered objects. For instance, blocks not 
covered are displayed in situ (as in figure 1). 

> s0rt.c: merge 6 blocks not covered <---------- - - - - - - - - - 

cp = 
If 

putc (‘CP, os; ; 
while (*cp++ ! =  \n’); 
if (ferrorlos)) ( 

Figure 1. ATAC Highlighting of Non-Covered Blocks 

The tester can use this display to attempt to understand why 
none of the tests touched the highlighted blocks. One can pro- 
ceed through the code, analyzing the blocks not covered, and 
constructing tests which are designed to increase coverage. This 
is, of course, an interactive process. Tests are created & run, 
the coverage is checked, and the blocks not covered are re- 
displayed - until one is either satisfied with the coverage or 
convinced that no tests can be added that will cover the remain- 
ing blocks. The value of this approach, particularly in unit 
testing, is that hand-crafted tests can be created (by the pro- 
grammer) which are aimed precisely at constructs not covered. 
This can lead to a very high-quality test set. 

3.  U/IOWA & ROCKWELL JOINT PROJECT 

[ 181. This approach involves the statistidy-independent genera- 
tion of N 1 2 functionally equivalent programs from the same 
initial specification. NVP was motivated by the “fundamental con- 
jecture that the independence of programming efforts will great- 
ly reduce the probability of identical software faults occurring in 
two or more versions of the program.” [18] 

In late 1991, a real-world automatic (computerized) 
airplane landing system (autopilot) was developed & programm- 
ed by 15 programming teams at U/Iowa and the Rockwell/Col- 
lins Avionics Division [ 113. 40 students’ participated in this 
project to s-independently design, code, and test the computeriz- 
ed airplane landing system - as a major requirement of a 
graduate-level software engineering course. 

3.1 Application Problem 

The application in this NVP project is part of a specifica- 
tion used by some aerospace companies for the automatic 
(computer-controlled) landing of commercial airliners. The 
specification can be used to develop the software of a flight- 
control computer for a real aircraft, given that it is adjusted to 
the performance parameters of a specific aircraft. All algorithms 
and control laws are specified by diagrams which have been 
certified by the US Federal Aviation Administration. The pitch 
control part of the auto-landing problem (control of the ver- 
tical motion of the aircraft) was selected for the project. 

Simulated flights begin with the initialization of the system 
in the Altitude Hold mode, at a point approximately 10 miles 
from the airport. Initial altitude is about 1500 feet, initial speed 
120 knots (200 feethecond). The Complementary Filters 
preprocess the raw data from the aircraft sensors. Pitch-mode 
entry & exit is determined by the Mode Logic equations, which 
use the filtered airplane-sensor data to switch the controlling 
equations at the correct point in the trajectory. 

Pitch modes entered by the autopilotlairplane combination, 
during the landing process, are: Altitude Hold, Glide Slope Cap- 
ture, Glide Slope Track, Flare, and Touchdown. The Control 
Law for each of them consists of two loops, outer & inner. The 
Altitude-Hold Control Law is responsible for maintaining the 
reference altitude. As soon as the edge of a glide slope beam 
is reached, the airplane enters the Glide-Slope Capture & Track 
mode and begins a pitching motion to acquire & hold the beam 
center. Controlled by the Glide Slope Capture and Track Con- 
trol Law, the airplane maintains a constant speed along the glide 
slope beam. Flare logic equations determine the precise altitude 
(about 50 feet) at which the Flare mode is entered. In response 
to the Flare control law, the vehicle is forced along a path which 
targets a vertical speed of 2 feetlsecond at touchdown. 

Besides computing the flight control command according 
to the above sequence, each program checks its final result (the 
pitch control command) against the results of other programs. 
Any disagreement is indicated by the Command Monitor out- 
put, so that a supervisory program can take appropriate action. 

NVP achieves faUlt-tOlerant Software systems (N-version 
software systems) through development & use of design diversity 

‘33 from ECE & CS departments at U/Iowa, 7 from the Rockwell 
International. 

r 
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3.2 Software Development 

There were 6 phases: 

1. Initial design (4 weeks). The purpose was to allow the 
programmers to get familiar with the specified problem, so as 
to design a solution to the problem. At the end of this phase, 
each team delivered a preliminary design document, which 
followed specific guidelines & formats for documentation. 

2. Detailed design (2 weeks). The purpose was to let each 
team obtain some feedback from the coordinator to adjust, con- 
solidate, and complete their final design. Each team was also 
requested to conduct at least one design walk-through. At the 
end of this phase, each team delivered, 1) a detailed design docu- 
ment, and 2) a design walk-through report. 

3. Coding (3 weeks). By the end of this phase, program- 
mers had finished coding, conducted a code walk-through, and 
delivered the initial, compilable code. Each team was required 
to use the RCS revision control tool for configuration manage- 
ment of their program modules. 

4. Unit testing (1 week). Each team was supplied with sam- 
ple test data sets for each module to check the basic functionality 
of that module. They were also required to build their own test 
harness for this testing purpose. 133 data files were provided 
to the programmers. 

5. Integration testing (2 weeks). Four sets of partial 
flight-simulation test data, together with an automatic testing 
routine, were provided to each programming team for integra- 
tion testing. This testing phase was to guarantee that the 
software was suitable for a flight simulation environment in 
an integrated system. 

6. Acceptance testing (2 weeks). Programmers formally 
submitted their programs for a 2-step acceptance test. In step 
#1 (ATl), each program was run in a test harness of 4 nominal 
flight simulation profiles. In step #2 (AX!), one extra simula- 
tion profile, representing an extremely difficult flight situa- 
tion, was imposed. In total there were 23 930 executions 
imposed on these programs before they were accepted and 
then subjected to the final evaluation in the following stage. 
By the end of this phase, 12 of the 15 programs passed 
the acceptance test and were further evaluated. 

3.3 Program Metrics & Statistics 

Table 1 gives several comparisons of the 12 accepted 
versions (identified by a Greek letter) with respect to some 
common software static metrics. The objective of software 
metrics is to evaluate the quality of the product in a quality 
assurance environment. For this project, however, we com- 
pare these program versions and observe their differences. 

Notation 

LINES number of lines of code, including comments and 
blank lines 

LN-CM number of lines, excluding comments and blank lines 
STMTS number of executable statements, such as assign- 

ment, control, 110, or arithmetic statements 
MODS number of programming modules (subroutines, func- 

tions, procedures, etc) used 
STMIM mean number of statements per module 
CALLS number of calls to programming modules 
GBVAR number of global variables 
LCVAR number of local variables. 

96 Faults were found & reported during the life of the 
project. Table 2 classifies the faults by fault type. 

Notation (Fault Classification) 

Implementation Related 

Typo typographical (cosmetic mistake made in typing the 
program) 

Omiss error of omission (piece of required code was missing) 
IncAlg incorrect algorithm (deficient implementation of an 

algorithm) - most frequent fault type, eg, miscom- 
putation, logic fault, initialization fault, boundary fault 

Specification Related 

SpecMis specification misinterpretation 
SpecAmb specification ambiguity (unclear or inadequate 

specification which led to a deficient 
implementation). 

TABLE 1 
Software Metrics for the 12 Accepted Programs 

[versions are designated by lower-case Greek letters 
range = [highest value]/[lowest value] for each metric] 

Metric p y e q B K X p Y t o range 

LINES 8769 2129 1176 1197 1777 1500 1360 5139 1778 1612 2443 1815 7.46 

STMTS 2663 708 706 720 1208 753 640 1366 759 810 932 858 4.16 
MODS 53 11 6 15 6 47 17 17 21 24 17 11 8.83 
STM/M 179 64 101 439 201 406 38 80 36 35 67 78 12.5 
CALLS 84 123 16 23 37 76 31 626 100 106 30 66 39.1 

LCVAR 1326 179 86 309 553 532 376 402 294 258 328 329 15.4 

LN-CM 4006 1229 895 932 1477 1182 1251 2520 1168 1070 1683 1353 4.30 

GBVAR 0 55 101 180 86 406 7 0 354 423 421 26 - 
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TABLE 2 
Fault Classification by Fault Types [19] 

[see notes on table 11 

Typo 0 0 0 1 2 2 0 0 0 0 0 0  5 
omiss 0 0 4 0 1 0 3 1 0 0 1 0 1 0  
IncAlg 7 1 3 6 2 1 3 3 4 3 6 2  41 
S p e c M i s 2 2 0 1 1 4 3 3 4 2 2 4  28 
S p e c A m b 0 4 3 0 0 0 0 1 0 0 1 0  9 
Other 0 0 0 1 1 0 0 0 1 0 0 0  3 
Total 9 7 1 0 9  7 7 9 8 9 5 1 0 6  96 

Table 3 shows the test phases during which the faults were 
detected, and the fault density of the original version and the 
accepted version. 

Notation 

Coding Coding and Unit-Test 
Integr Integration 
ATi 
Operat Operational 
FD 
Orig FD original FD 
ATi FD after passing ATi. 

mitted by two programs during the whole life cycle. 

Acceptance Test i ,  i = 1,2 

fault density (per lo00 lines of uncommented code) 

There were only two incidences of identical faults com- 

1. Committed by 8 & ~1 versions - due to an incorrect 

initialization of a variable. Unit test data detected this fault very 
early when both programs were initially tested. 

2. Committed by y & X versions - an incorrect condition 
for a switch variable (Boolean variable) for a late flight mode. 
This fault was not detected until in the AT1 (step 1) when a 
complete flight simulation was first exercised. 

Latq in the operational testing phase, lk  flight simulations, 
or over 5M program executions, were conducted. Only 1 fault 
(in 0 version) was found. This indicates that the program quality 
obtained from this project is very high. For the 12 accepted pro- 
grams, the average FD = 0.05 faults/(lk lines of code). This 
number is close to the best current industrial software engineer- 
ing practice. A detailed report on the U/Iowa & Rockwell Pro- 
ject is in [ll]. 

4. PROGRAM ANALYSIS BY ATAC 

Upon the completion of the U/Iowa & Rockwell Project, 
its product (12 accepted and fully operational program versions) 
was available for investigation. Our particular interest here is 
the investigation of testing coverage metrics as a quality con- 
trol mechanism to evaluate & analyze these programs. The 
ATAC tool facilitates the generation of interesting results (sum- 
marized in tables 4 - 7). 

Table 4 shows some more static program metrics of the 
12 programs which were not in table 1. These new metrics, 
including blocks, decisions, c-uses, and p-uses, are program 
constructs related to the quality of testing. ATAC can 
automatically measure these program constructs which reveal 
the testing-related program complexity. All the metrics in table 

TABLE 3 
Fault Classification by Phases and Other Attributes 

[see notes on table 1) 

~ ~~ 

Coding 2 2 3 1 3 3 5 3 2 1  2 2 2 9  
Integr 4 3 4 4 1 0 3 2 2 2 3 1 2 9  
AT1 1 2 3 4 1 2 1 2 3 2 5 3 2 9  
AT2 1 0 0 0 2 2 0 1 2 0 0 0 8  
Operat 1 0 0 0 0 0 0 0 0 0 0 0  1 
Total 9 7 1 0 9 7 7 9 8 9 5 1 0 6 9 6  
Orig FD 2.2 5.7 11.2 9.7 4.7 5.9 7.2 3.2 7.7 4.7 5.9 4.4 5.1 
AT1 FD 0.5 0 0 0 1.4 1.7 0 0.4 1.7 0 0 0 0.48 
AT2FD 0.2 0 0 0 0 0 0 0 0 0 0 0 0.05 

TABLE 4 
Testing-Related Program Metrics Measured By ATAC 

[see notes on table 11 

Metrics 0 y E ( 8 K h p Y 6 o range 

blocks 511 711 531 554 679 537 367 1132 542 473 457 483 3.08 
decisions 216 250 320 297 520 284 286 357 264 237 231 262 2.41 
c-uses 935 755 395 696 1027 636 710 965 727 537 803 665 2.60 
p-uses 413 340 349 520 611 463 459 419 355 310 279 392 2.19 
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TABLE 5 
Single Execution Testing Coverage Measured By ATAC 

[see notes on table 11 

Metrics f l  y E { 7 0 K h p U o average range 

blocks 332 417 329 389 302 341 205 675 370 321 325 277 356.9 3.29 
% 65 59 62 70 44 64 56 60 68 68 71 57 62.0 1.61 

decisions 77 92 119 127 138 80 95 103 110 97 97 84 101.6 1.79 
46 36 37 37 43 27 28 33 29 42 41 42 32 35.6 1.59 

c-uses 557 431 220 347 460 364 310 670 405 295 446 368 406.1 3.05 
% 60 57 56 50 45 57 44 69 56 55 56 55 55.0 1.57 

p-uses 124 117 134 168 159 101 105 153 149 111 105 114 128.3 1.66 
% 30 34 38 32 26 22 23 37 42 36 38 29 32.3 1.91 

TABLE 6 
Integration Testing Coverage Measured By ATAC 

[see notes on table 11 

Metrics f l  y 6 5 1) 0 K h p U o average range 

blocks 

decisions 

c-uses 

p-uses 

x 
% 

x 
% 

433 
85 

153 
71 

778 
83 

274 
66 

506 
71 

183 
73 

573 
76 

205 
60 

408 
77 

200 
63 

315 
80 

22 1 
63 

462 
83 

198 
67 

468 
67 

244 
47 - 

~ 

503 464 
74 86 

313 205 
60 72 

716 515 
70 81 

353 271 
58 59 

290 
79 

197 
69 

508 
72 

223 
49 

859 
76 

220 
62 

81 1 
84 

254 
61 

434 
80 

167 
63 

538 
74 

210 
59 

417 
88 

185 
78 

435 
81 

212 
68 - 

394 
86 

167 
72 

625 
78 

179 
64 

TABLE 7 
Acceptance Testing Coverage Measured By ATAC 

[see notes on table 11 

385 
80 

172 
66 

544 
82 

239 
61 

462.9 
80.4 

196.7 
68.0 

568.8 
77.3 

240.4 
59.6 

2.96 
1.24 
2.05 
1.30 
2.57 
1.25 
1.97 
1.45 - 

Metrics f l  y E { 7 0 K X p U 2: o average range 

blocks 
% 

decisions 
% 

c-uses 
% 

p-uses 
x 

488 553 469 529 598 524 335 
95 78 88 95 88 98 91 

191 217 249 245 399 255 234 
88 87 78 82 77 90 82 

893 676 378 585 898 603 618 
96 90 96 84 87 95 87 

345 245 271 300 454 334 263 
84 72 78 58 74 72 57 

1033 
91 

280 
78 

92 8 
96 

297 
71 

487 461 443 453 
90 97 97 94 

208 218 206 223 
79 92 89 85 

624 513 744 625 
86 96 93 94 

256 262 223 311 
72 85 80 79 

531.1 
91.8 

243.8 
83.9 

673.8 
91.7 

296.8 
73.5 

3.08 
1.24 
2.09 
1.19 
2.46 
1.14 
2.04 
1.49 

4 have a tighter range than all the metrics in table 1. There are 
no strong correlations among these 4 program constructs. For 
example, the /3 version has an average value of blocks & p- 
uses, the smallest number of decisions, but a very high value 
of c-uses. 

Tables 5 - 7 analyze the quality of different tests conducted 
on the 12 program versions. Table 5 shows the testing coverage 
of these programs upon a simple test case which includes only 
one program execution. 

This test case thus serves as a baseline to observe the testing 
quality improvement when more test cases are executed. In table 
5, a simple, common test case has a variety of effects on dif- 
ferent program constructs of different program versions. Table 
5 shows a fairly large range of coverage of blocks (44% - 71 %), 
decisions (27 % - 43 %), c-uses (44 % - 69 %), and p-uses (22 % 

- 38%). Moreover, the coverage of blocks and c-uses is higher 
compared to that of decisions and p-uses. 

Tables 6 & 7 give the testing coverage measures by the 
Integration Test data and the Acceptance Test data, respective- 
ly. The Integration Test data contains 4 test-data files for a total 
of 960 program executions. The Acceptance Test data, a super 
set of the Integration Test data, also contains 4 test-data files 
(each represents a complete flight simulation) for a total of about 
2 1 K program executions. Both test data sets include the test data 
in table 5. 

Tables 6 & 7 show that the programs have been tested with 
fairly high quality. In particular, the Acceptance Test achieves 
coverages as high as 98% of blocks, 92% of decisions, 96% 
of c-uses, and 85 % of p-uses in some programs. Even though 
some programs have consistent scores in these measures (eg, 
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v version has very high values in all the measures; { version 
has both the lowest % c-uses and % p-uses), some programs 
do not (eg, 8 version has the highest % blocks, very high % 
decisions and % c-uses, but relatively low % p-uses). 

Tables 5 - 7 show that as the number of program execu- 
tion increases, the quality of test increases, and the range of 
fraction-of-coverage decreases. Nevertheless, considering that 
these coverage results are obtained from the program versions 
of the same application tested through the same data, the dif- 
ferences in these measures are still important (eg, the 8 version 
obtained 98% of block coverage while the y version only ob- 
tained 78 %). On the other hand, there was a diminishing return 
on the coverage after the acceptance test, and the operational 
test data (5M program executions) did not increase this coverage 
appreciably. This means that the 22% uncovered code in the 
y version was probably not even executed during the opera- 
tional phase. 

There could be a correlation between the ‘number of faults 
detected in a version’ and the ‘coverage of the program con- 
structs of the version’; we hypothesize that the better a pro- 
gram is covered during testing, the more faults are detected. 
However, we did not see strong correlations between the total 
faults detected in the program versions (table 3) and their 
coverage measures during various testing conditions (tables 5 
- 7). This could be due to the fact that each version has a dif- 
ferent fault distribution to begin with, and therefore, the 
coverage measures would not be a good predictor for the ab- 
solute number of faults in the program. Besides, the number 
of faults detected in each version is not very large, which can 
reduce the statistical precision in the analysis. 

Finally, in using ATAC capability in highlighting non- 
covered code in the program, we can reveal the programming 
style and the testability of a program easily by examining the 
coverage of program constructs in detail. In the y version, for 
example, we noticed that an untested error-handling function 
accounts for 10% of the total blocks while the same function 
accounts for only 1-2% of block coverage in most other ver- 
sions. The y version used many function calls to pass each 
parameter in the calling routine of the error-handling function, 
and each function call was counted as an uncovered block. This 
clearly indicates the need for an extra test case to test this func- 
tion, which can increase the block coverage of the y version 
appreciably. 
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