
A Data Set for User Request Trace-Oriented
Monitoring and its Applications

Jingwen Zhou, Zhenbang Chen,Member, IEEE, Ji Wang,Member, IEEE,

Zibin Zheng,Member, IEEE, and Michael R. Lyu, Fellow, IEEE

Abstract—User request trace-oriented monitoring is an effective method to improve the reliability of cloud services. However, there are

some difficulties in getting useful traces in practice, which hinder the development of trace-oriented monitoring research. In this paper,

we release a fine-grained user request-centric open trace data set, called TraceBench, which is collected in a real-world cloud storage

service deployed in a real environment. When collecting, we consider different scenarios, involving multiple scales of clusters, different

kinds of user requests, various speeds of workloads, many types of injected faults, etc. To validate the usability and authenticity, we

have employed TraceBench in several trace-oriented monitoring topics, such as anomaly detection, performance problem diagnosis,

and temporal invariant mining. The results show that TraceBench well supports these research topics. In addition, we have also carried

out an extensive data analysis based on TraceBench, which validates the high quality of the data set.

Index Terms—Data set, end-to-end tracing, trace-oriented monitoring, anomaly detection, cloud services

Ç

1 INTRODUCTION

NOWADAYS, cloud systems appear in more and more
fields to provide various services that greatly benefit

our daily life. However, with the increase in scale and com-
plexity, cloud systems more and more often experience
correctness and performance problems, which affect the
reliability of cloud services and may bring enormous loss.
For example, in August 2013, the services of Apple, Google,
Microsoft, and Amazon crashed for different reasons. Goo-
gle lost 550;000 dollars in 5 minutes, while Amazon lost
seven million dollars in less than 100minutes [1]. Moreover,
some of these problems are very hard to detect in the design
stage using traditional methods, such as testing, validation,
and verification. Therefore, as a complement, the methods
at runtime are used to further improve the reliability of
cloud services, where monitoring is a most important one.

The monitoring of a system usually contains the activities
of collecting the runtime information of the system, analyz-
ing the system behaviors based on the collected informa-
tion, and adjusting the system according to the analysis
results. Therefore, topics like tracing, anomaly detection,
and problem diagnosis are all related to the category of
monitoring. According to the collected information, the
methods of monitoring can mainly be divided into two

types: resource-oriented monitoring and trace-oriented
monitoring [2]. Resource-oriented monitoring systems [3],
[4] record the information of a system from different
kinds of system resources, such as CPU speed and avail-
able memory. However, sometimes resource information
alone is not sufficient for revealing the behaviors of the
monitored system, e.g., to tell how a user request is proc-
essed. In contrast, trace-oriented monitoring systems [5],
[6], [7] track the processes of handling user requests and
record the context of each step, such as function name
and execution time, in the form of user requests traces, or
simply called traces. Traces naturally record the execution
paths of user requests and contain both the normal and
abnormal features of the monitored system, which are
more valuable for revealing system behaviors.

In recent years, more and more research topics of improv-
ing system reliability are based on traces, such as uncovering
bugs [8], diagnosing correctness problems [9] and perfor-
mance problems [10], [11]. However, there still exist some dif-
ficulties in getting useful data of traces, which are essential for
these research topics. First, collecting traces manually is a
tedious and time-consuming process, which may involves
choosing or even implementing a collection system, instru-
menting and deploying the monitored system, designing and
establishing various scenarios, etc.Moreover, these steps may
be repeated multiple times if the collected traces are insuffi-
cient. For example, the jobs of collecting the trace data in this
paper last for more than half a year, showing the difficulties
in collecting traces by hand. Second, due to the weakness in
authenticity, manually synthesized traces sometimes are not
sufficient for the research topics. Finally, in academia and
industry, there exist few data sets of traces that can well sup-
port these research topics, and companies do not want to
release their system traces for safety or other considerations.
All the above issues hinder the development of trace-oriented
monitoring topics, and alsomotivate this paper.

� J. Zhou, Z. Chen, and J. Wang are with the National Laboratory for
Parallel and Distributed Processing, National University of Defense
Technology, Changsha 410073, China, and the College of Computer,
National University of Defense Technology, Changsha 410073, China.
E-mail: {jwzhou, zbchen, wj}@nudt.edu.cn.

� Z. Zheng and M. R. Lyu are with the Shenzhen Research Institute, Chinese
University of Hong Kong, Shenzhen, China, and with the Department of
Computer Science and Engineering, Chinese University of Hong Kong,
Hong Kong, China. E-mail: {zbzheng, lyu}@cse.cuhk.edu.hk.

Manuscript received 7 Feb. 2015; revised 11 Sept. 2015; accepted 8 Oct. 2015.
Date of publication 15 Oct. 2015; date of current version 3 Aug. 2018.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSC.2015.2491286

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018 699

1939-1374� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

mailto:
mailto:

In this paper,1 we release TraceBench2 to support trace-
oriented monitoring research. To the best of our knowledge,
TraceBench is the first fine-grained user request-centric
open trace data set. The collection system is MTracer3 [13], a
trace-oriented monitoring system developed by us. With
MTracer, we collected TraceBench among the Hadoop Dis-
tributed File System (HDFS) [14], a widely used cloud sys-
tem that provides storage service. The cluster is deployed in
a real environment, which is composed by 50 datanodes, 50
clients, and some other hosts. The whole size of TraceBench
is about 3:2 GB. It records more than 370;000 traces stored in
364 files. TraceBench consists of three classes. (1) Normal: in
this class, the traces are collected when the HDFS runs nor-
mally with different cluster sizes and responds to various
kinds of user requests in multiple speeds. (2) Abnormal: we
inject permanent faults into the HDFS during the collection,
which result in correctness and performance problems,
such as data block missing and network slowdown. (3) Com-
bination: we randomly inject faults during HDFS running
and then perform the recovery, so that the traces record
both the normal and abnormal system behaviors.

TraceBench is a well-designed trace data set, considering
multiple scales of clusters, different kinds of user requests,
various speeds of workloads, many types of injected faults,
and so on, and hence can be used in many trace-oriented
monitoring topics as Ref. [15] advises, such as anomaly
detection, problem diagnosis, and distributed profiling. For
example, the Normal class and Abnormal class can be treated
as knowledge bases for training the algorithms to learn the
features of normal behaviors and abnormal behaviors,
respectively, and the Combination class can be employed as
a test set for validating the effectiveness of the algorithms.
Since TraceBench is collected in a real environment, other
research topics, like system understanding, would also
employ this data set.

The remainder of this paper is organized as follows.
Section 2 introduces trace-oriented monitoring systems and
the system used for collecting TraceBench. Section 3
describes TraceBench, focusing on the details of the data set
and the details of the collection. In Section 4, we show several
applications of TraceBench. Section 5 discusses the aspects
that may threaten the validity of TraceBench. Section 6
reviews the relatedwork and Section 7 concludes the paper.

2 TRACE-ORIENTED MONITORING

In this section, we first describe the trace-oriented monitor-
ing systems, and then introduce MTracer [13], the system
we used to collect TraceBench.

2.1 Trace-Oriented Monitoring Systems

Trace-oriented monitoring systems can be mainly divided
into two types: black-box-based systems and white-box-
based systems [2]. The black-box-based systems, such as
lprof [16], PreciseTracer [17], and vpath [18], do not require
the source code of the monitored system and apply reason-
ing methods for reconstructing the trace. In contrast, the

white-box-based systems, such as Stardust [19], X-Trace
[20], and Fay [21], need to instrument the source code at first
for recording traces. In practice, the black-box-based sys-
tems are less flexible and less accurate than the white-box-
based systems.

Different monitoring systems record traces in different
formats, such as the linear event sequence, the trace tree [20],
[22], [26], and the directed acyclic graph (DAG) [10], [23],
[24]. The trace that contains more information often employs
a more complex format and brings more overheads in moni-
toring. For example, among the above three formats, the
DAG contains themost information and also is themost com-
plex one. A trace with a complex format can be transformed
to a simple format. For example, the trace in the format of
trace tree can be converted to the format of linear event
sequence using themethods likeDepth First Search (DFS).

Among many existing trace-oriented monitoring sys-
tems, we choose MTracer to collect TraceBench for the fol-
lowing several reasons. 1) Accuracy. MTracer is a white-box-
based system, which can guarantee that the collected traces
exactly record the processes of handling user requests. 2)
Trace format. MTracer employs the format of trace tree,
which balances between recording abundant information
and reducing the complexity of the trace format. 3)Usability.
MTracer is lightweight for deployment and maintenance,
and efficient for monitoring and visualization, which is
pretty suitable for our collection.

2.2 MTracer

As Fig. 1 shows, MTracer adopts a client/server architec-
ture, in which the hosts of the monitored system are treated
as MTracer clients. Since MTracer is a white-box-based sys-
tem, we need to instrument the source code of the moni-
tored system at first. When the execution crosses these
instrumented codes on the MTracer clients, related informa-
tion is collected and sent to the MTracer server in the form

Fig. 1. The architecture of MTracer, where the upper-left box shows the
inner structure of MTracer server and the dashed arrows illustrate the
data streams in MTracer.

1. This paper is an extension to a conference paper [12].
2. Freely available at: http://mtracer.github.io/TraceBench/
3. Freely available at: http://mtracer.github.io/MTracer/

700 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

of events and edges, which will be introduced in Section 3.
The server extracts useful information from the received data
and stores the extracted information with MySQL database
[25]. A web-based front-end for visualization is provided,
calledMTracer-Viz4, to reconstruct the traces, provide various
flexible queries, and do some advanced analysis.

By using different mechanisms and optimizations,
MTracer requires few additional resources on the clients. For
example, MTracer consumes a bandwidth of less than 2MB/
s, which is pretty acceptable comparing to the Gbps-level
network in the data center. To improve the efficiency of the
server, MTracer adopts a parallel method and several opti-
mizations when storing data. More details about MTracer
can be found in Ref. [13].

3 TRACEBENCH

Using MTracer, we collected TraceBench in an environment
containing 50 clients for generating user requests, a Hadoop
cluster with 50 datanodes and one namenode for processing
the requests from clients, and other hosts. When collecting,
five workloads and 17 faults in five types are introduced to
collect different behaviors of HDFS. As shown in Table 1,
the whole size of TraceBench is about 3:2 GB and the total
data collection time is 11; 002 minutes. TraceBench consists
of 370; 334 traces, 14; 777; 970 events, and 6; 303; 153 edges in
364 trace files, in which 100 files contain failed user requests.

The number of contained events of a trace, or say trace
length, in TraceBench spreads from 1 to 420, and the num-
ber of involved hosts in a trace spans from 1 to 44. In this
section, we first introduce the trace format and the structure
of TraceBench, and then give the details about the collec-
tion, including the collection environment, the collection
process, the employed workloads, and the injected faults.

3.1 Trace Format

In this section, we first introduce the trace tree with a tradi-
tional format, and then present the format of the traces in
TraceBench, which is a little different from the traditional
format. At last, we show some examples in TraceBench.

3.1.1 Trace Tree

Formally, a trace in the form of trace tree can be formalized
as ðE;RÞ [2], where E and R are the event set and the set of
the relationships between the events, respectively. An event
records the context of a request step, where a step stands for
the execution of a function or a routine. An event is a triple
ðtid; eid; IÞ. The first element tid is the identity of the trace,
which means that all the events with the same tid belong to
the same trace. Each event has a unique eid for distinguish-
ing from each other in a trace. I records the detailed infor-
mation of the step, such as function name and execution
time. A relationship records the causality between two
events, and can be expressed in a quadruple ðtid; feid;
ceid; T Þ, which means the event identified by feid is the
father of the event identified by ceid, in the trace identified

TABLE 1
Structure of TraceBench

Class Type Fault Workload Variablea #File Collection
Time(min)

#Trace #Event #Edge

Normal
(NM)

Clientload
(CL)

- r/w/rw/
rpc/rwrpc

1,5i clients (C) 55 2;761 209;326 3;848;191 1;963;129

Datanode
(DN)

- r/w/rw 1,5i datanodes
(DN)

33 1;980 17;440 2;310;699 941;681

Abnormal
(AN)

Process
(Proc)

killDN r/w 0,1,2,3,4,5i FDN 30 600 6;469 682; 595 240;668
suspendDN r/w 1,2,3,4,5i FDN 28 515 2;754 317;498 124;630

Network
(Net)

disconnectDN r/w 1,2,3,4,5i FDN 28 560 5;189 536;810 192;276
slowHDFS r/w/rpc 0,10i/2i/100ims 33 506 41;200 669;692 348;912
slowDN r/w 1,2,3,4,5i FDN 28 560 4;395 575;425 232;270

Data

corruptBlk r 0,1,2,3,4,5i FDN 15 300 5;354 636;023 244;296
corruptMeta r 0,1,2,3,4,5i FDN 15 300 5;285 671;185 214;446

lossBlk r 1,2,3,4,5i FDN 14 280 4;920 573;148 186; 554
lossMeta r 1,2,3,4,5i FDN 14 280 4;789 590;902 256;211
cutBlk r 1,2,3,4,5i FDN 14 280 4;982 619;235 194;904
cutMeta r 1,2,3,4,5i FDN 14 280 5;020 595;579 188;863

System
(Sys)

panicDN r/w 1,2,3,4,5 FDN 10 150 1;977 260;660 103;155
deadDN r/w 1,2,3,4,5 FDN 10 150 1;751 228;550 90; 693

readOnlyDN w 1,2,3,4,5 FDN 5 75 368 61;944 27;820

Combination
(COM)

Single
(Sin)

Process (Proc) rwrpc 1,2,3 3 210 7;037 237;338 111;247
Network (Net) rwrpc 1,2,3 3 210 6;539 219;692 103;192

Data rwrpc 1,2,3 3 210 7;392 251;902 117;475
System (Sys) rwrpc 1,2,3 3 210 7;056 235;379 110;519

Bug rwrpc 1,2,3 3 105 3;847 53;011 29;656

Multiple
(Mul)

AnarchyApe
(AA)

rwrpc 1,2,3 3 480 17;244 602;512 280;556

Total - 17 faults 5 workloads - 364 11;002 370;334 14;777;970 6;303;153

a. i ¼ 1; 2; . . . ; 10

4. Freely available at: http://mtracer.github.io/MTracer-Viz/

ZHOU ET AL.: A DATA SET FOR USER REQUEST TRACE-ORIENTED MONITORING AND ITS APPLICATIONS 701

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

by tid. And T indicates the type of the relationship, such as
a local function invocation or a remote procedure call
(RPC). For example, Fig. 2a shows a trace tree of the process
of handling a rename request in HDFS. The client first gets
the information of the target file from the namenode, like
whether the file exists, using the “RPC: getFileInfo”, and
then renames the file with the “RPC: rename”. In this trace,
the event set E ¼ f1; 2; 3; 4; 5g and the relationship set
R ¼ fa; b; c; dg, whose contents are shown in Fig. 2b.

Based on the events and the relationships, a trace can be
reconstructed to a trace tree, where the nodes in the tree cor-
respond to the events, and the edges correspond to the rela-
tionships. In a trace tree, a left node of brother nodes
happens earlier than right nodes, e.g., event 2 happens ear-
lier than event 3 in Fig. 2a. And we say a father node triggers
a child node using the method of T , e.g., edge a represents
that the event 1 triggers the event 2 using the method of
local function invocation. Naturally, we can convert a trace
tree to a linear event sequence with the methods like DFS or
using Call (C) and Return (R) to describe a node. For exam-
ple, the trace tree of Fig. 2a can be expressed as ”1,2,4,3,5”
using DFS, or ”C1C2C4R4R2C3C5R5R3R1” using Call and
Return method.

3.1.2 Trace Format in TraceBench

Traces collected by MTracer are organized in the form of the
trace tree. The detailed information I of an event is defined
as ðname; st; et; ip; hname; a; dÞ, representing the event
name, start time stamp, end time stamp, host IP address,
host name, agent, and description, respectively. The event
name is the name of the event, e.g., function name. The start
and end time stamps record when the event starts and fin-
ishes in nanoseconds, which can be used to calculate the
execution time, or say latency, of the corresponding opera-
tion. The host IP address and host name denote where the
event is from. The agent represents an inner part of the sys-
tem, like a Java class. The description records the execution
results, such as return values and exception information.

For efficiency and overhead consideration, we introduce
nid rather than eid for an event [15], [19], [22]. Each time a

thread communicates with another thread, a new nid is gen-
erated in the second one. So, an nid can be understood as a
temporary thread ID, and each event can be identified by
nid and st, i.e., eid ¼ ðnid; stÞ, since the events with the
same nid are generated from the same thread. As an exam-
ple, the event 1 in Fig. 2c is an intact event in MTracer, corre-
sponding to the node 1 in Fig. 2a.

Correspondingly, we employ a special strategy to record
the relationships between events. If a father event and a
child event are generated from the same thread, the two
events have the same nid, and we do not record their rela-
tionship explicitly. Actually, the relationship can be calcu-
lated by comparing the time stamps. If a father event and a
child event belong to different threads, the relationship is
recorded explicitly in the form of an edge, i.e., ðtid; fnid;
fst; cnidÞ, where ðfnid; fstÞ identifies the father event and
cnid indicates the child event. An example of the edge in
MTracer is shown as the edge c in Fig. 2c, corresponding to
the edge c in Fig. 2a. This strategy saves many times of gen-
erating a random ID, which is a time-consuming operation
[13], and thus reduces the overhead on the monitored sys-
tem. For example, Fig. 2c contains only two edges, which is
2 less than the relationships in Fig. 2b.

Using events and edges, we can also reconstruct the trace
tree. Fig. 3 illustrates the process of reconstructing the trace
tree using the information of Fig. 2c, which contains four
steps: (a) select all the events and edges with the same tid

identifying the trace; (b) classify the selected events into
classes according to their nid, which means all the events in
the same class are generated from the same thread; (c) calcu-
late the relationships in each class using the start and end
time stamps, e.g., because event 1 starts earlier and finishes
later than event 2, and there is no other ancestor of event 2,
event 1 is the father of event 2; and (d) construct the rela-
tionships between classes using edges, where the event
identified by ðfnid; fstÞ is the father of all the root nodes in
the classes identified by cnid. Regardless of the database
querying operation in step (a), the computational complex-
ity of reconstructing a trace tree containing n events and m

Fig. 2. (a) An example of trace tree of a rename request in HDFS, (b) in the form of traditional format with five events and four relationships, and (c) in
the form of MTracer format which also contains five events and only two edges. (tid = Trace ID, eid = Event ID, I = Information, feid = Father event’s
eid, ceid = Child event’s eid, T = Relationship type, nid = Temporary thread ID, name = Event name, ip = Host IP address, hname = Host name, st =
Start time stamp, et = End time stamp, a = Agent, d = Description, fnid = Father event’s nid, fst = Father event’s st, cnid = Child events’ nid).

702 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

edges is Oðnmþ n2=mÞ on average, and Oðn2Þ in the worst
case. For reasonable traces, the computation is typically not
expensive. For example, for a trace with 342 events and 151
edges in TraceBench, the reconstruction requires less than
50ms on a 3:1 GHz Intel-based computer.

3.1.3 Some Examples

Traces collected by MTracer both record the normal behav-
iors of the monitored system and the abnormal behaviors
when correctness problems or performance problems hap-
pen. Following, we give several examples selected from
TraceBench.

Fig. 4a illustrates the normal process of reading a data
block from HDFS, which is a part of handling a read
request. The client first chooses the best datanode from the
datanode list informed by the namenode, and then reads
the block from the best datanode. However, when the best
datanode encounters a killDN fault, which kills the HDFS
processes on some datanodes, the operation of reading the
data block will fail. Then, the client tries other datanodes in
the datanode list. At last, the reading operation succeeds on
a certain datanode or fails after trying all datanodes in the
list. Fig. 4b clearly shows the process of finally succeeding

after two failed tries. The content in the dashed box records
the description fields of corresponding events, which depict
the details of each try.

As another example, when encountering a fault of
slowHDFS, which slows the whole network of the HDFS
cluster, the latencies of some events in the trace tree would
increase. For example, when the network slows down by 1
second, the latencies of event 2 and event 3 in Fig. 2a will
increase by about 1 second, and thus event 1 by about 2 sec-
onds. And the latencies of event 4 and 5 will not visibly
change, since they happen inside a single host and have no
relation with the network.

3.2 Structure

As shown in Table 1, TraceBench includes three classes:
Normal, Abnormal, and Combination, respectively recording
the information when the monitored system runs normally,
meets a permanent fault, and encounters temporal faults.
Each class consists of several types, which focus on different
aspects of each class, e.g., the Datanode type mainly consid-
ers the aspect when the number of datanodes changes. In
each type, we introduce different faults, workloads, and
variables to simulate different scenarios. For example, in

Fig. 4. (a) A normal process of reading a data block in HDFS, and (b) an abnormal reading process when encountering a killDN fault, where the con-
tent in the dashed box shows the description fields of corresponding events.

Fig. 3. The process of trace tree reconstruction using the information of Fig. 2c: (a) selecting events and edges, (b) classifying events into classes, (c)
constructing the relationships in each class by comparing time stamps, and (d) constructing relationships between classes using edges.

ZHOU ET AL.: A DATA SET FOR USER REQUEST TRACE-ORIENTED MONITORING AND ITS APPLICATIONS 703

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

Datanode type, we introduce three workloads, and with each
workload we vary the datanode number to be 1; 5;
10; . . . ; 50, respectively, to simulate the scenarios with vari-
ous workloads in different cluster scales. According to the
fault, workload, and variable, a trace type contains many
trace files, each of which corresponds to a certain scenario.
In TraceBench, we name a set of traces according to
the items of the first five columns in Table 1, i.e.,
“½Class�ð ½Type�ð ½Fault�ð ½Workload�ð ½Variable�Þ?Þ?Þ?Þ?” in
the form of the regular expression, where the bold words
means the sets of items appeared in corresponding columns
of Table 1. In addition, abbreviations given in the brackets
in Table 1 are used for compressing the names. As an
example, the trace set named as Normal_Clientload_-_r, or
NM_CL_r for short, contains the traces collected under the
workload r in the Clientload type of Normal class. Following,
we respectively introduce each trace class of TraceBench.

The traces in the Normal class record the behaviors when
the HDFS system runs normally, without injecting any
faults. The Normal class consists of Clientload type and Data-
node type. The Clientload type considers different speeds of
workloads, and can be used to study the capacities of the
HDFS system in dealing with different workloads in a cer-
tain scale (i.e., 50 datanodes). Since each client generates the
workload in the same speed, we use the number of clients
to represent the total workload speed of all valid clients in
Table 1, and “1, 5i clients” means setting the number of cli-
ents to be 1, 5, 10; . . . ; 50, respectively. In contrast, the Data-
node type fixes the speed of workload (i.e., 30 clients) and
changes the number of datanodes, to study the behaviors
with different system scales.

The traces in the Abnormal class are collected when a per-
manent fault is injected into the HDFS system with a fixed
scale (i.e., 50 datanodes) and a fixed workload speed (i.e.,
30 clients). The traces contain the information about the
injected faults, and can be used to study the behaviors
when the system runs abnormally. According to the types
of faults, the Abnormal class can be divided into four types,
i.e., Process, Network, Data, and System, which will be dis-
cussed later. Except the slowHDFS affects the whole net-
work, all the faults in this class are injected into datanode(s),
e.g., the lossBlk means delete all the data blocks in some
datanodes. So, the FDN in Table 1 represents the datanodes
with a fault injected.

When collecting the traces in Combination class, faults are
randomly picked and injected into the HDFS system, and
later recovered automatically or manually (See column
Recovery in Table 3). Thus, the Combination class contains the
traces collected both when the system runs normally and
abnormally. In this class, together with a trace file, a fault
file is also given, recording the information about the
injected faults, including the fault name, injection time,
recovery time, etc. Fig. 5 shows an example of an injected

fault record. The Combination class consists of the Single
type, in which faults are chosen in only one fault type, and
the Multiple type, in which faults are picked from multiple
fault types, e.g., selected from all the faults in AnarchyApe
[27]. Note that, besides the faults in Abnormal class, we also
employ several Bug faults in Single type, which are real-
world bugs selected from Hadoop issues repository [28]
and will be introduced later. In addition, in this class, we
repeat the collection process of each scenario for three times,
which results in three trace files, i.e., “1,2,3” in the column
Variable. Since the faults are randomly picked and injected,
the three trace files of the same scenario contain different
faults and a same fault employs different parameters.

3.3 Collection Environment

TraceBench is collected in a real environment, which con-
sists of more than 100 virtual machines (VMs) hosted on our
IaaS platform, i.e., CloudStack [29]. Fig. 6 shows the envi-
ronment, which contains the following components:

� HDFS: providing a distributed storage service, con-
taining 50 datanodes and one namenode.

� Clients: used to generate workloads to HDFS, to sim-
ulate the real usages of HDFS, containing 50 hosts.

� MTracer server: receiving, storing, and visualizing
traces generated when HDFS processes the requests
from clients.

� Controller: controlling the whole process of collec-
tion, and also being in charge of injecting faults.

� Ganglia server [4]: monitoring the whole environ-
ment, to help for solving the unexpected issues in
collection, like VMs are shut down by accident.

The MTracer Server is deployed on a VM with 4 GB
memory and 8� 1 GHz CPU, while all the rest hosts are
deployed on the VMs with 2 GB memory and 4� 1 GHz
CPU. The OS that all the VMs use is CentOS 6.3.

3.4 Process of Collection

We take the trace file as the unit of collection. Fig. 7 shows
the processes of collecting trace files in each class. When col-
lecting a trace file in the Normal class, we first start the
MTracer server and the HDFS service with a certain number
of datanodes, and then launch the workload on some clients
concurrently. When finishing the collection, workload is
stopped first. Then, the HDFS service and the MTracer
server are shut down after waiting for a few minutes, to
guarantee that all requests are finished smoothly and no

Fig. 5. A fault record in a fault file, where the parameter defines the target
datanodes, and the comment “manual” in the last line means the recov-
ery is made by hand rather than automatically.

Fig. 6. The collection environment, in whichM ¼ 50 andN ¼ 50.

704 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

fragmentary trace is collected. Therefore, in Table 1, the
items of the column Collection Time are composed of the run-
ning time and the waiting time of all contained trace files.
When collecting trace files in the Abnormal class, faults are
injected before starting the workload, and the recovery are
done after handling all the requests, to ensure all the traces
are collected when the system runs abnormally. In contrast,
in the Combination class, a randomly chosen fault is injected
and the system is later recovered after starting the work-
load, and the next fault acts in the same way after an inter-
val, to simulate the occasionally occurring faults. In
addition, except a few tasks, such as recovering the system
from a System fault, most jobs of the trace collection are
done automatically.

Some parameters used in the collection are described as
follows. First, except the NM_DN set, the number of datano-
des is set to 50 during collecting, corresponding to the maxi-
mal capability of the HDFS system in our environment.
Except the NM_CL set, the number of clients is fixed to 30,
producing an appropriate workload, which contains enough
requests that can be processed by the HDFS service in time.
Second, the collection time of a trace file in the Normal class
is 60 minutes (50 minutes for running and 10 minutes for
waiting), which is enough for collecting plenty of traces to
reflect related statistical features. The collection time of an
Abnormal file is set to 20 minutes (15 minutes for running
and 5 minutes for waiting), since HDFS employs some
mechanisms to detect and to avoid faults automatically, like
the heart-beating protocol, and thus the number of the traces
containing exception information may reduce significantly
after 20 minutes. Finally, most step sizes of variables are 5,
i.e., changing 10 percent each time comparing to 50, which
balances between reflecting statistic features of HDFS and
controlling the number of trace files, e.g., the numbers of
datanodes are set to 5, 10, 15; . . . ; 50 inNM_DN set.

3.5 Workloads

There are about 30 different HDFS requests [14], which can
be mainly divided into three kinds: file read request, file
write request, and metadata request. A read request down-
loads files from HDFS to local host, like copyToLocal, while a
write request uploads files from local host to HDFS, like
copyFromLocal. Both of them involve communicating with
the namenode to get the information about data blocks, and

with some datanodes to download or upload data blocks.
The metadata requests, such as rm and ls, operate metadata
files, and only communicate with the namenode using
RPCs without data block accessing. Table 2 lists the requests
contained in TraceBench. The read and write request oper-
ates on the files that are automatically generated on HDFS
and clients, respectively, with the number of contained data
blocks spreading from 1 to 19. Eight most popular requests
are considered in metadata kind, involving creating, modi-
fying, querying, and removing of files and directories.

The workloads that contain only read, write, and meta-
data requests are denoted by r, w, and rpc, respectively.
Besides, we also introduce two other workloads: rw, contain-
ing both read and write requests, and rwrpc, containing all
the three. When collecting the traces in each trace type, we
introduce different workloads as needed. For example, since
the faults in theData type do not influence thewrite requests,
we do not introduce thewworkload in theAN_Data set.

Bash scripts are employed on each client for generating
workloads. Each script takes charge in one kind of work-
load, e.g., rpc.sh produces the rpc workload. Using a loop,
requests with different parameters are sent to the HDFS ser-
vice continuously by a client. All the requests from the cli-
ents form the global workload. Intervals are introduced
between neighbouring requests in a script, i.e., after finish-
ing a request, a script waits for a moment and then starts
the next one, to control the speeds of requests.

3.6 Faults

As Table 3 shows, we introduce 17 faults of five types during
trace collection. The faults are selected from AnarchyApe
[27], a mature injection tool for Hadoop, and from Hadoop
issues repository [28], which stores real-world bugs reported
by users (Column Selected From). Some of these faults bring
correctness exceptions when handling requests, e.g., killDN
may cause a failure of reading a file, while others may intro-
duce performance problems, e.g., HADOOP-6,502 results in
a slow listing operation (Column Category).

The faults in AnarchyApe can be categorized into four
types. The faults in the Process type affect the HDFS pro-
cesses on HDFS nodes. For example, the fault killDN kills
the HDFS processes on some datanodes, while suspendDN
suspends some processes. Network faults bring anarchies to
the network in the cluster, such as slowHDFS slows the
whole network by milliseconds, and slowDN decreases the
speeds of sending and receiving packets on some datano-
des. The faults in Data introduce errors in the data blocks or
the metadata files on some datanodes. For example, corrupt-
Meta changes the values of some bits in the metadata files,
and cutBlk removes parts of bits in the data blocks. The Sys-
tem faults introduce problems to the OSs of the HDFS nodes,
such as making OSs to be panic, dead or read-only. Besides

Fig. 7. Collection process of (a) the Normal class, (b) the Abnormal
class, and (c) the Combination class.

TABLE 2
Chosen Requests

Kind Request

read copyToLocal

write copyFromLocal

metadata mkdir, touchz, mv, chmod, chown, ls, count, rmr

ZHOU ET AL.: A DATA SET FOR USER REQUEST TRACE-ORIENTED MONITORING AND ITS APPLICATIONS 705

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

AnarchyApe faults, we also selected several real-world
bugs from Hadoop issues repository, which can be replayed
in our HDFS system and can be captured by MTracer. We
categorize them as Bug type.

For the faults injected by AnarchyApe, there are some
aspects worthwhile to be pointed out. First, except the fault
slowHDFS making the namenode slowdown, all the other
faults only affect the datanodes. The reason is that the whole
HDFS system would crash in case some problems happen in
the namenode, such as the HDFS process is killed or the OS
is panic. In this situation, the collected data is meaningless.
Second, injecting Data faults should be carried out at data-
node level rather than the files inside a datanode, because
the exceptions caused by these faults have a probability to
happen. For example, if a lossBlk fault deletes only one data
block rather than all data blocks in a host and the requests
do not involve this block, no exception will occur. Finally,
as Table 1 shows, most of the variables in the Abnormal class
are the number of FDNs. The purpose is to make the trace
files more usable for studying the states of the HDFS system
with different numbers of abnormal datanodes, e.g., to
know how many requests will fail when 20 percent of
HDFS processes are killed on datanodes.

4 APPLICATIONS

To validate the usability and authenticity, we have
employed TraceBench in several trace-oriented monitoring
topics, include anomaly detection, performance problem
diagnosis, and temporal invariant mining. We have also car-
ried out an extensive data analysis on TraceBench, which
validates the high quality of the data set.

4.1 Anomaly Detection

The same kind of user requests usually result in the traces
with similar topologies, which can be extracted as the prop-
erties that are useful in anomaly detection, problem diagno-
sis, and other topics.

For example, when reading a file, the client downloads
the data blocks of the target file from HDFS one by one,

where a data block downloading starts with invoking the
function “blockSeekTo” (short for B), and ends with calling
“checksumOk” (K) if success. If any data block fails in being
downloaded after some retries, the whole request aborts
and fails. In other words, in a successfully handled read
request, the last data block should be downloaded success-
fully, which can be expressed by the Linear Temporal Logic
(LTL) [30] as the following property:

�B ^ ðtuððB!�ðtu:BÞÞ ! �ð�KÞÞÞ;
where the operators tu, �, �, ^, !, and : represent for All,
Exist, Next, And, Imply, and Not, respectively. Therefore, �B
expresses that at least one reading operation exists, B!
�ðtu:BÞ means no more data blocks are read after current
block, i.e., the last reading operation, and �K means there
exists a successful reading operation. Thus, thewhole property
means the request reads at least one data block and succeeds
in the last reading, which defines a successful read request.
If a trace violates this property, we say a failure happens.

Similarly, we also extracted the properties for write and
metadata requests. To validate these properties, we checked
the traces in the AN set in the form of SQL queries to detect
failures. All of the failed requests are picked out correctly.
Besides the properties for detecting failures, we have also
extracted tens of properties for detecting various problems,
such as datanode invalid, data block missing, and operation
latency anomaly. All of these properties can be in turn used
to monitoring an HDFS system with different methods, e.g.,
the Monitoring Oriented Programming (MOP) [31] frame-
work in runtime verification (RV) [32], which is part of our
future work [33].

4.2 Performance Problem Diagnosis

Principal component analysis (PCA) is widely used in ana-
lysing traces for diagnosing performance problems. We
implemented a PCA-based diagnosis method [34], [35],
which finds the traces with abnormal latencies, and further
locates the root causes of the problems. This method per-
forms on trace clusters, where the traces in a cluster contain a

TABLE 3
Injected Faults

Type Fault Description Category Recovery Selected From

Process
killDN Kill the HDFS processes on some datanodes Correctness Automatic
suspendDN Suspend the HDFS processes on some datanodes Correctness Automatic

disconnectDN Disconnect some datanodes from network Correctness Automatic
Network slowHDFS Slow all the HDFS nodes Performance Automatic

slowDN Slow some datanodes Performance Automatic

corruptBlk Modify all the data blocks on some datanodes Correctness Automatic
corruptMeta Modify all the metadata files on some datanodes Correctness Automatic AnarchyApe [27]

Data lossBlk Delete all the data blocks on some datanodes Correctness Automatic
lossMeta Delete all the metadata files on some datanodes Correctness Automatic
cutBlk Remove some bits in all data blocks on some datanodes Correctness Automatic
cutMeta Remove some bits in all metadata files on some datanodes Correctness Automatic

panicDN Make the system panic on some datanodes Correctness Manual
System deadDN Make the system dead on some datanodes Correctness Manual

readOnlyDN Make the system read-only on some datanodes Correctness Manual

HADOOP-3257 The path in HDFS requests is limited by URI semantics Correctness Automatic
Hadoop issuesBug HADOOP-6502 ls is very slow when listing a directory with a size of 1;300 Performance Automatic
repository [28]HADOOP-7064 rmr does not properly check the permissions of files Correctness Automatic

706 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

same call sequence, e.g., the call sequence of Fig. 2a is “fs
-mv”!“RPC: getFileInfo”!“getFileInfo”!“RPC: rename”!
“rename”. We call the number of traces contained in a cluster
as the cluster capacity, and call the number of events in the
corresponding call sequence as the cluster length.

Using the format of linear event sequence, we partitioned
traces in COM_Mul_All_rwrpc set into clusters according to
their call sequences, and then evaluated the method in the
aspect of finding abnormal traces with these trace clusters.
Table 4 shows the experiment results, which contains two
parts: 1) the results of the trace clusters with a same length
(i.e., 7) and with different capacities, and 2) the results of
the clusters with a same capacity (i.e., 7) and with various
lengths. For each cluster, we ran the method for fivetimes
and report the average time as the analysis time in row
Time. The items in row Results are expressed in the form of
(total abnormal traces), (detected traces), (false alarms). In
addition, the experiments are carried out on a VM with
8� 1 GHz CPU and 4 GB memory.

As Table 4 shows, this diagnosis method finds all abnor-
mal traces in some cases, and however sometimes only a
small parts. Actually, the results depend on the features of
data, since the thresholds used for judging the abnormal
traces are calculated from the traces. So, when some very
abnormal traces exist, some other less abnormal ones would
be ignored due to the affected thresholds. For example, only
1 of 30 abnormal traces was found in the trace cluster with
the capacity of 400 in Table 4, and after removing this one,
another 27 abnormal traces were correctly picked out. In
addition, according to the results, this diagnosis method is
pretty accurate, with no false alarm in our experiments.

On the other hand, the analysis time increases very fast
when the cluster length increases, but pretty slow when the
cluster capacity grows, which indicates that this method is
more sensitive to the length rather than to the capacity. The
primary cause is the process of calculating eigenvalues and
eigenvectors of a square matrix for getting principal compo-
nents, where the calculating time is mainly related to the
matrix size that exactly equals to the cluster length and has
no relation with the capacity. Therefore, this method seems
to be more applicable for short traces. Parallel approaches
[36] or a segmentation based method [37] may be helpful
for improving the efficiency.

4.3 Temporal Invariant Mining

As an important aspect of system features, temporal invari-
ants record the rules of the orders obeyed by two system
operations, which can be obtained by mining system logs
and can be used to understand systems, detect abnormal
behaviors, diagnose deadlocks, infer higher-level properties,
etc. Based on TraceBench, we evaluated a mining algorithm

in Ref. [38] with the corresponding tool Synoptic [39] (revi-
sion id: cc864f389c71).

After formatting the traces both into the totally ordered
(TO) format and the partially ordered (PO) format (refer to
[38]), we have mined plenty of invariants in different trace
sets with various request kinds in the NM_CL set. Table 5
shows the numbers of mined invariants, where !, , and
6! respectively means the invariant type of Always followed
by, Always precedes of, and Never followed by (refer to [38]).
Both TO logs and PO logs imply useful invariants. For
example, INITIAL! blockSeekTo and blockSeekTo! check
sumOkmined from the NM_CL_r_1C set, respectively mean
each read request contains at least one data block reading
operation and each successfully handled reading operation
invokes the function “checksumOk”, which coincide to the
property introduced in Section 4.1. Actually, many proper-
ties can be inferred based on these invariants.

When dealing with PO logs, Synoptic treats the same
kind of events generated from different hosts as different
events, which makes it possible to mine more useful invari-
ants for concurrent systems. However, this also has several
limitations. First, too many invariants are generated due
to the massive event types, e.g., more than 10,000 in the
NM_CL_r_1C set, which makes it difficult to search desir-
able features. Second, since the occasionally happened
or occasionally not happened event combinations between
hosts are treated as inherent system features, some false
invariants arise. For example, the invariant receive
Blockdatanode001 6! receiveBlockdatanode006 mined from the
NM_CL_w_1C set, (where the function “receiveBlock” run-
ning on datanodes receives a copy of data block from the
client) represents that there does not exist the situation in
theNM_CL_w_1C set that HDFS stores a data block on data-
node006 after storing on datanode001, which is still possible
in other executions. Third, many invariants contain the
same information, and we call such invariants as identical
invariants. For example, the invariants Conndatanode001 !
receiveBlockdatanode001; . . . ; Conndatanode050 ! receiveBlockdatanode050
mined from the NM_CL_w_1C set (where “Conn” is short
for “OP: connect next Datanode”) all mean that when receiv-
ing a copy of data block, the related datanode first builds
connection and then receives the copy. To summarize,
when mining temporal invariants in PO logs, Synoptic
seems to be more suitable for the systems with few hosts.

We consider a postprocess on the generated invariants is
helpful for improving Synoptic. For example, using techni-
ques in machine learning and data mining, the identical
invariants can be effectively eliminated, like summarizing
the 50 identical invariants in above example into one invari-
ant, i.e., Connhost ! receiveBlockhost.

TABLE 4
Results of Performance Problem Diagnosis

Capacity 100 200 300 400 500
Time (ms) 31 65 95 130 154
Results 12,12,0 17,17,0 19,2,0 30,1,0 30,1,0

Length 33 66 99 134 167
Time (ms) 84 1;413 8;359 35;269 100;023
Results 0,0,0 1,1,0 1,1,0 1,1,0 0,0,0

TABLE 5
Results of Temporal Invariant Mining

Log Type Trace Set ! 6! Total

TO
NM_CL_r_1C 123 120 42 285
NM_CL_w_1C 136 120 91 347
NM_CL_rpc_1C 50 68 697 815

PO
NM_CL_r_1C 899 2;103 7;368 10;370
NM_CL_w_1C 263 1;551 6;002 7;816
NM_CL_rpc_1C 49 58 688 795

ZHOU ET AL.: A DATA SET FOR USER REQUEST TRACE-ORIENTED MONITORING AND ITS APPLICATIONS 707

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

4.4 Data Analysis

We have also carried out an extensive data analysis based
on TraceBench and get some characteristics of HDFS in sta-
tistics, which can also validate the data set. In this section,
we give parts of our analysis results.

4.4.1 Requests Handling

With the traces in theNormal class, we have analyzed the rela-
tionships between the request handling speed and the request
receiving speed of HDFS. Since all the clients take the same
speed of sending requests, we use the number of clients to
represent the request receiving speed. Because the time of
handling a read or write request is related to the size of the
file, we use the speed of downloading or uploading instead of
the request handling speed. Besides, we use the number of
datanodes to represent the scale of theHDFS system.

Theoretically, an HDFS service in a specific environment
has a certain upper limit in handling, i.e., the maximal num-
ber of the requests that can be processed in a period, which
reflects the request handling ability of HDFS. If the request
receiving speed is smaller than the handling limit, all the
requests can be handled in time. Otherwise, the HDFS ser-
vice would be overloaded and some requests may be
delayed or ignored.

Fig. 8 displays some analysis results. The curve with
crosses in Fig. 8a represents the observed reading speeds
under different request receiving speeds, where each point
corresponds to a trace file in the NM_CL_r set. The solid
curve is the perfect reading speed without considering the
handling limit of HDFS. As the client number increases, the
speed of reading increases almost linearly at first, which is
close to the expected speed, and then increases slowly when
there are more than 30 clients, due to the handling limit.
The reading speed in Fig. 8a is calculated with respect to the
number of the events with a name of “OP: receive block” in a
certain period, since we know the size of each block is 64
MB. The curve with squares in Fig. 8a is the network con-
sumption monitored by Ganglia, which is resource-ori-
ented. From Fig. 8a, we can observe that the reading speed
is a little smaller than the network consumption. The reason
is that other network packets are also counted, such as the
events of MTracer and Ganglia. In addition, the match of
these two curves implies the viewpoint of that traces also
contain some information about resource usages.

The handling limit of HDFS is related to the cluster scale.
Fig. 8b is extracted from theNM_DN_r set with a fixed read-
ing speed, i.e., 30 clients. The solid line represents the per-
fect speed of reading with all read requests being processed
in time. The curve with crosses displays the actual reading
speeds. The reading speed increases first with the increase
of datanode number, because the ability of the HDFS service
is improved with a larger scale, and then holds steady
around the theoretical speed when reaching 30 datanodes,
which indicates that the handling limit of the service
exceeds the requests receiving speed.

4.4.2 Workload Balancing

Based on the NM_CL_r set, Fig. 9 shows the results of analy-
sis of workload balancing in handling read requests, where
each point represents the percentage of the data block read-
ing operations happened on a certain datanode in a trace
file. For example, the crosses surrounded by the dashed
rectangle represent the percentages of reading operations
accomplished by datanode021 in each trace file. All points
are distributed around the solid line, i.e., 2 percent, which
means one of 50 datanodes accomplishes about 1=50 of the
total tasks. This phenomenon also exists in handling write
requests, which becomes even more obvious since the num-
ber of writing operations in NM_CL_w is more than the
number of reading operations in NM_CL_r. Therefore,
HDFS well balances the requests to all datanodes, which
improves the resource utilization and avoids overloading.

Fig. 8. Analysis of requests handling speeds (a) under different request speeds and (b) with different cluster sizes.

Fig. 9. Analysis of workload balancing in handling read requests.

708 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

4.4.3 Correctness Problems

Faults may result in correctness errors and even failures in
handling user requests. For example, fault killDN would
cause a failure in uploading a data block, i.e., an error in a
write request, and several such errors on the same data
block will result a failure of the whole request. We can
always judge if a trace in TraceBench contains any correct-
ness errors or failures, by exploring the topology of trace
tree and the description fields of contained events, like
Fig. 4 shows.

Based on the AN_Proc_killDN_w set, Fig. 10 shows the
relationships between the number of FDNs and the percent-
age of errors and failures. The curve with crosses is the per-
centage of failed block writing operations with different
number of FDNs, and the solid curve displays the theoreti-
cal percentage values. These two curves are coincident,
which validates the authenticity of our data. The curve with
squares is the percentages of the failed write requests, from
which we can conclude some statistical features, e.g., 80 per-
cent of the datanodes should be valid if we do not want the
percentage of the failed write requests to exceed 20 percent.

4.4.4 Performance Problems

Besides correctness problems, faults may also lead to perfor-
mance problems, i.e., increase of the latencies rather than
the topological changes of trace trees. Fig. 11 is plotted
based on the AN_Net_slowHDFS set, and shows the average
time of reading a block, writing a block, and RPC invoca-
tions, when some slowdowns are introduced into the net-
work of the HDFS cluster. The processing time of each
operation increases as the network becomes slower. The
slope of each trend line reflects the sensitivity of each opera-
tion with this fault. Because requiring plenty of network
communications, writing a block is the most sensitive one.
According to the trace data, the slowdown of writing opera-
tion is about 1;000 times larger than the network slowdown,
i.e., 1 millisecond slowdown in network results in about 1
second increase when writing a block. RPC is the least sensi-
tive operation, where 1 millisecond slowdown results in
about 1 millisecond increase, since only a few network inter-
actions are required in an RPC invocation.

5 THREATS TO VALIDITY

Following aspects may threaten the validity of TraceBench.

5.1 Collection System

We collected TraceBench with MTracer for the reasons men-
tioned in Section 2. MTracer stores the trace in the format of
the trace tree, which can express sequential, concurrent, and
recursive call/reply patterns [15]. However, this format is
insufficient for expressing some other behaviors, like a sin-
gle event causally depends on multiple father events [15],
which may make TraceBench invalid in certain applications,
e.g., the analysis methods in Pip [7] and Spectroscope [10]. A
solution of this limitation is to adopt the format of DAG [15].

For efficiency consideration, MTracer can not perceive
the errors and failures in traces. Therefore, there are no
explicit tags existing in traces for indicating whether the
trace is normal or not. However, like Fig. 4 and Section 4.4
shows, we can always exactly estimate a trace from the
recorded information, such as the trace topology, the corre-
sponding fault file which describes the injected faults, and
the logged information in events, like the description field
and latency field.

5.2 Monitored System

We collected our traces only on HDFS, which is a widely
used cloud storage system in academia and industry. Many
mechanisms in HDFS, like RPC, are commonly used in
other systems. And we consider various scenarios of HDFS
during collection. Therefore, TraceBench is representative
and we believe TraceBench is helpful for many trace-
oriented monitoring topics and other fields.

Our HDFS system is instrumented manually, which
leads to record accurate execution paths of user requests. To
reduce the monitoring overhead, we only instrument the
key steps of requests, which record the main processes of
handling HDFS requests. Specifically, we are more inter-
ested in the communications between hosts than the actions
inside a single host. However, this may make TraceBench
unsuitable for certain scenarios, like concerning about the
details of operations inside a host.

5.3 Collection Environment

During trace collection, the HDFS cluster contains 50 datan-
odes, which is smaller than the production systems [40].
However, the cluster size of our HDFS is large enough to
exhibit various features of HDFS for research purpose, since
a user request in HDFS always involves limited datanodes.
Moreover, it is really difficult for academic to deploy a very

Fig. 10. Analysis of correctness problems. Fig. 11. Analysis of performance problems.

ZHOU ET AL.: A DATA SET FOR USER REQUEST TRACE-ORIENTED MONITORING AND ITS APPLICATIONS 709

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

large-scale cluster in practice. On the other hand, the num-
ber of the clients is also set to 50, equalling to the number of
datanodes, which should be more in real world. However,
the workloads generated from these clients are pretty close
to the reality and can make the HDFS system in different
states, like reaching the upper limit.

Besides the faults we inject, many others exist in real sys-
tems, like dropping packets in network. Nevertheless, the
faults we choose are mainly from a mature injection tool cre-
ated by Yahoo! for Hadoop clusters, and we employ all the
fault types in this tool. Hence, we believe that the faults we
inject cover the most frequent and representative faults in
practice.

5.4 Supported Applications

Our data set can be used in many applications as Section 4
shows, however, also may fail in supporting some others. To
help for determining if TraceBench is suitable for a certain
application, we give some features of TraceBench as follows:

� Events are totally ordered in each trace;
� Does not assume global clocks;
� Concurrency exists between traces, but no concur-

rency exists in a single trace;
� No much attentions are paid to the actions inside a

single host;
� Traces do not contain synchronization points [15],

i.e., each event at most has one father event.
In addition, on the homepage of TraceBench, we list

many applications that can or cannot be supported by our
data set.

6 RELATED WORK

We have described the monitoring systems in Section 2.1,
and in this section, we mainly introduce the related data
sets. Currently, there exist some public data sets collected
from multiple hosts, just like TraceBench. However, almost
all of these data sets are resource-, job- or service-centric,
which seldom involve in the details of system running.

Resource-centric data sets record the availability of hosts
and components or the usages of resources, focusing on exter-
nal, rather than internal, information of system programs. For
example, the Failure Trace Archive (FTA) [41], [42], collected
from parallel and distributed systems, records the informa-
tion about resource failures; the Computer Failure Data
Repository (CFDR) [43] provides the failure data in super-
computers and clusters, e.g., the storage failure data; and the
Repository of Availability Traces [44] contains the events that
indicatewhether andwhen a host is available.

Job-centric data sets give a coarse-grained view of system
running, such as when a job starts and finishes, which hosts
are involved, without the details of how a job works. For
example, the Grid Observatory (GO) [45], collected on a
grid infrastructure, includes many data sets that record the
information around jobs, e.g., jobs lifecycle; the Parallel
Workloads Archive (PWA) [46] provides job-level usage
data and is widely used in the research of job scheduling
strategies for parallel systems; the Google Cluster Data [47]
describes hundreds of thousands of jobs, composed by lots
of tasks, together with the task resource usages.

Service-centric data sets focus on the aspects of services
provided by systems for supporting service computing [48]
topics. For example, the PW dataset [49], crawled from a
service registration center, records implicit feedback of real-
world web services; the Web Service QoS Dataset [50], [51]
contains plenty of real-world web service Quality of Service
(QoS) records by monitoring abundant web services, for
validating QoS-based approaches, like Ref. [52]; the CLUS
evaluation dataset [53] includes reliability data collected
from multiple web services deployed on different geo-
graphical locations, which can be used in predicting the reli-
ability of services.

In contrast, TraceBench records the fine-grained infor-
mation about handling user requests, i.e., the details
and casual relations in user requests involving multiple
hosts, and hence is user request-centric. To the best of
our knowledge, TraceBench is the first fine-grained user
request-centric open trace data set. Besides, TraceBench
also exceeds some data sets in certain aspects. For exam-
ple, the CFDR lacks normal data, and the Repository
of Availability Traces has limited information besides
availability.

7 CONCLUSION AND FUTURE WORK

In this paper, we provide a fine-grained user request-centric
open trace data set, called TraceBench, collected with a
trace-oriented monitoring system we have developed.
TraceBench is collected in a real environment considering
different scenarios, involving the cluster scale, request type,
workload speed, injected fault, etc. We employ TraceBench
in several applications to validate the usability and authen-
ticity, and the results show that TraceBench is helpful for
the trace-oriented monitoring research topics, such as
anomaly detection, performance problem diagnosis, and
temporal invariant mining. Moreover, due to the high qual-
ity of TraceBench, other related research, like system under-
standing, can also employ our data set.

In the future, we plan to: 1) accomplish the aforemen-
tioned two trace-oriented monitoring techniques, i.e., the
runtime verification based anomaly detection method and
the segmentation based performance problem diagnosis
method; 2) explore more applications on TraceBench to vali-
date our data set and to develop new methods; 3) if needed,
collect some more trace sets with a more general trace
format, like DAG, and on some other systems, e.g., Map/
Reduce.

ACKNOWLEDGMENTS

The authors are grateful to the anonymous reviewers and
the editors for their careful review of the manuscript and
for their valuable comments that improved this work. The
authors also would like to thank Haibo Mi, Yongquan Fu,
Ivan Beschastnikh, Siqi Shen, and Hengbiao Yu for the
advises of our work. This work is supported by the National
973 Program of China under the Grant No. 2014CB340703,
the National Natural Science Foundation of China under
the Grant No. 61472440, No. 61272140, and No. 61303064,
and the Guangdong Natural Science Foundation with the
Project No. 2014A030313151.

710 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Garside. (2013). Nasdaq crash triggers fear of data meltdown
[Online]. Available: http://www.theguardian.com/technology/
2013/aug/23/nasdaq-crash-data

[2] H. Mi, “Research on key techniques of performance maintenance
for cloud services,” Ph.D. dissertation, Nat. Univ. Defense Tech-
nol., Changsha, China, 2012.

[3] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. Yang,
“Chukwa, a large-scale monitoring system,” in Proc. 1st Workshop
Cloud Comput. Appl., 2008, pp. 1–5.

[4] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distrib-
uted monitoring system: Design, implementation, and experi-
ence,” Elsevier Parallel Comput., vol. 30, no. 7, pp. 817–840, 2004.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie
for request extraction and workload modelling,” in Proc. 6th USE-
NIX Conf. Symp. Opear. Syst. Des. Implementation, 2004, pp. 259–272.

[6] M. Y. Chen, E. Kcman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem determination in large, dynamic Internet serv-
ices,” in Proc. Int. Conf. Dependable Syst. Netw., 2002, pp. 595–604.

[7] P. Reynolds, C. E. Killian, J. L.Wiener, J. C. Mogul,M. A. Shah, and
A. Vahdat, “Pip: Detecting the unexpected in distributed systems,”
in Proc. 3rd Conf. Netw. Syst. Des. Implementation, 2006, pp. 115–128.

[8] L.R. Sivalingam, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Sayandeh, “AppInsight: Mobile app performance monitor-
ing in the wild,” in Proc. 10th USENIX Conf. Oper. Syst. Des., 2012,
pp. 107–120.

[9] Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad, I.
Beschastnikh, and J. Cappos, “NetCheck: Network diagnoses
from blackbox traces,” in Proc. 11th USENIX Symp. Netw. Syst.
Des. Implementation, 2014, pp. 115–128.

[10] R. R. Sambasivan, A. X. Zheng, M. D. Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger, “Diagnosing
performance changes by comparing request flows,” in Proc. 8th
USENIX Conf. Netw. Syst. Des. Implementation, 2011, pp. 43–56.

[11] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, “Toward fine-
grained, unsupervised, scalable performance diagnosis for pro-
duction cloud computing systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 6, pp. 1245–1255, Jun. 2013.

[12] J. Zhou, Z. Chen, J. Wang, Z. Zheng, and M. R. Lyu, “Trace bench:
An open data set for trace-oriented monitoring,” in Proc. IEEE 6th
Int. Conf. Cloud Comput. Technol. Sci., 2014, pp. 519–526.

[13] J. Zhou, Z. Chen, H. Mi, and J. Wang, “MTracer: A trace-oriented
monitoring framework for medium-scale distributed systems,” in
Proc. IEEE 8th Int. Symp. Service Oriented Syst. Eng., 2014, pp. 266–271.

[14] Apache. (2015). Hadoop [Online]. Available: http://hadoop.
apache.org/

[15] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger, “So, you
want to trace your distributed system? Key design insights from
years of practical experience,” Carnegie Mellon Univ., Pittsburgh,
PA, USA, Tech. Rep. CMU-PDL-14-102, 2014.

[16] X. Zhao, Y. Zhang, D. Lion, M. FaizanUllah, Y. Luo, D. Yuan, and
M. Stumm, “lprof : A non-intrusive request flow profiler for dis-
tributed systems,” in Proc. 11th USENIX Symp. Oper. Syst. Des.
Implementation, 2014, pp. 629–644.

[17] B. Sang, J. Zhan, G. Lu, H. Wang, D. Xu, L. Wang, Z. Zhang, and
Z. Jia, “Precise, scalable, and online request tracing for multi-tier
services of black boxes,” IEEE Trans Parallel Distrib. Syst., vol. 23,
no. 6, pp. 1159–1167, Jun. 2012.

[18] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and
R. N. Chang, “vPath: Precise discovery of request processing paths
from black-box observations of thread and network activities,” in
Proc. Conf. USENIXAnnu. Tech. Conf., 2009, pp. 19–32.

[19] E. Thereska, B. Salmon, J. D. Strunk, M. Wachs, M. Abd-El-Malek,
J. L�opez, and G. R. Ganger, “Stardust: Tracking activity in a dis-
tributed storage system,” in Proc. Joint Int. Conf. Meas. Model. Com-
put. Syst., 2006, pp. 3–14.

[20] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-
trace: A pervasive network tracing framework,” in Proc. 4th USE-
NIX Conf. Netw. Syst. Des. Implementation, 2007, pp. 271–284.

[21] �U. Erlingsson, M. Peinado, S. Peter, and M. Budiu, “Fay: Extensi-
ble distributed tracing from kernels to clusters,” in Proc. 23rd
ACM Symp. Oper. Syst. Principles, 2011, pp. 23–26.

[22] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M.
Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-
scale distributed systems tracing infrastructure,” Google, Moun-
tain View, CA, USA, Tech. Rep. dapper-2010-1, 2010.

[23] R. Fonseca, M. J. Freedman, and G. Porter, “Experiences with trac-
ing causality in networked services,” in Proc. Internet Netw. Man-
age. Conf. Res. Enterprise Netw., 2010, p. 10.

[24] W. Wang, “End-to-end tracing in HDFS,” Master’s thesis, Carne-
gie Mellon Univ., Pittsburgh, PA, USA, 2011.

[25] MySQL. (2015). MySQL: The world’s most popular open source
database [Online]. Available: http://www.mysql.com/

[26] H. Mi, H. Wang, H. Cai, Y. Zhou, M. R. Lyu, and Z. Chen, “P-
Tracer: Path-based performance profiling in cloud computing sys-
tems,” in Proc. IEEE 36th Annu. Comput., Softw., Appl. Conf., 2012,
pp. 509–514.

[27] Yahoo!. (2012). AnarchyApe [Online]. Available: https://github.
com/yahoo/anarchyape

[28] Apache. (2015). Hadoop Common-ASF JIRA [Online]. Available:
https://issues.apache.org/jira/browse/HADOOP

[29] Apache. (2015). CloudStack [Online]. Available: http://
cloudstack.apache.org/

[30] A. Pnueli, “The temporal logic of programs,” in Proc. 18th Annu.
Symp. Found. Comput. Sci., 1977, pp. 46–57.

[31] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu, “An over-
view of the MOP runtime verification framework,” Int. J. Softw.
Tools Technol. Transfer, vol. 14, no. 3, pp. 249–289, 2012.

[32] M. Leucker and C. Schallhart, “A brief account of runtime ver-
ification,” J. Logic Algebraic Program., vol. 78, no. 5, pp. 293–303,
2009.

[33] J. Zhou, Z. Chen, J. Wang, Z. Zheng, and W. Dong, “A runtime
verification based trace-oriented monitoring framework for cloud
systems,” in Proc. 25th IEEE Int. Symp. Softw. Rel. Eng. Workshops,
2014, pp. 152–155.

[34] H. Mi, H. Wang, G. Yin, H. Cai, Q. Zhou, and T. Sun,
“Performance problems diagnosis in cloud computing systems by
mining request trace logs,” in Proc. IEEE Netw. Oper. Manage.
Symp., 2012, pp. 893–899.

[35] H. Mi, H. Wang, Y. Zhou, M. R. Lyu, and H. Cai, “Localizing root
causes of performance anomalies in cloud computing systems by
analyzing request trace logs,” Sci. China: Inf. Sci., vol. 55, no. 12,
pp. 2757–2773, 2012.

[36] J. H. Zheng, L. J. Zhang, R. Zhu, K. Ning, and D. Liu, “Parallel
matrix multiplication algorithm based on vector linear combina-
tion using mapreduce,” in Proc. IEEE 9th World Congr. Serv., 2013,
pp. 193–200.

[37] J. Zhou, Z. Chen, and J. Wang, “Segmentation based online perfor-
mance problem diagnosis,” in Proc. 37th Int. Conf. Softw. Eng.,
2015, pp. 807–808.

[38] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy, and T. E.
Anderson, “Mining temporal invariants from partially ordered
logs,” ACM SIGOPS Oper. Syst. Rev., vol. 45, no. 3, pp. 39–46, 2011.

[39] Synoptic. (2011). Studying logged behavior with inferred models
[Online]. Available: https://code.google.com/p/synoptic/

[40] Z. Ren, J. Wan, W. Shi, X. Xu, and M. Zhou, “Workload analysis,
implications, and optimization on a production hadoop cluster: A
case study on taobao,” IEEE Trans. Serv. Comput., vol. 7, no. 2,
pp. 307–321, Apr.–Jun. 2014.

[41] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The failure trace
archive: Enabling comparative analysis of failures in diverse dis-
tributed systems,” in Proc. 10th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput., 2010, pp. 398–407.

[42] B. Javadi, D. Kondo, A. Iosup, and D. Epema, “The failure trace
archive: Enabling the comparison of failure measurements and
models of distributed systems,” J. Parallel Distrib. Comput., vol. 73,
no. 8, pp. 1208–1223, 2013.

[43] B. Schroeder and G. Gibson, “The computer failure data reposi-
tory (CFDR): Collecting, sharing and analyzing failure data,” in
Proc. ACM/IEEE Conf. Supercomput., 2006, p. 154.

[44] B. Godfrey. (2010). Repository of availability traces [Online].
Available: http://pbg.cs.illinois.edu/availability/

[45] C. Germain-Renaud, A. Cady, P. Gauron, M. Jouvin, C. Loomis, J.
Martyniak, J. Nauroy, G. Philippon, and M. Sebag, “The grid
observatory,” in Proc. 11th IEEE/ACM Int. Symp. Cluster, Cloud
Grid Comput., 2011, pp. 114–123.

[46] D. G. Feitelson, et al. (2005). Parallel Workloads Archive [Online].
Available: http://www.cs.huji.ac.il/labs/parallel/workload/

[47] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage
traces: Format + schema,” Google, Mountain View, CA, USA,
Tech. Rep., Nov. 2011.

[48] L. J. Zhang, J. Zhang, and H. Cai, Services Computing. New York,
NY, USA: Springer, 2007.

ZHOU ET AL.: A DATA SET FOR USER REQUEST TRACE-ORIENTED MONITORING AND ITS APPLICATIONS 711

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

http://www.theguardian.com/technology/2013/aug/23/nasdaq-crash-data
http://www.theguardian.com/technology/2013/aug/23/nasdaq-crash-data
http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.mysql.com/
https://github.com/yahoo/anarchyape
https://github.com/yahoo/anarchyape
https://issues.apache.org/jira/browse/HADOOP
http://cloudstack.apache.org/
http://cloudstack.apache.org/
https://code.google.com/p/synoptic/
http://pbg.cs.illinois.edu/availability/
http://www.cs.huji.ac.il/labs/parallel/workload/

[49] G. Tian, J. Wang, K. He, P. C. K. Hung, and C. Sun, “Time-aware
web service recommendations using implicit feedback,” in Proc.
IEEE Int. Conf. Web Serv., 2014, pp. 273–280.

[50] Z. Zheng, M. R. Lyu, et al. (2010). WS-DREAM [Online]. Avail-
able: http://www.wsdream.net

[51] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating QoS of real-
world web services,” IEEE Trans. Serv. Comput., vol. 7, no. 1,
pp. 32–39, Jan.–Mar. 2014.

[52] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “QoS-aware web service
recommendation by collaborative filtering,” IEEE Trans. Serv.
Comput., vol. 4, no. 2, pp. 140–152, Apr.–Jun. 2011.

[53] M. Silic, G. Delac, and S. Srbljic, “Prediction of atomic web serv-
ices reliability based on k-means clustering,” in Proc. 9th Joint
Meeting Found. Softw. Eng., 2013, pp. 70–80.

Jingwen Zhou received the bachelor’s degree
from the National University of Defense Technol-
ogy and was recommended admission for the
master’s degree in this school in 2009. In 2011, he
was again recommended admission for the doc-
toral degree in this school. He is currently working
toward the PhD degree from the College of Com-
puter, National University of Defense Technology,
Changsha 410073, China, and works in the
National Laboratory for Parallel and Distributed
Processing (PDL). His current research interests

include cloud computing, distributed systems, and system reliability.

Zhenbang Chen received the PhD degree from
the National University of Defense Technology, in
2009. He is an assistant professor in the College
of Computer, National University of Defense
Technology, Changsha, China. He served as a
PC member of conferences such as ICTAC 2014
and FACS 2014, and served as a reviewer for
international journals such as SCP and JSS. His
research interests include program analysis, com-
ponent-based formal modeling and verification,
and cloud computing. He is amember of the IEEE.

Ji Wang received the PhD degree from the
National University of Defense Technology. He is
a professor of the College of Computer, National
University of Defense Technology, Changsha,
China. He has been awarded National Natural
Science Fund for Distinguished Young Scholars
of China, and Professorship of Chang Jiang
Scholars Program of Ministry of Education of
China. He has been an editorial board member of
the Journal of Systems and Software, the Sci-
ence China (Information Sciences). He served as

a PC member of conferences such as FM, SAS, ATVA, EMSOFT,
COMPSAC, APSEC, HASE. His current research interests include for-
mal analysis and verification of software systems, high confidence soft-
ware development, and distributed computing. He has published more
than 80 refereed journal articles and conference papers in these areas.
He is a member of the IEEE.

Zibin Zheng received the PhD degree from the
Chinese University of Hong Kong, Hong Kong,
China, in 2011. He is an associate research fel-
low in the Shenzhen Research Institute, the Chi-
nese University of Hong Kong, Shenzhen, China.
He received the ACM SIGSOFT Distinguished
Paper Award at ICSE 2010, the Best Student
Paper Award at ICWS 2010, First Runner-up
Award at IEEE Hong Kong Postgraduate
Research Paper Competition, and the IBM PhD
Fellowship Award 2010-2011, etc. He served as

a PC member of conferences such as CLOUD 2009, CLOUDCOMPUT-
ING 2011, SCC 2012, ICSOC 2012, and served as a reviewer for inter-
national journals such as TSE, TPDS, TSC, IJCCBS, IJBPIM. His
current research interests include service computing, cloud computing,
and software reliability engineering. He is a member of the IEEE.

Michael R. Lyu received the PhD degree from
the University of California, Los Angeles, in 1988.
He is a professor in the Department of Computer
Science and Engineering, the Chinese University
of Hong Kong, Hong Kong, China. He initiated
the First International Symposium on Software
Reliability Engineering (ISSRE) in 1990. He
served as a chair or co-chair for many confer-
ences, such as ISSRE 2001, WWW 2010, SCC
2010, DSN 2011. He has been frequently
invited as a keynote or tutorial speaker to con-

ferences and workshops in the U.S., Europe, and Asia. His current
research interests include software reliability engineering, distributed
systems, service computing, information retrieval, social networks,
and machine learning, and he has published more than 400 refereed
journal articles and conference papers in these areas. He is a fellow
of the IEEE and the AAAS for his contributions to software reliability
engineering and software fault tolerance.

712 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 11, NO. 4, JULY/AUGUST 2018

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 14:01:34 UTC from IEEE Xplore. Restrictions apply.

http://www.wsdream.net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

