
Experience in Metrics and Measurements for

N�Version Programming

Michael R� Lyu �Bell Communications Research�

Jia�Hong Chen �Computer and Communication Research Laboratories�

Algirdas Avi�zienis �University of California� Los Angeles�

���	
���

Abstract

The N�Version Programming �NVP� approach applies the idea of design diversity to ob�

tain fault�tolerant software units� called N�Version Software �NVS� units� The e�ectiveness

of this approach is examined by the software diversity achieved in the member versions of

an NVS unit� We de�ne and formalize the concept of design diversity and software diver�

sity in this paper� Design diversity is a property naturally applicable to the NVP process

to increase its fault�tolerance attributes� The baseline design diversity is characterized by

the employment of independent programming teams in the NVP� More design diversity

investigations could be enforced in the NVP design process� including di�erent languages�

di�erent tools� di�erent algorithms� and di�erent methodologies� Software diversity is the

resulting dissimilarities appearing in the NVS member versions� We characterize it from

four di�erent points of view that are designated as� structural diversity� fault diversity�

tough�spot diversity� and failure diversity� Our goals are to �nd a way to quantify software

diversity and to investigate the measurements which can be applied during the life cycle of

NVS to gain con�dence that operation will be dependable when NVS is actually employed�

The versions from a six�language N�Version Programming project for fault�tolerant �ight

control software were used in the software diversity measurement�

Keywords� software fault tolerance� design diversity� software diversity� metrics and mea�

surements� software reliability�

�

� Introduction

Fault tolerance is a function of computing systems that serves to assure the continued delivery

of required services in the presence of faults which cause errors within the system �AL���� We

say that a unit of software �module� CSCI� etc�� is fault�tolerant if it can continue delivering the

required services� i�e�� supply the expected outputs with the expected timeliness� after dormant

�previously undiscovered� or not removed� imperfections or 	bugs
� called software faults� have

become active by producing errors in program �ow� internal state� or results generated within

the software unit� When the errors disrupt �alter� halt� or delay� the service expected from the

software unit� we say that it has failed for the duration of service disruption�

An N�Version Software �NVS� unit is a fault tolerant software unit that depends on a generic

decision algorithm to determine a consensus result from the results delivered by two or more

�N � � member versions of the NVS unit� The process by which the NVS versions are produced

is called N�Version Programming �NVP� �AC���� The major objective of an NVP process is to

minimize the probability that two or more member versions will produce similar erroneous results

that coincide in time for a decision �consensus� action in NVS �Avi���� This is the concept of

design diversity �Avi���

The goal of design diversity is to minimize the chances of 	fault leak
 among independent

design e�orts� Furthermore� it is conjectured that the probability of a random� independent

occurrence of faults that produce the same erroneous results in two or more versions is less when

the versions are more diverse� A second conjecture is that even if related faults are introduced�

the diversity of the member versions may cause the erroneous results not to be similar at the NVS

decision� In achieving this goal� quality control of the individual software versions� using available

software engineering technology and within the allowable time and cost constraints� should also

be emphasized for the very simple reason that N failed versions can not produce a good result�

The goal of software diversity is to describe the properties of the products of the NVP e�orts�

The e�ectiveness of the design diversity should be demonstrated by the achievement of software

diversity among the NVS member versions� with respect to the goal of design diversity and the

reliability improvement of the NVS unit over its member versions�

The objective of this research is to qualify the idea of design diversity� to formalize the

concept and notion of software diversity which quanti�es the e�ciency of the design diversity�

and to measure the NVS software diversity resulting from an NVP process �LCA��� The fault�

tolerant �ight control software developed for the Six�Language Project �ALS��� will be used as

a case study�

The organization of the remainder of this paper is as follows� Section describes the Six�

Language Project� Section � de�nes several dimensions of design diversity which are applicable

to NVP� and proposes a qualitative assessment to the resulting design diversity metrics� Section

� de�nes and quanti�es four characteristics of software diversity� Following that in Section �� we

show the results of applying the four quantitative metrics to the programs produced during the

Six�Language Project� Conclusions and future work are pointed out in the Section ��

� The Six�Language Project

The study of the software diversity metrics is illustrated by using actual data obtained from

an experimental implementation of a real�world automatic �i�e�� computerized� airplane land�

ing system� or so�called 	autopilot�
 The software systems of this project were developed and

programmed by six programming teams at the University of California� Los Angeles� using six

di�erent programming languages� A total of six programming teams �two persons per team for

� persons� independently designed� coded� and tested the computerized airplane landing sys�

tem� whose requirement speci�cation was provided by Honeywell Commercial Flight Systems

Division�

The application used in the Six�Language Project was part of a speci�cation used by Honey�

well for the automatic landing of commercial airliners� The speci�cation could be used to develop

the software of a �ight control computer �FCC� for a real aircraft� given that it was adjusted to

the performance parameters of a speci�c aircraft� All algorithms and control laws were speci�ed

by diagrams which had been certi�ed by the Federal Aviation Administration� The pitch control

part of the auto�landing problem� i�e�� the control of the vertical motion of the aircraft� was

selected for the project in order to �t the ���week software development time� The major system

functions of the pitch control and its data �ow are shown in Figure � �

Simulated �ights began with the initialization of the system in the Altitude Hold mode� at

a point approximately ten miles from the airport� Initial altitude was about ���� feet� initial

�

BAROMETRIC
ALTITUDE

COMP. FILTER

RADIO
ALTITUDE

COMP. FILTER

GLIDE SLOPE
DEVIATION

COMP. FILTER

MODE
LOGIC

I

I

I

I

ALTITUDE
HOLD

GLIDE SLOPE
CAPTURE
& TRACK

FLARE

�

I

I

I

x

y
�

z
�

� � LC

COMMAND
MONITORS

(2)

I
CM

DISPLAY DI

x y z

Legend: I = Airplane Sensor Inputs
LC = Lane Command
CM = Command Monitor Outputs
D = Display Outputs

Figure �� Block diagram of the Flight Control Computer

speed �� knots ��� feet per second�� Pitch modes entered by the autopilot during the landing

process� were� Altitude Hold� Glide Slope Capture� Glide Slope Track� Flare� and Touchdown�

The Complementary Filters preprocessed the raw data from the aircraft�s sensors� The

Barometric Altitude Complementary Filter �BACF� and Radio Altitude Complementary Fil�

ter �RACF� provided estimates of true altitude from various altitude�related signals� where the

former provided the altitude reference for the Altitude Hold mode� and the latter provided the

altitude reference for the Flare mode� The Glide Slope Deviation Complementary Filter �GSCF�

provided estimates for beam error and radio altitude in the Glide Slope Capture and Track

modes� Mode entry and exit was determined by the Mode Logic equations� which used �ltered

airplane sensor data to switch the controlling equations at the correct point in the trajectory�

Each Control Law consisted of two parts� the Outer Loop and the Inner Loop� where the

Inner Loop was common to all three Control Laws� The Altitude Hold Control Law �AH� was

responsible for maintaining the reference altitude� by responding to turbulence�induced errors in

attitude and altitude with automatic vertical motion control� As soon as the edge of the glide

slope beam was reached� the autopilot entered the Glide Slope Capture and Track �GS� mode

�

and began a pitching motion to acquire and hold the beam center� A short time after capture� the

track mode was engaged to reduce any static displacement towards zero� Flare logic equations

determined the precise altitude �about �� feet� at which the Flare mode was entered� In response

to the Flare control law� the vehicle was forced along a path which targeted a vertical speed of

two feet per second at touchdown�

Each program checked its �nal result �the vertical control command� against the results of

the other programs� Any disagreement was indicated by the Command Monitor output� The

Display continuously showed information about the FCC on various panels� including the current

pitch mode� the results of the Commend Monitors� and other sixteen �ight�related signals�

� Design Diversity Metrics

	Design diversity
 is an attempt to eliminate the commonalities between the separate program�

ming e�orts in NVP� as they have the potential to cause related faults among the resulting

NVS�

��� Random Diversity vs� Enforced Diversity

Di�erent dimensions of diversity can be applied to the building of NVS systems� Design diversity

could be achieved either by randomness or by enforcement� The random diversity� such as

that provided by independent personnel� leaves the dissimilarity to be generated according to

individual�s training background and thinking process� The diversity is achieved somewhat in

an uncontrolled manner by this way� The enforced diversity� on the other hand� investigates

di�erent aspects in several dimensions� and deliberately requires them to be implemented into

di�erent program versions� The purpose of such required diversity is to minimize the opportunities

for common causes of software faults in two or more versions �e�g�� compiler bugs� ambiguous

algorithm statements� etc��� and to increase the probabilities of signi�cantly diverse approaches

to member version implementation�

��� A Qualitative Design Diversity Metric

There are four phases in which design diversity could be applied� the speci�cation phase� the de�

sign phase� the coding phase� and the testing phase� Applicable dimensions of diversity include

�

di�erent implementors� di�erent languages� di�erent algorithms� and di�erent software devel�

opment methodologies �including phase�by�phase software engineering� prototyping� computer�

aided software engineering� or even the
clean room
 approach �Dye�����

A qualitative design diversity metric is proposed in Table �� This assessment of diversity is

an initial e�ort based on the experiences gained from previous NVP experiments and implemen�

tations �CA��� AK��� KA��� GV��� BEB���� ABHM��� Tra����

implementors languages tools algorithms methodologies

speci�cation higher higher lower� higher� lower

design higher� lower lower higher� higher

coding higher� higher� lower higher higher

testing lower lower� higher lower higher

Table �� A Qualitative Design Diversity Metric�

This table suggests that in the speci�cation phase� using di�erent implementors� languages

or algorithms might achieve higher diversity than applying other dimensions� In the design

phase� using di�erent implementors� di�erent algorithms� or di�erent methodologies tends to be

more helpful� All dimensions except tools are considered e�ective in the coding phase� Finally�

investigation of di�erent tools or methodologies might be more favorable in the testing phase�

Moreover� to compare rows and columns in Table �� extra granularity is provided by using
�

�indicating
further
 for
higher
� and
�
 �indicating
further
 for
lower
� signs� For example�

diversity by using di�erent implementors in testing �marked
lower
� is considered lower than

using them in the previous three phases� but that could still be higher than using di�erent

languages in testing phase� which is marked
lower�
�

��� Cost�E�ectiveness Evaluations

Since adding more diversity implies adding more resources� it is important to evaluate cost�

e�ectiveness of the added diversity along each dimension� It is hypothesized that the main

cost of NVP is dominated by the employment of extra implementors� Cost of adding other

diversity dimensions should not be signi�cant� especially when the resources in these dimensions

�

are abundant �e�g�� languages� tools�� If this hypothesis is valid� we can estimate that the

development cost for NVP� comparing with that for single version software� would be�

�� In requirement speci�cation phase� ����� higher� The extra e�ort is needed to specify the

NVS fault�tolerant architecture�

� In design and coding phase� slightly less than N times higher� Employment of the multiple

design �programming� team sharply increases the cost in this phase� However� the increase

will be less than its N�fold since the designers �programmers� can share the design and

programming environment�

�� In testing phase� ������� higher� Since test cases could be designed once and used in the

multiple versions� the extra cost will mainly be the machine execution time� Besides� the

existence of multiple program versions will help to determine program correctness more

quickly and e�ectively�

In the Six�Language Project� applying di�erent programming languages was considered as a

cost�e�ective investigation in enforcing design diversity� Six programming languages of various

programming style were chosen� consisting two widely used conventional procedural languages

�C and Pascal�� two object�oriented programming languages �Ada and Modula��� one logic

programming language �Prolog�� and one functional programming language �T� a variant of

Lisp�� The extra cost of using multiple programming languages was almost nothing �except for

the purchase of an Ada compiler�� due the the availability of tools �compiler� debugger� and

experienced programmers� It was postulated that di�erent programming languages would force

people to think di�erently about the program design and implementation� and to use di�erent

tools in their programming and testing activities� which could lead to signi�cant diversity in the

software development e�orts�

� Software Diversity Metrics

	Software diversity
 is an attempt to describe the properties of the products of the NVP e�orts�

with regards to the goal of design diversity and the improvement of the qualities of the member

versions� The distinction between design diverity and software diversity could be viewed as the

distinction between an investigation and its return� Design diversity is the investigation on the

�

methods associated with NVP� while software diversity is the return of the investigation as shown

by the diversity attributes on the resulting products� In this respect� software diversity can be

speci�ed in terms of four characteristics�

�� the structural di�erences among the software versions�

� the di�erences between the faults found among the software versions�

�� the di�erences in fault�proneness among the elements of the software versions�

�� the di�erences in the failure behaviors among the software versions�

We will adopt the following naming scheme for the four characteristics of software diversity�

software diversity has the following aspects�

�� structural diversity�

� fault diversity�

�� tough�spot diversity�

�� failure diversity�

��� Structural Diversity

Software is invisible and unvisualizable in that as soon as we attempt to depict software structure�

we �nd it constitutes not one� but several general directed graphs superimposed one upon another

�FPB���� Therefore� to analyze the structural di�erences� we would like to look at the NVS from

several dimensions� perhaps further determined by the speci�c application� Also� there have been

e�orts to measure the program complexity and thereby to predict the inherent fault density� All

previous e�orts were done with a single version of software in mind� gathering their statistics

from many programs� with most of them having di�erent speci�cations �CFS��� CDS����

While one study �STUO��� MIO��� has shown that these complexity measures provide little

improvement over just program size alone in predicting inherent faults remaining at the start

of system test� another study �DL��� shows that the faults found during the maintenance phase

are better predicted using measures other than program size� The metric measurements were

usually applied at the level of separately compilable subprograms called modules� with each

�

module supporting one or more system functions �CDS���� Comparison at the level of the whole

application has seldom been done in the traditional software engineering activities� The common

practice is to collect the statistics from many programs which have possibly related �maybe

similar� but not the same� applications in mind� It is therefore quite interesting to measure and

compare the metrics at the same application level�

For NVS� we postulate that it is possible to look at and compare the individual versions of

software at the subprogram �or source �le� level as well as at the whole application level� We

shall only try to explore some of the complexity metrics commonly seen in the literature� These

basic metrics are�

� Deliverable source lines �DSL�

� Noncommentary source lines �NCSL�

� Halstead�s Software Science �Hal���

� Number of unique operators ����

� Number of unique operands ��� �

� Number of total operators �N��

� Number of total operands �N��

� Decision count DE �CDS���

� The total number of decisions �branches� in a program

� McCabe�s cyclomatic complexity V�G� �McC���

� De�ned as V�G� � e � n � � where for a control �ow graph of a program G� e is its

number of edges� n is its number of nodes�

The term 	structural diversity
 refers to some metrics used to compare program versions� In

fact� they include both structural metrics and size metrics in the terminology of software metrics

community�

�

��� Fault Diversity

The purpose of fault diversity is to demonstrate the di�erences between the faults introduced

by the programming teams in an NVP process� For a certain set of programming teams and a

given interval of the development cycle� we record and compare the faults found to determine

how many kinds of faults and how many faults are detected for the set�

Def� fault diversity �Dfault� �
Number of distinct faults found

Total number of faults found
�

�fault

Nfault

�for an interval �T of the NVS development cycle�

The �fault and Nfault in the above de�nition are similar to the ideas of ��� ��� N�� and N�

in Halstead�s software science� For example� the ratio N���� represents the average number of

times operands are used� In a program where each operand is used only once� this ratio is ��

Similarly� in a group of NVS where all the faults found are di�erent� the fault diversity is also a

�� its maximum� For the special case where no single fault is found in the set� the fault diversity

is de�ned to be equal to ��

Di�erent criterion for deciding if two �or more� faults are distinct can be chosen based on

which level we would like to observe the faults� It is possible to measure the fault diversity at

the individual system function level of the speci�cation and at the application level of the NVS�

Furthermore� it might be interesting to observe the change of the fault diversity of the NVS as

the life cycle progresses� i�e�� �T increases�

��� Tough�Spot Diversity

In a large complex software project� the programmers often have di�culty with regard to certain

parts of the speci�cation� Also� it has long been agreed upon that human beings have certain

blind spots when building programs �Wei���� Egoless programming was advocated as a partial

solution to this problem�

A simple� though certainly not exhaustive� indication of the di�culties can be the percentage

obtained by dividing the number of faults found in the di�erent parts of the program by the

number of faults in the entire program� Moreover� the size of the various parts of the application

should be taken into account when calculating the total number of faults found� One part of the

application which requires a large size of code is likely to contain more faults than the one for

��

which a smaller size will be enough�

For NVS� a simple analysis based only on the percentage counts makes sense since we are

treating each part of the application as an abstract entity and are interested in the diversity

of the fault distributions among the di�erent teams� We are curious to see what will happen

when there are many teams working independently to build NVS using the same speci�cation� If

some amount of diversity of this phenomenon can be observed� it is certainly one more argument

for using NVP to tolerate software design faults� Therefore� we de�ne the 	tough spots
 as

representing the particular system functions in a speci�cation where a programming team has

more trouble in building their software according to the speci�cation�

There have been reports in the literature about the phenomenon of locality of faults in sections

of a program �Mye��� YSD���� What the locality implies is that the probability of the existence

of more faults in a section of a program is likely to be high for the section where noticeable

number of faults have already been found� It is interesting to investigate this phenomenon and

its implications in the context of NVS� Also� tough�spot diversity is a more hierarchical view

than fault diversity and can be observed as the life cycle progresses�

��� Failure Diversity

When we discuss the failures of a software unit� there is always a reference to a given set � of

input cases� Such is also the case when we de�ne failure diversity� which shows the diversity in

failure behaviors of a certain combination of versions� Due to diversity� failures in the compo�

nents of NVS do not necessarily lead to failures of the NVS�

Def� failure diversity �Dfailure� �
Number of distinct failures found

Total number of failures found
�

�failure

Nfailure
j�

�This de�nition applies with respect to the set � of input cases��

In the following discussion� we will simply use D� �� and N instead of Dfailure� �failure� and

Nfailure for the purpose of conciseness�

Def� � � extra number of identical references for a bad version to reach majority

e�g�� for three�version software �m � ��� � � �� for m � �� � � � in other words � � majority

� �� assuming m is odd� � � m��
�

�

��

Now let FNVS denote the probability of failure of the NVS system� It can be shown that

FNVS �
�� �D�

�
�

N

jrunsj
���

�Note� ��� happens when every occurrence of multiple failures is just enough to nullify the

functioning of the NVS system� i�e�� the number � �� ��

From the above equation� it could be seen that the probability of failure of the NVS system

is related to the failure diversity� the reliabilities of the individual versions� and the number of

versions employed�

We can further show that� if m is the number of versions employed in the NVS system and

is an odd number� then

�

m
� D � � ��

The above equation also applies to Dfault� the fault diversity�

Now let m � � � �� where m is de�ned as above� and if fi� � � i � m� represents the

probability of failure of the ith version� then we have the following relationship�

� � FNV S �

m
�

mX

i��

fi ���

An intuitive explanation for this phenomenon� in order to beat the NVS system�s capabilities

of fault tolerance� every failure must occur in over half the number of versions� This means

that when the individual probabilities of failures are summed up to determine the total system

probability of failure� we have actually overestimated by half the number of versions� i�e�� a factor

of approximately at most �
m
�

for the compensation� There is a smoothing e�ect involved in NVS

operation�

A still more accurate upper bound for FNVS can be found�

FNV S � min�
��D

�
�D� �

mX

i��

fi ���

Details on the proof of Equations ��� � ��� could be found in �LCA���

Finally� let R �risk� be the multiplication factor min���D
�

�D�� Then a curve can be drawn of

R vs� D �from �

m
to �� for an m�version system in Figure �

�

�
R

�D

� �
m
� �
m
�

� �

���
� �

���
�

�m��
�m

� �
m
�

�����

Figure � Relationship between Risk and Failure Diversity�

From the curve� it is clear that for diversity greater than m��
�m

� the multiplication factor� i�e��

the R value� will always be lower than the R value of a multiple�hardware�channel system running

the same software� which has a D value of �

m
� This leads to the following de�nition�

Def� An NVS system with D �failure diversity� greater than m��

�m
is called diversity�acceptable�

An NVS system with D not greater than m��
�m

is diversity�unacceptable�

Note that the de�nition of diversity�acceptable and diversity�unacceptable is only based on the

multiplication factor in Equation ���� i�e�� the min���D
�

�D� in FNVS � min���D
�

�D� �
Pm

i�� fi� It

would be interesting to take into account the individual failure probabilities as well as the failure

diversity of the NVS system�

Suppose that fmin � min�fi� i � �� � � � �m�� We want to consider the following two NVS

systems�

� NVS�� using m identical versions with probability of failure fmin�

� NVS�� using m di�erent versions with probabilities of failure fi� i � �� � � � �m �assume it

is diversity�acceptable��

Clearly� then

FNV S� �
�

m
�mfmin

FNV S� �
��D

�
�
Pm

i�� fi� in the worst case � ��D
m��
�

�mfavg� where favg is the average probability

of failure�

��

Now� for FNV S� � FNV S�

� ��D
m��
�

�mfavg �
�

m
�mfmin � ��D � m��

�m

fmin

favg

� D � � � m��
�m

�� where fmin � �favg� � � � � �

For the special case when � � � � D � �� m��

�m
� m��

�m
�

Let us consider the curve of R vs� D in Figure �� with the the added broken line representing

the diversity threshold when � equals �� i�e�� when every version has the same probability of

failure�

�
R

�D

� �
m
� �
m
�

� �

���
� �

���
�

�m��
�m

� �
m
�

�����

�

Diversity threshold
for � � ��

Figure �� Relationship between Risk and Failure Diversity� �Revised�

It should be clear that for � equals �� m��

�m
is the diversity threshold beyond which the NVS

system consisting of m di�erent versions of software pays o�� but as � decreases� the threshold

moves to the right� In particular� when � equals �� the NVS system of m di�erent software

needs a diversity of � to be competitive� Putting aside the fact that NVS enables us to detect

disagreement between versions during the operation� what this implies is that in con�guring an

NVS system� we should make the best e�ort to choose the versions with the maximum failure

diversity and with as low and as compatible failure probabilities as possible�

��

� Software Diversity Measurements

��� Results of Fault Diversity

During the phases of the Six�Language Project� two pairs of common faults were found� one in

the unit test phase and the other in the operation test phase� A total of �� faults have been

found so far� making the fault diversity of the six programs equal to ������

The two pairs of identical faults involved four teams� It is interesting to note that both the

supposed causes of the common faults were due to the speci�cation� Unfortunately� since only

two kinds of identical faults were found� we think that the information is not su�cient for further

analysis of the relationships between fault diversity and other metrics of interest�

��� Results of Structural Diversity

By tailoring some metrics analyzers �CN���� special tools were written for semi�automatically

measuring the basic program metrics for the six di�erent programming languages used in the

Project� This has the desirable e�ect that the same counting rules are applied consistently across

the six programs�

To obtain the metrics at the application level� the metrics of each program�s source �les are

added to get the application metrics� The application metrics together with the total number of

faults found �dtotal� for each program are presented in Table �

Notice that except for the Prolog team� the �� counts among the other �ve programs are quite

close to each other� Such is not the case for �� counts� Figure � is a plot of the total number of

faults found after the end of all phases �dtotal� against the number of unique operands ���� for

each program� The linear regression line and the correlation coe�cient �r� are also shown�

It is quite interesting to observe that even for a few data points� there is still a strong linear

relationship between these two metrics� If further demonstrated by other research� this aspect

of structural diversity can help us identify fault�prone programs in an NVS life cycle� It could

also serve as a predictor for the quality of the acquired software versions�

��

Metric n Team Ada C Modula Pascal Prolog T Max�Min

DSL �� ���� ��� ��� � ���� ���

NCSL ��� ��� ���� �� ���� ��� ����

�� � �� � �� ��� � ����

�� ��� ��� ��� ��� ��� ��� ���

N� ��� � �� �� ��� ��� ����

N� ��� ���� ���� ��� ���� ��� ����

DE ��� �� �� �� �� �� ����

V�G� ��� ��� �� ��� ��� ��� ����

dtotal � �� � � � � ���

Table � Comparisons of Structural Metrics at the Application Level�

��

The relationships between other metrics and dtotal� including DSL� NCSL� � ��� � ���� DE�

and V�G�� are examined in Figure � to Figure ��

r � ���� and
 y � ����� � ����x

dtotal�

total number of

faults �defects�

�

��

�

��

��

�

�

��

��� ������� ��� ��� ��� ���������������

�
�

�

�

�

�

��� number of unique operands

Figure �� dtotal vs� �� at the Application Level�

r � ����� and
 y � ���� � �������x

dtotal�

total number of

faults �defects�

�

��

�

��

��

�

�

��

���� ������� ���� ��� ��

�
�

�

�

�

�

DSL� deliverable source lines

Figure �� dtotal vs� DSL at the Application Level�

��

r � ����� and
 y � ����� � ���x

dtotal�

total number of

faults �defects�

�

��

�

��

��

�

�

��

��� ������� ���� ���� ��� ���� ���� ����

�
�

�

�

�

�

NCSL� non�commentary source lines
�excluding blank lines�

Figure �� dtotal vs� NCSL at the Application Level�

r � ���� and
 y � ������ � ����x

dtotal�

total number of

faults �defects�

�

��

�

��

��

�

�

��

��� ������� ���� ��� ���� ����

�
�

�

�

�

�

�� size of vocabulary

Figure �� dtotal vs� � at the Application Level�

��

r � ����� and
 y � ����� � ����x

dtotal�

total number of

faults �defects�

�

��

�

��

��

�

�

��

�� ����� �� �� ��� ��� �� ��� ���

�
�

�

�

�

�

DE� decision count

Figure �� dtotal vs� DE at the Application Level�

r � ����� and
 y � ����� � ���x

dtotal�

total number of

faults �defects�

�

��

�

��

��

�

�

��

��� ������ �� ��� ��� ��� ��� ��� ���

�
�

�

�

�

�

V �G�� McCabe�s Complexity Measure

Figure �� dtotal vs� V �G� at the Application Level�

It should be clear that both � and V�G� have strong correlations with dtotal �The hypothesis

that � or V�G� is associated with dtotal is accepted with a con�dence level greater than ������

��

NCSL is the third� while DE and DSL perform poorly� We also de�ne a composite metric �CDS���

C based on �� and V�G�� C � ��������� V�G�� by varying the � between � and �� to see if this

weighted metric can perform even better� Figure �� shows a plot of the correlation coe�cients

between C and dtotal when � is varied�

r

correlation

coe�cient

���

���

����

����

����

���

���

����

����

����

� ��� ��� ��� ���

����� ������
�

variation of �

Figure ��� Correlation Coe�cient vs� Variation of ��

It can be seen that the correlation coe�cient of C reaches its maximum when � is around

���� with an excellent r value� This combination which takes into account both the �� size count

and V�G� logic structure complexity might be a better predictor for dtotal for similar kinds of

applications� regardless of the programming languages being used�

By going into the the source �le level for each program� we can obtain similar pairs of dtotal

vs� the metrics of interest for every source �le� In particular� we tried ��� �� V�G�� and NCSL�

Table � summarizes� for each metric category and for each program� the correlation coe�cients

�r� with those of the application level in the last column for comparisons� The results show

that the metrics measured at the source �le level are not as impressive as those obtained at the

application level� This implies the traditional approach of using source��le�level metrics �due to

the lack of multiple occurrences of exact applications� to establish a predictive model for faulty

�

density could be misleading� and as a result� inconclusive�

r Ada C Modula Pascal Prolog T Max�Min Appl�

�� ����� ����� ����� ����� ����� ����� ��� ����

� ����� ���� ����� ����� ����� ���� ���� ����

V�G� ����� ����� ����� ���� ����� ���� ��� �����

NCSL ��� ����� ����� ����� ����� ����� ��� �����

Max�r� �� � �� �� V�G� NCSL ��

Table �� Summary of r for Each Metric Category at the Source File Level�

A complexity metric describes what it is� not what it has to be� An interesting implication

of the correlations between the number of faults and structural metrics of either source �les or

application programs is that the structural diversity of the di�erent levels of redundancies present

in the NVS can be taken advantage of in the life cycle to concentrate our testing resources and

therefore to increase the reliabilities of the corresponding parts�

In case the diversity impact of di�erent programming languages is not clearly seen in the

structure diversity measure� the e�ect of programming language could be better revealed in the

following two software diversity measures�

��� Results of Tough�Spot Diversity

Let us �rst examine the total faults found after all the phases� Figure �� shows six histograms

which plot the percentage of faults against all the system functions �from Main to Interface� for

each team�

The Ada and Modula teams� histograms are �at because in each case� there is only one fault

found in the corresponding system function� It is not clear whether to call them the tough spots

or not�

�

�

��

�
��
��
�
�
��
��

Ada

�

��

�
��
��
�
�
��
��

C

�

��

�
��
��
�
�
��
��

Modula

�

��

�
��
��
�
�
��
��

Pascal

�

��

�
��
��
�
�
��
��

Prolog

�

��

�
��
��
�
�
��
��

T

Main ! Interface

Figure ��� Histograms of the Percentage Distribution of Faults among the System Functions�

System Function Ada C Modula Pascal Prolog T

Main � � �

BACF � �

RACF

GSCF � � � �

Mode Logic � � �

AH Outer

GS Outer

Flare Outer �

Inner Loop � � � �

Command Monitor

Display � �

Table �� Tough Spot Distributions of Each Team�

Table � summarizes the top two tough spots for each team� Whenever there is a tie for the

top two all the ties are listed� The interface is not considered here� Please note that the existence

of the tough spot for a team is marked by a bullet ��� in the corresponding system function� For

the cases where we are not sure of the existence of a tough spot� a circle ��� is presented�

It should be clear that tough�spot diversity also exists among the programming teams� If

we summarize the top two tough spots for each team and for all six teams together before the

operation test� the same results as in Table � are obtained �except for the Modula team� and the

top two tough spots for all six teams occur in the Main� GSCF� and Inner Loop system functions�

It is interesting to note that the identical fault committed by two teams �T and Prolog� and the

faults found in the C team by �ight simulations during the operation test all resided in Inner

Loop� which is the most common tough spot for this particular project� We postulate that the

distributions of tough spots for each team and for all the teams together can guide us in allocating

appropriate resources in the testing process and in the con�guration of NVS system�

It is postulated that there are at least three reasons which contribute to the tough�spot

diversity among the programming teams�

�

� di�erences of their di�culties in grasping the concept of the application at the speci�cation

level�

� di�erences in their designs at the system function level �may rush forward with their �rst

idea without giving further thoughts to other options �Ben�����

� di�erences in their implementations at the �le organization level �may choose di�erent

mappings between a system function and the source �les��

An intuitive hypothesis that can be made about the e�ect of tough�spot diversity on the

failure diversity is that a larger failure diversity might be expected using the program versions

which� together� have higher tough�spot diversity� The reason is that if two software versions

have faults left after all the testing and during the NVS operation� but the faults reside in the

di�erent system functions of the application� the chances of these two software versions both

failing on the same input case with identical results should be very rare� Even if the faults reside

in the same system function� di�erent faults are more likely to cause the system to fail in a

di�erent way�

��� Results of Failure Diversity

Failure diversity metric is an intuitive measure of the degree by which di�erent combinations of

software versions may fail di�erently� After the acceptance test� many simulations matching the

actual �ight pro�le were executed during the operation test� A failure is declared if any of the

intermediate or output variables deviate from those of the gold version beyond the threshold� No

failures were found for the Ada� Modula� and Pascal versions� However� failures were identi�ed

for the other three versions during simulation� It was found that the Prolog and T versions had

an identical fault which caused the two programs to fail identically� not counting the numerical

di�erences introduced by the programming languages�

Identical failure is de�ned as two �or more� versions failing at the same time in the airplane

�ight path for the same input case� This is a loose criterion since the ability of NVS to mask

and recover from the e�ects caused by faults is neglected�

In the Appendix we have established a criterion for deciding if the failure diversity for a

certain NVS con�guration is acceptable or not� Being acceptable means that the probability

�

of failure of the NVS will be lower than the average probability of failure of the N versions of

software�

Among the C��� �� � � possible ��version con�gurations� ten have either no failures or D

�failure diversity� � �� Among the other ten con�gurations� there are three equivalence classes

with di�erent D� as shown in Table � using the ���� �ight simulations performed so far after

the acceptance test �with abbreviations A for Ada� C for C� M for Modula�� Pa for Pascal� Pr

for Prolog� T for T� and N�C� for Number of Con�gurations�� Typically� each �ight simulation

takes more than �� seconds of simulation time� with one execution through the �ight control

laws every ���� second� Thus� each successful �ight requires more than ���� executions�

Equivalence Class D N�C�

Pr � T � �A� M� or Pa� ��� �

C � �Pr or T� � �A� M� or Pa� ���� �

C � Pr � T ���� �

Table �� ��version Con�gurations with Prob� of Failure � ��

There are C��� �� � � possible ��version con�gurations in Table ��

Con�guration D

A � C � M � Pa � Pr ����

A � C � M � Pa � T ����

� A � C � M � Pr � T ����

� A � C � Pa � Pr � T ����

A � M � Pa � Pr � T ���

� C � M � Pa � Pr � T ����

Table �� ��version Con�gurations�

Of the possible twenty ��version con�gurations� there are four con�gurations with unaccept�

able diversity and probabilities of failure greater than zero� Of the six ��version con�gurations�

three con�gurations �marked with a 	"
� have a positive probability of failure� due to thirty iden�

�

tical failures found so far for the C� Prolog� and T programs� Each of these three con�gurations

has acceptable diversity� with diversity equal to �����

It is interesting to point out that among the thirty identical failures of the C� Prolog� and T

programs� twenty�nine occur before � seconds of �ight time have elapsed� One identical failure

occurs at ����� seconds� This might suggest that for this kind of history�sensitive application

which requires mainly real number computations� it is more likely that di�erent faults will cause

the versions to fail at the same time early in the simulation rather than late� Moreover� although

there are thirty cases of C� T� and Prolog failing at the same time� we have not found any cases

where they fail on identically the same combination of variables�

� Conclusions

Design diversity and software diversity are multi�dimensional concepts� Our goals in the investi�

gations of these concepts have been to study them in the Six�Language NVS products resulting

from a well�de�ned NVP software process �AC��� Lyu��� Avi���� We �rst propose a design di�

versity metric with qualitative assessments� Thereafter� we concentrate on the de�nitions and

measurements for quantities of software diversity which are the result of design diversity� Our

two major concerns� besides the assessment of the NVP process and its resulting product� are

the intra�relationships of software diversity and the relationships between software diversity and

other software attributes which can facilitate the building of NVS and increase the reliability of

the �nal product�

Fault diversity of the six programs ������� is close to its maximum� No instance where a

common fault occurred in more than two versions was found� While the structural diversity of

the programs does not bear signi�cant relationships with the other software diversity metrics�

strong correlations between some structural metrics ���� V �G�� and C � � � �� � �� � ��V �G��

and the number of defects found in the software at the application level have been observed� As

explained before� both the failure diversity and the reliabilities of the component versions can

a�ect the reliability of NVS� What structural diversity can provide is to indicate the potential

fault ridden software component to us so that appropriate resources can be given in the NVS

life cycle to improve the reliabilities of the component versions� Incidentally� the three versions

which failed in the �ight simulations after the acceptance test have the highest values of the

�

three structural metrics ��� V �G�� and C � � � �� � ��� ��V �G��

A fair degree of tough�spot diversity also exists among the six programs� Several reasons for

tough�spot diversity were suggested� The faults which caused the three versions to fail in the �ight

simulations all resided in the Inner Loop system function� the most common tough spot among

the six programs� While structural diversity has the potential to help improve the reliability of

the application� tough�spot diversity might indicate possible spots �system functions� inside the

application where improvements can be very bene�cial�

The interplay between tough�spot �in�diversity and failure diversity was observed during the

�ight simulations where the tough�spot �in�diversity contributed to the failures of three versions

at the same simulation time� From the data� it was suggested that for this application� the

coincidental failures tend to happen more often in the early phase� The implication for the

recovery mechanisms is that it might be more e�ective to spend resources in recovery in the

early phase since coincidental failures caused by di�erent faults may be the triggers�

Besides the reliabilities of the component versions� the failure diversity of the NVS is the �nal

determining factor of the dependability of NVS� Just as in the traditional software engineering

activities where we observe the growth of software reliabilities through fault removal� failure

diversity of NVS will also change through time� though not necessarily growing� Study needs to

be done on this aspect of diversity change through time� and its impact on the NVS reliability

growth�

References

�ABHM��� T� Anderson� P� A� Barrett� D� N� Halliwell� and M� R� Moulding� Software fault tol�

erance� An evolution� IEEE Transactions on Software Engineering� SE�����������

����� December �����

�AC��� A� Avizienis and L� Chen� On the implementation of n�version programming for

software fault�tolerance during program execution� In Proceedings of COMPSAC����

pages �������� �����

�AK��� A� Avizienis and J� P� J� Kelly� Fault tolerance by design diversity� Concepts and

experiments� IEEE Computer Magazine� ������������ August �����

�

�AL��� A� Avizienis and J��C� Laprie� Dependable computing� From concepts to design

diversity� Proceedings of the IEEE� ������������� May �����

�ALS��� A� Avizienis� M� R� Lyu� and W� Schutz� In search of e�ective diversity� A six�

language study of fault�tolerant �ight control software� In Proceedings �	th Annual

International Symposium on Fault�Toelrant Computing� pages ���� Tokyo� Japan�

June �����

�Avi�� A� Avizienis� Design diversity ! the challenge for the eighties� In Digest of ��th

Annual International Symposium on Fault�Tolerant Computing� pages ������ June

����

�Avi��� A� Avizienis� The n�version approach to fault�tolerant software� IEEE Transactions

on Software Engineering� SE����������������� December �����

�Avi��� A� Avizienis� Software fault tolerance� In G� X� Ritter� editor� Information Processing

	�� pages �������� Elsevier Science Publishers� B� V� �North Holland�� �����

�BEB���� P� G� Bishop� D� G� Esp� M� Barnes� P� Humphreys� and G� Dahll� Pods � a project of

diverse software� IEEE Transactions on Software Engineering� SE������ September

�����

�Ben��� J� Bentley� Programming Pearls� Addison�Wesley Publishing Company� �����

�CA��� L� Chen and A� Avizienis� N�version programming� A fault tolerance approach to

reliabibily of software operation� In Digest of 	th Annual International Symposium

on Fault�Tolerant Computing� pages ���� Toulouse� France� June �����

�CDS��� S� D� Conte� H� E� Dunsmore� and V� Y� Shen� Software Engineering Metrics and

Models� The Benjamin� Cummings Publishing Company� Inc�� �����

�CFS��� K� Christensen� G� P� Fitsos� and C� P� Smith� A perspective on software science�

IBM System Journal� ������������ �����

�CN��� C� R� Cook and M� Nanja� Prototype tool for managing software testing process�

Technical report� Department of Computer Science� Oregon State University� Cor�

vallis� Oregon ������ �����

�

�DL��� J� S� Davis and R� J� LeBlanc� A study of the applicability of complexity measures�

IEEE Transactions on Software Engineering� SE���������������� September �����

�Dye��� M� Dyer� Certifying the reliabibily of software� In Proceedings Annual National Joint

Conference on Software Quality and Reliabibily� Arlington� Virginia� March �����

�FPB��� Jr� F� P� Brooks� No silver bullet ! essence and accidents of software engineering�

IEEE Computer Magazine� ����������� April �����

�GV��� L� Gmeiner and U� Voges� Software diversity in reactor protection systems� An

experiment� In Proceedings IFAC Workshop SAFECOMP
��� pages ������ May

�����

�Hal��� M� H� Halstead� Elements of Software Science� Elsevier North Holland Inc�� New

York� �����

�KA��� J� P� J� Kelly and A� Avizienis� A speci�cation oriented multi�version software exper�

iment� In Digest of ��th Annual International Symposium on Fault�Tolerant Com�

puting� pages ������ June �����

�LCA�� M� R� Lyu� J� H� Chen� and A� Avizienis� Software diversity metrics and measure�

ments� In Proceedings �th Annual International Computer Software � Applications

Conference� pages ������ Chicago� Illinois� September ����

�Lyu��� M� R� Lyu� A Design Paradigm for Multi�Version Software� PhD thesis� UCLA

Computer Science Department� Los Angeles� May �����

�McC��� T� J� McCabe� A complexity measure� IEEE Transactions on Software Engineering�

SE������������ December �����

�MIO��� J� D� Musa� A� Iannino� and K� Okumoto� Software Reliability� Measurement� Pre�

diction� Application� McGraw�Hill Book Company� �����

�Mye��� G� J� Myers� The Art of Software Testing� John Wiley # Sons� �����

�STUO��� T� Sunohara� A� Takano� K� Uehara� and T� Ohkawa� Program complexity measure

for software development management� In Proc� �th International Conference on

Software Engineering� pages �������� San Diego� �����

�

�Tra��� P� Traverse� Airbus and atr system architecture and speci�cation� In U� Voges�

editor� Software Diversity in Computerized Control Systems� pages ������� Springer�

Verlag�Wien� �����

�Wei��� G� M� Weinberg� The Psychology of Computer Progarmming� Van Nostrand Rein�

hold� �����

�YSD��� T� J� Yu� V� Y� Shen� and H� E� Dunsmore� An analysis of several software defect

models� IEEE Transactions on Software Engineering� SE��������������� Septem�

ber �����

��

