
A novel shrinkage technique based on
the normal inverse Gaussian density
model

Li Shang1,2, Kang Li3, Tat-Ming Lok4 and
Michael R. Lyu5

1Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box
1130, Hefei, Anhui 230031, China
2Automation Department, University of Science and Technology of China, Hefei,
Anhui 230026
3School of Electrical & Electronic Engineering Queen’s University Belfast
4Information Engineering Department, The Chinese University of Hong Kong, Shatin,
Hong Kong
5Computer Science & Engineering Department, The Chinese University of Hong
Kong, Shatin, Hong Kong

This paper proposes a novel image denoising technique based on the normal inverse
Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC)
algorithm proposed by us. This algorithm can converge to feature basis vectors, which
behave in the locality and orientation in spatial and frequency domain. Here, we
demonstrate that the NIG density provides a very good fitness to the non-negative sparse
data. In the denoising process, by exploiting a NIG-based maximum a posteriori estimator
(MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced
successfully. This shrinkage technique, also referred to as the NNSC shrinkage technique,
is self-adaptive to the statistical properties of image data. This denoising method is
evaluated by values of the normalized signal to noise rate (SNR). Experimental results
show that the NNSC shrinkage approach is indeed efficient and effective in denoising.
Otherwise, we also compare the effectiveness of the NNSC shrinkage method with
methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener
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filter. The simulation results show that our method outperforms the three kinds of
denoising approaches mentioned above.

Key words: feature basis function; image denoising; non-negative sparse coding; normal
inverse Gaussian; shrinkage.

1. Introduction

Removing noise from data can be considered a process of producing the optimal
estimates of unknown signals from the available noise data. In general, the problem of
how to select a suitable denoising algorithm is dependent on a specific application.
Spatial filters based on the principle of filtering have long been used as the traditional
means of removing noise from images and signals (Weeks, 1996). These filters can
usually smooth the data and reduce the noise, but also blur the data to some extent
(Bovik, 2000). More recently, more and more data-adaptive image denoising
techniques have been explored, such as those based on principal components analysis
(PCA) (Akkarakaran and Vaidyanathan, 1999; Mika et al ., 1999; Oja, 1992) independent
component analysis (ICA) (Hyvärinen, 1998, 1999a,b; Hyvärinen and Oja, 2001) and
sparse coding (SC) shrinkage (Hyvärinen, 1997), and so on. All of these methods can
denoise an image successfully by using different skills. The SC algorithm is
appropriate to multi-dimension mixed data. Therefore, this technique has been used
widely in the image denoising field, especially by a ‘shrinkage’ (Hyvärinen, 1997)
technique. However, the SC technique is unrealistic as a model of V1 simple-cell
behaviour (Hoyer, 2003). Therefore, Hoyer introduced the concept of non-negative
sparse coding (NNSC) (Hoyer, 2002, 2003), and it has been used to model successfully
receptive fields of V1 in the mammalian primary visual cortex. Thus the non-negative
property can caused different representations and applications, such as image
reconstruction, data compression, image denoising, pattern recognition, and so on.
In fact, the basic principle of SC shrinkage is very simple. Small amplitude values,
which are thought to originate from zero-valued components influenced by noise, are
suppressed, while large values are preserved. Generally speaking, it is essential for
this technique to perform a parameterized probability density function (pdf) estimate
for sparse components in the transform domain. It is well known that the Laplacian
density is a classical sparse density with one parameter (Hyvärinen, 1997), but, it
cannot be used to model different degrees of kurtosis for a given variance. In addition,
the other sparse models proposed by Hyvärinen (1997), referred to as mildly sparse
and strongly sparse models, are also two-parameter, zero mean and symmetric
models. The parameters are related to the second-order moment, the expected
absolute value and the peak value of the density. However, a proper statistical model
should be flexible enough to provide a good fitness to the data by modelling various
degrees of sparseness, and taking into account a possible skewness. In addition, it
should be possible to estimate the model parameters readily from the noisy
observation. So, in this paper, we exploit the recent normal inverse Gaussian (NIG)
density, which is four-parameter model (Bandorff-Nielsen, 1997; Hanssen and Øigård,
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2001), to model the non-negative sparse components. The NIG density has the
flexibility that makes it capable of satisfying the above requirements. In addition, we
can use very fast cumulant-based estimators to estimate the four parameters of the
density (Bandorff-Nielsen, 1997; Hanssen and Øigård, 2001). In the symmetric case,
this method can model data ranging from zero normalized kurtosis, ie, Gaussian
distribution, to any positive valued kurtosis. Referring to the model of NNSC
introduced by Hoyer (2002, 2003), we propose an extended NNSC algorithm based
on the model of NIG density. In particular, using a maximum a posteriori (MAP)
estimator (ie, a shrinkage operator), we can successfully denoise a noisy image, which
is sparsely coded and contaminated by additive Gaussian noise.

2. The normal inverse Gaussian density (NIG) model

The NIG density is a variance-mean mixture of a Gaussian density with an inverse
Gaussian. A stochastic variable u can be said to be normal inverse Gaussian if it has a
probability density of the following form (Bandorff-Nielsen, 1997; Hanssen and
Øigård, 2001):

p(u)�
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p
�
exp[m(u)]

q(u)
K1[aq(u)] (1)

where K1(�) is the modified Bessel function of the second kind with index 1 and subject
to the constrain of jv 0 �j; and is defined as:
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subject to the constrains: 05 jbjB a; d�/0, and �/�B/mB/�.
According to the definition in Equation (1), the shape of the NIG density is specified

by the four-parameter vector [a ,b ,m ,d]T. The a-parameter controls the steepness or
pointiness of the density. A larger value of the parameter a implies lighter tails. The
rightmost panel in Figure 1 shows the dependency on a for b�/m�/0 and d�/1.
Distinctly, it is easy to see that the tails become heavier and heavier as the value of a
decreases greatly. The b-parameter controls the skewness. For bB/0, the density is
skewed to the left, for b�/0, the density is skewed to the right, while b�/0 implies a
symmetric density (see the leftmost panel in Figure 1) around m , which is a centrality
parameter. The rightmost panel in Figure 1 also shows the dependency on the
parameter b. It can be noted that the skewness increases as b increases. Lastly, the
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d-parameter is a scale-like parameter in the sense that the rescaled parameters a 0 ad;
and b 0 bd are invariant under location-scale changes of m .

For the four-parameter NIG, Hanssen and Øigård derived a cumulant-based
estimator (Bandorff-Nielsen, 1997; Hanssen and Øigård, 2001). By estimating the first
four lowest cumulants k(1), k(2), k(3) and k(4) from the sample data, and using the
first cumulants to estimate the skewness r3�k(3)=[k(2)]

3=2 and normalized kurtosis
/r4�k(4)=[k(2)]2; we can obtain the auxiliary variables:

z�3
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Thereafter, the parameter estimators can easily be derived as follows (Bandorff-
Nielsen, 1997; Hanssen and Øigård, 2001):
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However, the above estimates require a fairly large set of accurate data samples
that can produce statistically consistent estimators (Bandorff-Nielsen, 1997; Hanssen
and Øigård, 2001). Although these parameters can be easily estimated from the
noise-free data set, if the noise variance s2 is known, then by subtracting s2 from the
estimate of k(2), the parameters can also be easily estimated from noisy observations.
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Figure 1 NIG density (logarithmic scale) for different values of a
and b . Left: a varies, and b�/m�/0, d�/1. Right: b varies, and a ,
m�/0, d�/1
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This is due to the fact that zero mean Gaussian noise only contributes to the second-
order cumulant and is independent of the input signals.

3. The extended NNSC model and algorithm

3.1 Modelling NNSC of natural images

The basic idea in standard sparse coding is very simple. It can be described as follows:
denote (X�/x1, x2, . . . xn)T as observed n-dimensional random vectors and (S�/

s1, s2, . . . sm)T as hidden m-dimensional components (here only considering the case
of m 5/n). Then any natural image can be modelled as a linear superposition of
some features ai :

X(x; y)�
Xm

i

ai(x; y)si�o (10)

where (x , y) is the pixel co-ordinate in an image, X(x , y) denotes the input image data,
ai (the ith column of A) are called basis vectors, si (the i th row of S) are mutually
independent sparse variables and o is Gaussian noise. The image model of NNSC is
the same as that shown in Equation (10). The significant point is here that the input
matrix X , basis vectors A and latent sparse coefficients S are non-negative in the
NNSC model. The fact that each unit si is either positively or negatively active means
that every feature contributes to representing the stimuli of opposing polarity. This
poses a contrast to the behaviour of simple-cells in the receptive fields in the
mammalian primary visual cortex in the brain, also known as V1. Furthermore, V1
receives the visual data from the lateral geniculate nucleus (LGN) in the form of a
separated ON-channel and OFF-channel, and each channel’s input data are positive
(Hoyer, 2003). Therefore, the image model of sparse coding is not suitable to model V1
simple-cell behaviour. In order to see how V1 recodes its input data, a model suitable
for NNSC has been studied recently.

3.2 The cost function and updating rules

On the basis of the Hoyer’s NNSC model (Hoyer, 2002), we propose an extended
NNSC model. Here, we also use the minimum reconstruction error and the sparseness
like Hoyer, but the prior distribution of the receptive field and the sparse shape of
hidden components are also considered. Then, the cost function can be constructed as:
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subject to the constraints: X(x; y)]0); l�/0, h�/0, �/i : ai ]/0, si ]/0, and kaik�1: Where
s2

i �hs2
i i; X(x , y) denotes an image, ai and si denotes respectively the i th column of

A and the i th row of S , l is the trade-off between sparseness and accurate
reconstruction, and h has to do with the variance of the prior distribution of ai .
Here, the sparse measure function/f (�) is chosen as the form of the NIG density, as
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shown in Equation (1) (see Section 2). According to the estimations of the four-
parameter vector [a , b , m , d]T, the function f (�) can be selected as definite function.

In terms of Equation (11), we can obtain the derivatives of ȧi and ṡi; shown
as follows:
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where si�
ffiffiffiffiffiffiffiffi
hs2

i i
p

and e�X�AS is the residual error between the original image and
the reconstructed image of this model. In experiment, we exploited a conjugate
gradient algorithm to update basis vectors A and Equation (12) to update S .

4. The denoising algorithm for NNSC shrinkage

4.1 MAP estimator and NIG shrinkage function

Now consider a single noisy component denoted by y, which can be written as:

y�s�v (14)

where v�N(0;s2); s is the original non-Gaussian random variable, and v is the
Gaussian noise of zero mean and variance s2. We want to estimate the original s given
y by ŝ�g(y): Denoting by p(s) the density of s , and by f (ŝ)��lnp(ŝ) the negative
log-density of ŝ: For an unimodal, differentiable posteriori density, ŝ can be obtained
by solving the following equation:

ŝ � y

s2
� f ?(ŝ)�0 (15)

where f (ŝ) is assumed to be convex and differentiable, and f ?(ŝ)�d(f (ŝ))=ds is the score
function of ŝ: Then, the following first-order approximation of the MAP estimator
(with respect to noise level) is always possible:

ŝ��y�s2f ?(y) (16)

where the problem with this estimator in Equation (16) is that the sign of ŝ� is different
from the sign of y even for symmetrical zero-mean densities. Such counterintuitive
estimates are possible because f ?(�) is often discontinuous or even singular at 0, which
implies that the first-order approximation is quite inaccurate near 0. To alleviate this
problem of ‘overshrinkage’, the following approximation to the MAP estimator of a
non-Gaussian random variable corrupted by Gaussian noise may be applied:

ŝ�g(y)�sign(y)max(0; jyj�s2jf ?(y)j) (17)
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According to the NIG density model (see Equation 1), the score function of the NIG
density is found to be the following formula:

f ?NIG(u)�
a(u � m)

q(u)

�
K0[aq(u)]

K1[aq(u)]
�

2

aq(u)

�
�b (18)

where K0(�) is the Bessel function of the first kind with index 1, and it is clear to see
that the form of jf ?NIG(u)j depends on the four-parameter vector [a , b , m , d]Testimated
by the sample data. In fact, the function in Equation (17) is a shrinkage function that
reduces the absolute value of its argument by the score function f ?(u):

4.2 NNSC shrinkage rules based on the NIG density model

The model of NNSC has the same transformation equation as linear sparse coding
(SC), ie, S�/WX . Here, X and S have the same definition mentioned in subsection 3.1,
ie, respectively denoting the input data matrix and sparse components. and W is the
weight matrix with the size of m�n: The distinct difference between NNSC and SC is
that X , S and W are all non-negative in NNSC, but they are all signed in SC. Each non-
negative sparse independent component is input to the cumulant-based NIG
parameter estimator, which determines a very good fitness of the NIG density of
the noise-free components, and we can calculate the corresponding shrinkage
function. Here, the NNSC shrinkage algorithm is briefly summarized as follows:

1) Using a noise-free set of data Z that has the same statistical properties as the
n -dimensional input data X̃; estimate the non-negative feature basis vectors A1 by our
extended NNSC algorithm. In terms of A1, compute the basis vectors difference of the
ON-channel minus the OFF-channel, denoted by A . Thus, the NNSC transformation
matrix W can be found, which is the inverse or pseudoinverse of A , and it should be
orthogonalized in practical.

2) For every i�/1, 2, . . ., m , estimate a NIG density model for the non-negative sparse
components si�wiZ; where wi is the i th row of W. Determine the four-parameter
vector [a;b; d;m]T in terms of Equations (6)�/(9) and find the corresponding NIG
shrinkage function gi according to Equation (17).

3) Observing a noisy version X̃; which has been beforehand centred and normalized in
order to make X̃ have zero-mean and unit variance, compute the projections on the
sparsifying basis by the transformation of Y�WX̃:

4) Appling the shrinkage operator gi to every component yi of Y, to obtain ŝi�gi(yi);
therefore, Ŝ�(ŝ1; ŝ2; . . . ; ŝm):

5) Do the inverse transformation to obtain estimates X̂ of the noise-free data X;
ie, X̂�W�1Ŝ�WTŜ:

5. Experimental results

5.1 Applied to natural image data

All test images used in our experiment can be available on the Internet http://
www.cis.hut.fi/projects/ica/data/images. First, selecting randomly 10 noise-free
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natural images with 256�/512 pixels, we sampled patches of 8�/8 pixels 10000 times
from each original image, and converted every patch into one column. Thus, the input
data set X with the size of 64�/100 000 is acquired. Considering the non-negativity, we
separate X into the ON-channel and OFF-channel, denoted respectively by Y and Z .
So, the non-negative matrix I�/(Y; Z) with the size of 2�/64�/100 000 is obtained.
Then, using the updating rules of A and S in turn, we minimized the objective
function given in Equation (11).

5.2 Estimating the NIG density model and shrinkage function

Note that the NIG density is indeed suitable for the super-Gaussian data. For the
purpose of illustrating how close the NIG density models the NNSC transformed
data for the ‘grasshopper’ image, the first non-negative sparse vector s1j (/j�1; 2; . . . ;T;
T is the sample number of images patches) was used. The estimated kurtosis of this
sparse vector was r4�17:11; the estimated skewness was r3�0:165; and the estimated
four parameters of the NIG density modelling the underlying probability density
function of s1j were found to be â�2:17; b̂�0:05; d̂�0:081 and m̂�0:022:
Furthermore, the NIG density model of s1j calculated according to Equation (1) was:

p(s)�0:0476
exp(F1 � F2)

F3
(19)

where F1, F2 and F3 are respectively calculated as: F1�0:1757�0:05(s�0:022);
/F2�2:17[(s�0:022)2�0:0066]1=2 and F3� [(s�0:022)2�0:0066]3=4: The resulting NIG
density of the shrinked sparse components of s1j was shown in the left of Figure 2 in a
log-plot (solid line). It has a negligible skewness and is centred close to the origin. For
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Figure 2 Results of denoising noisy sparse components of s1j

by the NIG-based NNSC shrinkage function. Left: NIG density
corresponding to the given sparse vector s1j . Dashed: the
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Right: the in-out property of the shrinkage function. Solid: NIG
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comparison, the NIG density plots of noisy s1j (the noisy level added is 0.5) and the
noise-free s1j were also shown in Figure 2. It can be readily seen that the NIG density of
the shrinked s1j approaches highly to that of the noise-free s1j: The noise has been
reduced effectively, and the shrinked components are concentrated around zero to a
much higher degree, compared with the noisy components. The shrinkage result also
showed indirectly that the estimates X̂ of the given image are very close to the original
image data X .

Based on the NIG pdf calculated in Equation (19), the shrinkage function for
the noisy sparse components of s1j can be calculated. It was shown in the right panel
in Figure 2 as the solid non-linearity. For comparison, we assumed that the classical
Laplacian density has modelled the given sparse data. This shrinkage function is
given by

g(s)�sign(s) max(0; jsj�
ffiffiffi
2

p
s2

d
) (20)

where d is the standard deviation of the density model. In this case, the two shrinkage
functions have almost identical thresholds, but the large components are shrinked less
by the NIG model than by the Laplacian model. The reason for this is that the
estimated NIG density has heavier tails than the estimated Laplacian density.

5.3 Denoising results

Here, the quality of denoised images is evaluated by the values of normalized SNR,
which is defined as follows (Grgić et al ., 2004):

SNRn�10 log 10

�XN

i�1

XM

j�1

(Xij � X̄ij)
2

XN

i�1

XM

j�1

(Xij � X̂ij)
2

�
(21)

where M and N denote the size of the image data, X denotes the input image data set,
X̄ denotes the mean value of X and X̂denotes the denoised image data. The calculated

Figure 3 Denoising experiment on the grashopper image with
256�/512. Leftmost: the original image; Middle: the noisy image
with the noise level: s�/0.5; Rightmost: the denoised image
obtained by the method of NIG-based NNSC shrinkage
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SNRn value of the denoised image is 18.9864, and the SNRn value of the noisy image is
1.1701. Clearly, the SNRn value of the former is larger than that of the later, which
indicates that the visual effect has been enforced greatly and the noise has been
effectively reduced. The denoised results of the noisy grashopper image, which were
obtained by our algorithm, were shown in the rightmost panel in Figure 3.

Furthermore, we compared our algorithm with other denoising methods: the usual
Wiener filter, the wavelet-based soft shrinkage and the standard SC shrinkage. As a
result, the denoised images and the values of corresponding normalized SNR were
respectively shown in Figure 4 and Table 1. According to the experimental results, it
can be concluded that our NIG-based NNSC shrinkage method is the best denoiser of
the other denoising methods considered here. The Wiener filter is the worst denoiser,
and the wavelet-based soft shrinkage method is better than the Wiener filter but worse
than the SC shrinkage algorithm. Moreover, it can be also very easily to tell the
denoised effects of the different methods with the naked eye only.

6. Conclusions

In this paper, we proposed the NIG-based extended NNSC neural network model for
denoising natural images. The NIG density is a flexible, four-parameter density, highly
suitable for moulding possibly skewed super-Gaussian data. In the NIG case, to yield
accurate results for fairly large datasets, very fast and simple cumulant-based
parameter estimators can be obtained. We obtained sparsely coded image data by
applying our extended NNSC algorithm to natural images selected. The experimental
results demonstrated that the NIG density is a very good fit to the NNSC transformed
data. In denoising process, we performed the NIG-based NNSC shrinkage technique
on the ‘grashopper’ image contaminated by additive Gaussian noise. The results

Figure 4 Comparison results of denoising obtained by different
denoising algorithms. Leftmost: Wiener filtered; Middle: Wavelet-
based soft shrinkage; Rightmost: Sparse coding shrinkage

Table 1 Values of normalized SNR obtained by different denoising algorithms. The noise
level is s�/0.5

Algorithm /SNRn (Denoised images) /SNRn (Noise images)

Wavelet-based soft shrinkage 5.6536

1.1701Sparse coding shrinkage 11.3024
NIG-based NNSC shrinkage 14.9864
Wiener filter 4.7728
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showed that this technique is highly efficient in reducing noise. Compared with the
methods of the Wiener filter, the wavelet-based soft shrinkage and the SC shrinkage,
the NIG-based NNSC shrinkage method is also the best denoiser.
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