
Received March 21, 2020, accepted May 26, 2020, date of publication June 10, 2020, date of current version June 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001440

CDS: A Cross–Version Software Defect Prediction
Model With Data Selection
JIE ZHANG 1,2, (Graduate Student Member, IEEE), JIAJING WU 1,2, (Senior Member, IEEE),
CHUAN CHEN 1,2, (Member, IEEE), ZIBIN ZHENG 1,2, (Senior Member, IEEE),
AND MICHAEL R. LYU3, (Fellow, IEEE)
1School of Computer and Data Science, Sun Yat-sen University, Guangzhou 510006, China
2National Engineering Research Center of Digital Life, Sun Yat-sen University, Guangzhou 510006, China
3Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Corresponding author: Jiajing Wu (wujiajing@mail.sysu.edu.cn)

This work was supported in part by the National Key Research and Development Program under Grant 2016YFB1000101, and in part by
the National Natural Science Foundation of China under Grant 61973325, Grant 61503420, and Grant 61722214.

ABSTRACT Over the past decade, a large number of software defect prediction approaches have been
proposed to identify the defect-prone modules by mining software repositories. Recently, a novel scenario
called Cross–Version Defect Prediction (CVDP) begins to draw increasing research interests, as it is more
reasonable and applicable in practice to adopt the labeled defect data of previous versions to predict defects in
the current version of the same project. As a software project often has multiple previous versions, CVDP on
this kind of projects will face the following two critical but seldom reported issues, namely, data distribution
difference and class overlapping. In this paper, we address these two issues by solving a version selection
problem via a Cross–version model with Data Selection (CDS). The proposed CDS is a novel framework
which treats the defect prediction of existing and newfiles in different ways. For the existing files, we propose
a novel Clustering–basedMulti–Version Classifier (CMVC), which can automatically select the training data
from themost relevant and noise-free versions by assigning them higher weights than the others.We proposed
a Weighted Sampling Model (WSM) for the new files which have never appeared in previous version by
incorporating the outputs of CMVC. We evaluate the proposed CDS model on 28 versions across 8 software
projects, and the experimental results demonstrate that CDS outperforms three baseline methods and a state-
of-the-art approach in terms of three prevalent performance indicators.

INDEX TERMS Software defect prediction, data selection, cross–version defect prediction.

I. INTRODUCTION
Defects in a software system may cause improper behaviors
and even lead to great financial loss and critical safety
accidents. Traditionally, techniques such as testing and code
reviews are adopted to identify and correct defects in software
systems. However, it can be excessively time-consuming and
infeasible to test all of the components in the increasingly
large–scale and complex software system in modern days.
Considering the limited resource available, defect prediction,
which aims to automatically identify the most defect-prone
modules, has attracted profound attentions in the area of
software engineering.

Defect prediction is often formulated as a supervised
binary classification problem. The prediction models are

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

trained with labeled defect data extracted from software
repositories. Based on the source of training and testing
datasets, defect prediction models proposed in previous
work [1]–[7] can be categorized into two main categories:
Within–Project Defect Prediction (WPDP) andCross–Project
Defect Prediction (CPDP). In WPDP models, both the
training and test sets are collected from the same software
project. While for CPDP models, training data from several
different software projects are utilized for defect prediction
task in a particular project.

Compared with WPDP, CPDP approaches can overcome
the problem of data insufficiency but often yields rela-
tively worse prediction performance due to the difference
between the data distributions of the source and the
target projects. On the other hand, most WPDP models
proposed in existing literature are evaluated based on
cross-validation [2], [3], [8]–[10]. In experiments of these

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110059

https://orcid.org/0000-0003-2652-8578
https://orcid.org/0000-0001-5155-8547
https://orcid.org/0000-0002-7048-3445
https://orcid.org/0000-0001-7872-7718

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

studies, labeled data from a specific version of a software
project are randomly divided into training and test sets, and
thus this kind of models are referred to as Inner–Version
Defect Prediction (IVDP). In practice, however, a particular
software is usually developed in successive versions, and
it is impractical to use the data from the current or future
versions to predict the defects in the upcoming version.
To this end, recent studies [11]–[15] proposed to train
the classification model by utilizing the labeled modules
of previous versions of a project, and then predict defect
modules in its subsequent version, i.e., Cross–Version Defect
Prediction (CVDP).

Though several methods have been proposed for CVDP,
most of them consider only one prior version for model
training. However, it’s common for a software project to have
multiple previous versions and CVDP on this kind of projects
faces the following two critical but seldom reported issues,
namely, data distribution difference and class overlapping,
which will be discussed in the next section. To address
the two issues, in this paper, we propose a Cross-version
defect prediction model with Data Selection (CDS), which
treats the defect prediction of existing and new files in
distinct ways. Experiments on 28 versions across 8 software
projects demonstrate the superiority of CDS compared over
baseline methods. The main contributions of the paper can be
summarized as follows:

1) We put forward and validate two critical but seldom
mentioned issues in CVDP, i.e., the variation of data
distribution difference and the class overlapping prob-
lem caused by same–name files’ repeated appearances
in more than one versions. We conducted extensive
statistical studies to demonstrate the existence of these
two issues and whether they affect the prediction
performance of CVDP models.

2) We proposed a novel cross–version defect prediction
model called CDS to solve the above-mentioned issues
by using two different prediction strategies for existing
and new files. In particular, the CDS predicts the
labels of existing files by minimizing the proposed
objective function, while the defect labels of new files
are predicted in an weighted sampling based manner.

3) We evaluated the proposed CDS on 28 versions across
8 software projects with three prevalent performance
indicators, namely, F-measure, g-mean and Balance.
Experimental results demonstrate that CDS achieves
significant performance improvement compared with
three traditional baseline methods and a state-of-the-art
CVDP method.

II. BACKGROUND AND MOTIVATION
Defect prediction in software engineering is often formulated
as a supervised binary classification problem. Based on
the source of training and test data, defect prediction
techniques can be classified into two main categories:
within-project defect prediction (WPDP) and cross-project
defect prediction (CPDP).

A. CROSS–PROJECT DEFECT PREDICTION
The scenario of CPDP has been proposed to address
the problem of data insufficiency, which WPDP often
suffers from, by utilizing training data from other projects.
Various CPDP approaches have been proposed in previous
work. Zimmermann et al. investigated the feasibility of
cross-project defect prediction in [5]. Nam et al. [1] adopted
the transfer learning approach to make data distribution of
project similar. Later in [16], Peters et al. considered the
privacy problem in CPDP. Zhang et al. [6] proposed an
unsupervised model to handle the homogeneity between
software projects.While in [17],Wu et al. applying an unified
semi-supervised approach to deal with the insufficiency of
historical data for both cross project and within project
scenarios.

Compared with WPDP, the performance of CPDP is worse
due to the difference between the data distributions of the
source and the target projects. Although several approaches
based on transfer learning [1], [18] have been adopted to
tackle this problem, the prediction accuracy of the CPDP
models is still relatively low because of some other factors,
such as dissimilar project contexts, different development
settings and heterogeneous set of metrics, etc. [19].

B. INNER–VERSION DEFECT PREDICTION
In previous studies, the issue of WPDP has been extensively
investigated. Early studies extract software metrics from the
perspective of complexity [20], [21], Object-Oriented [22],
software dependency network [2], software process [23] and
so on [8], [24]–[26]. In recent years, variousmachine learning
techniques have been employed to enhance the prediction
performance. In [3], Xiao et al. proposed a dictionary-based
predictionmethod. Lu et al. combined semi-supervised learn-
ing with dimension reduction to achieve better prediction
performance [27]. Yang el al. applying a ranking model
to optimize the efficiency [28]. Besides, some methods are
designed to address problems such as data noise [29] and
class imbalance [4], [30]–[32].

Under the WPDP scenario, most prediction models are
designed and tested based on the method of cross-validation,
which divides the data collected from one particular version
of a software project randomly into training and test sets,
i.e., Inner–Version Defect Prediction (IVDP). In IVDP, data
in the training and test sets have identical or similar data
distributions and share the same bug pattern. In this way,
IVDP can usually achieve decent prediction results.

However, the disadvantage of IVDP being often ignored
is its inapplicability for industry use. The rationale behind
the IVDP models is the assumption that the training and
test sets are randomly selected from all collected data
and should share the identical data distribution. Yet many
practical cases deviate from this assumption, in that the
defect prediction models can only be trained using the labeled
data collected from previous versions, and then applied to
predict defect-prone modules in the current or upcoming

110060 VOLUME 8, 2020

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

versions. However, datasets collected from different versions
do not necessarily share the same data distribution, which is
contradictory to the assumption of cross-validation.

C. CROSS–VERSION DEFECT PREDICTION
As discussed above, IVDP may not be applicable for
practice use due to its dependency on cross-validation.
On the other hand, despite various approaches to assimilate
different distributions, the CPDP still cannot ensure solid
performance. Therefore, in this paper, we pay special
attention to the scenario of Cross–Version Defect Prediction
(CVDP), in which only the data from previous versions
within a particular software project are used for training
and the trained model is tested on the current version of
this software project. In the CVDP scenario, factors like
project context, development settings, software architectures
are often similar or identical in different versions of the
same project, resulting in greater similarities among the data
distributions and bug patterns of different versions, compared
with those of different projects.

Shukla et al. formulated the CVDP problem as a
multi-objective optimization problem and proposed a
multi-object logistic regression model [13]. In [12],
the method of kernel PCA was adopted to improve the
prediction performance of CVDP. Yang et al. applied
ridge regression model to deal with the multicollinearity
problems [14]. Lu et al. noticed that the data distribution can
differ from version to version, and integrated the method of
active learning and dimensionality reduction to address this
issue [11]. However, they did not investigated whether the
distribution difference can significantly impact the prediction
performance.

However, although a software project commonly has
multiple previous versions, existing CVDP models usually
use the collected data from only one prior version for model
training and do not consider the issues of data distribution
difference variance and class overlapping in the CVDP
scenario with multiple previous versions:

1) DATA DISTRIBUTION DIFFERENCE
A software project usually has multiple versions, and the
correlation and similarity between the data from each prior
version and the current one can vary to a large extent. Besides,
existing research has demonstrated that the defects collected
by mining software repositories usually contain a certain
amount of noise due to mislabeling [29], [33], and multiple
previous versions may suffer from different extents of data
noise. Most machine learning classifiers are designed under
the assumption that the training and test data share the same
data distribution, and the distribution difference between the
training and test data can significantly affect the classification
performance. Previous studies on CVDP usually train the
prediction models using the data from one particular version
(commonly the latest one) or the merged data of all prior
versions. However, to improve the prediction performance

of CVDP, it is more reasonable to choose the prior version
whose data distribution is most similar to the current version.

2) CLASS OVERLAPPING
In software development, software projects update in a
dynamic process and the prior version evolves into the
subsequent versions by adding, deleting or modifying some
source code files. Two versions of the same software project
usually contain a large number of files with the same names.
In current defect prediction approaches, several features of
software modules are extracted from a variety of aspects such
as complexity, object-orientation, dependency relationships,
etc.. In most cases, there exists little difference between the
files with the same name and thus the extracted features
are mostly identical [34]. However, such files may be
labeled oppositely in different versions for the following
two reasons: (1) Although the corresponding changes for
files with the same name may be tiny, they can induce or
remove software defects. (2) Mislabeling may exist during
the collection of defect information because mistakes are
ubiquitous in human activities. Therefore, datasets collected
from different versions of the same software project may
contain instances with similar features but opposite labels,
which can further cause the issue of class overlapping for
the classification problem and result in degradation of the
predictive performance.

Motivated by these two critical but rarely discussed issues
for CVDP, we propose a novel cross-version defect prediction
model with data selection to address the following three
research questions:

RQ1 For the same software project, is there a significant
difference between the data distributions of various
versions? And does this difference affect the perfor-
mance of defect prediction models?

RQ2 Are there a large number of same–name files which
are similar in terms of the extracted features but
labeled oppositely?

RQ3 If the above two problems exist, how can one
propose an effective method to improve the overall
prediction performance of CVDP?

III. PRELIMINARY STUDIES
To answer RQ1 and RQ2, we conducted empirical studies on
the MORPH dataset [35] collected by Jurecko and Madeyski,
which has been widely used in previous defect prediction
studies [4], [7], [12], [36], [37]. TheMORPH dataset contains
28 versions of 8 software systems, each instance in the dataset
represents a source code file and consist of 20 object-oriented
features and the defect label. The features are extracted from
source code by using the CKJM tools [38]. The detailed
description of these features can be found in [35] and a brief
explanation of them is listed below.

• WMC: weighted methods per class
• DIT: depth of Inheritance Tree
• NOC: number of children

VOLUME 8, 2020 110061

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

• CBO: coupling between object classes
• RFC: response for a class
• LCOM: lack of cohesion in methods
• LCOM3: lack of cohesion in methods, different from
LCOM

• NPM: number of public methods
• DAM: data access metric
• MOA: weighted methods per class
• MFA: measure of functional abstraction
• CAM: cohesion among methods of class
• IC: inheritance coupling
• CBM: coupling between methods
• AMC: average method complexity
• AC: afferent couplings
• EC: efferent couplings
• Max(CC): max value of McCabe’s cyclomatic
complexity

• Avg(CC): average value of McCabe’s cyclomatic
complexity

• LOC: lines of code

A. STUDY ON RQ1
The empirical study on RQ1 consists of two parts. Firstly,
we investigate the data distribution difference between
different versions of the same software project by analyzing
the statistical properties. Secondly, we compare prediction
performance of classificationmodels built on data of different
versions to validate the data distribution difference can
significantly affect the prediction performance.

In most software projects, a large number of source code
files in a later version are inherited from previous versions
with tiny changes, which may make the features of different
versions very similar. However, the defect labels of a source
code file can vary from version to version. Therefore, on the
task of investigating the data distribution difference, we focus
on comparing the ratio of defective source code files of
different software versions.

In Table 1, the total number of files and the ratio of
defective source code files in each version are compared.
We can observe that different versions of the same project are
obviously different in terms of both scale and defect ratio.
For example, in the first project ‘camel’, only 3.8% files
are defective in version 1.0, while the defect ratio increases
dramatically to 35.5% in version 1.2 and then decreases to
16.6% in the next version. Thus, we can conclude that the
obvious difference of data distributions between versions of
the same software project does exist.

F − measure =
2 ∗ Precision ∗ Recall
Precision+ Recall

, (1)

g− mean =

√
(

TP
TP+ FN

) ∗ (
TN

TN + FP
), (2)

Balance = 1−

√
(0− pf)2 + (1− Recall)2

2
. (3)

TABLE 1. File numbers and defect ratios of the MORPH dataset.

TABLE 2. Basic metrics for defect prediction.

Next, we conduct defect prediction experiments on these
software projects using three popular classification algo-
rithms, i.e., Random Forest [39], Logistic Regression [40]
and Naive Bayes [41].

The prediction performance is measured with three
indicators, namely, F-measure, g-mean and Balance, which
have been widely adopted in existing studies on defect
prediction [12], [42], [43]. These three indicators are defined
in (1), (2) and (3) according to the basic metrics given in
TABLE 2, respectively.

In the experiments, the classificationmodels are built using
the Weka tool [44] with default parameters. As shown in
TABLE 3, the performance of a particular defect prediction
model can vary a lot due to the difference of training data
from various versions. Again, taking the ‘camel’ project as
an example, all the three classification algorithms perform
poorly when the models are trained on version 1.0 which
contain only 3.8% defective files. However, when using
version 1.2 as the training set, the prediction performance

110062 VOLUME 8, 2020

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

TABLE 3. Prediction performance of three benchmark classification models on each cross–version pair.

improves significantly for all three algorithms under all
indicators. Therefore, data distribution difference does affect
the performance of defect prediction models on a large
scale.

To select the training data under the scenario of CVDP,
some previous studies prefer the latest version, or simply
merge data from all prior versions as the training set.
According to TABLES 1 and 3, using the latest version or the
merged data as training data cannot ensure the best prediction
performance. Therefore, a more reasonable and dedicated
method is required to select the training data in CVDP.

Based on the experimental results discussed above,
we conclude the answer to RQ1 as follows. There does
exist a significant difference between the data distributions
of various versions for the same software project, and such
a difference has a considerable influence on the prediction
performance of CVDP models. Therefore, choosing training
data with less noise and similar data distribution to the test set
is of great importance for building CVDP models.

B. STUDY ON RQ2
In CVDP, changes of a source code file between two different
versions may induce or fix defects, but it can hardly be
reflected in the extracted features. Therefore, for different
versions, there may exist some instances with similar features
but opposite defect labels.

In TABLE 4, we count and record the number of files
with the same file names between every pair of versions
in the column ‘Same File’, and then calculate and record

the number and percentage of oppositely labeled files in the
column ‘Conflict Label’.

Results listed in TABLE 4 indicate that almost every ver-
sion pair contains a large number of same–name files, and a
considerable percentage of these files are labeled oppositely.
Moreover, to investigate whether the cross–version changes
of these files can be reflected in the features, we calculate the
average similarity of the corresponding instances using the
cosine similarity [45]. Surprisingly, we find that the average
cosine similarities of these same–namefiles all equal 1, which
indicates that the cross-version changes of a file can hardly be
reflected by the features.

Thus for RQ2, we can conclude that there are a great
number of same–name source code files from different
versions of a software project. Cross-version changes of
these files can hardly be detected by currently used features.
However, these files may be labeled differently due to the
defect inducing and fixing nature of these changes. Therefore,
CVDP dataset does contain a large number of instances that
have similar features but opposite labels. Such a phenomenon
can lead to the issue of class overlapping, which will largely
degrade the performance of defect prediction models.

IV. METHOD
With the first two research questions answered, it is critical
to propose a CVDP approach to solve the two issues listed in
Section II-C, namely, data distribution difference and class
overlapping. In this work, we address these two issues by
solving a version selection problem because the first issue

VOLUME 8, 2020 110063

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

TABLE 4. Class overlapping of each cross–version pair.

ask for selecting the prior version with the minimum data
distribution difference as the training set, while the second
one can be solved by deciding which version to trust when
facing the problem that the same-name files from different
versions are labeled contradictorily.

Here we address the version selection problem by giving
each version a proper weight in the learning process.
We propose a Cross–version defect prediction model with
Data Selection (CDS) to address the version selection
problem by learning a proper weight for each version and
predict the labels of the current version in the same learning
process.

A. METHOD OVERVIEW
Suppose we have m labeled datasets of previous versions
X1,X2, . . . ,Xm and the current version dataset X . The
i-th version contains ni instances X i = {x i1, x

i
2, . . . , x

i
ni}

labeled with f i = (f i1, f
i
2, . . . , f

i
ni) where f

i
j takes 1 if the

corresponding file is defective, and −1 if it is non-defective.
The target of CVDP is to predict the labels of the current
version f = (f1, f2, . . . , fn).
Fig. 1 provides an overview of the proposed CDS which

consists of threemain parts: Data Processor, Clustering-based
Multi–Version Classifier (CMVC) and Weighted Sampling

Model (WSM). The Data Processor splits X into existing files
X exist and new files Xnew, with X exist referring to the files
that have appeared in any previous version and Xnew denoting
the files that have never appeared in any previous version.
Further, to facilitate later calculation, Data Processor extends
the label vectors, f 1, f 2, . . . , f m, to the same size by adding
zeros, and calculates the indicator matrix I i for each previous
version, which is a diagonal matrix with I ikk = 1 if the file
with index k appears in both the i-th and the current versions,
and I ikk = 0 otherwise.
When predicting the labels, X exist and Xnew are treated

differently. The reason why we design this novel strategy is
that most machine learning or statistical algorithms are based
on a fundamental assumption that the instances of a dataset
should be independently sampled from the same distribution.
This assumption may hold true for the new files. Yet for the
instances from X exist , as discussed in Section II, they are
usually dependent on the same–name files in the training
dataset.

Here, CMVC is the core module of CDS, and is designed
to solve the version weighting problem and to predict the
labels of X exist by solving an optimization problem (the
rationale and a detailed description of CMVC will be given
in Section IV-B). Further, with the version weight problem
solved, WSM is designed to predict the labels of Xnew using a
classic classification model trained on the data sampled from
previous versions according to the outcome version weights
of CMVC.

B. CLUSTERING–BASED MULTI–VERSION CLASSIFIER
In this work, we propose a novel Clustering–based Multi–
Version Classifier (CMVC) to assign each prior version a
proper weight and obtain the predicted labels of the existing
files by minimizing an objective function.

The intuitive ideas of our designed objective function can
be summarized as follow:

I1 Files with similar features should be labeled similarly,
which is a basic assumption of machine learning methods.

I2 Files in the current version may inherit defect patterns
from previous versions. When predicting the labels of
files in the current version, labels of the same-name
files in the previous versions should be considered. More
specifically, the label of a file in the current version is
more likely to be similar to its labels in the previous
versions with higher weights (higher data relevance and
less noise).

I3 Previous versions with higher data relevance should
be given higher weights. As discussed in II-C, the data
distribution of different versions can vary a lot, giving
higher weights to more relevant versions can improve the
prediction performance.

I4 Previous versions with less data noise should be given
higher weights. As discussed in II-C, defect prediction
datasets may contain mislabeling noises. Therefore,
we should assign larger weights to the versions with less
noises.

110064 VOLUME 8, 2020

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

FIGURE 1. Overview of proposed CDS model.

1) OBJECTIVE FUNCTION
Based on the intuitive ideas above, we design the objective
function of CMVC as fellows:

Firstly, to implement the first idea I1, we propose to use
a clustering method to identify the instances with similar
features and then assign these instances with identical or
similar labels. Among various clustering techniques, here we
employ spectral clustering [46] because it does not require
an explicit model of data distribution and its effectiveness
for handling data with a complex and unknown space shape.
Spectral clustering is based on the graph Laplacian matrix
of the data, which is defined as L = D − A, where A is the
adjacency matrix of the similarity graph with Aij representing
the similarity between two instances, and D is a diagonal
matrix with Dii =

∑n
j=1 Aij (n is the number of instances).

As an unsupervised learning algorithm, spectral clustering
aims to minimize the following objective function:

min Jf = f TLf =
1
2

n∑
i,j=1

Aij(fi − fj)2 (4)

where f is the label vector of the instances. Apparently,
to minimize this objective function, similar instances should
be given the same or similar labels.

Secondly, we consider the implementation of I2.
To facilitate understanding, we first assume that the weight of
each versionwi has been determined, which will be discussed
later. The second idea can be implemented as:

min Jf =
m∑
i=1

wi
1
ci

∥∥∥I i(f − f i)∥∥∥2
2

(5)

where f i and wi are the label vector and weight of the i-th
version, respectively, ci refers to the number of same-name
files between current versions and the i-th version, and Ii
refers to the indicator matrix of the i-th version.

In (5),
∥∥I i(f − f i)∥∥22 represents the label vector difference

between the current version and the i-th previous version.
We use 1

ci
to eliminate the influence of the number of

same-name files on the results, and Ii to exclude the files that
do not exist in both versions. By minimizing this function,
the label of a file in the current version will be more similar
to its labels in previous versions with higher weights.

After implementing these two ideas about label prediction,
we next consider the implements of the third idea I3 and
the fourth idea I4 about version weights. Again, to facilitate
understanding, we can also assume that the labels of the
current version are fixedwhen discussing the versionweights.

We also use the label vector difference to measure
the data relevance and implement I3. As investigated in
Section III-B, the same-name files from different versions
usually have similar features, while their labels can distinct
a lot. Thus, the label difference of these files can be used to
reflect the data relevance from different versions. Therefore,
the third idea is implemented as:

min Jw =
m∑
i=1

wi
1
ci

∥∥∥I i(f − f i)∥∥∥2
2
+ λ ‖w‖22

s.t. wT 1 = 1, wi ≥ 0 (6)

where, w = (w1,w2, . . . ,wm) is the version weights vector
and λ is a non-negative parameter. This formula looks similar
to (5), but the variable of it is changed to w. The first
term in (6) represents the label vector difference between
the current version and the i-th previous version, which
can reflect the data relevance. The second term is used for
the regularization of version weights. By minimizing this
function, previous versions that are less different from the
current version in terms of label vectors are considered to
have higher data relevance and will be given higher weights.

Finally, we consider data noise in each previous
version to decide the version weights, which refers to

VOLUME 8, 2020 110065

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

the fourth idea I4. Since the labels of previous versions
are known, we can measure the degree of data noise in
each previous version based on the principle of (4). The
prior version with a larger f iTL if i is more likely to have
the instances with similar features but distinctive labels,
indicating that this version may contain more noise and
should be given a lower weight. Thus, considering the factor
of noise, we can estimate the weights of previous versions by
minimizing the following function:

min Jw =
m∑
i=1

wi
1

n2i
f i
T
L if i + λ ‖w‖22

s.t. wT 1 = 1, wi ≥ 0 (7)

where ni, f i and L i denote the number of instances, the label
vector and graph Laplacian matrix of the i-th version,
respectively. w is the vector of weights for each previous
version. 1/n2i is multiplied to avoid the effect of instances
size and the second term is used for regularization of version
weights. Clearly, by minimizing (7), the versions with less
noise (a lower value of 1

n2i
f iTLif i value) will be given a higher

weight.
Taking all the aforementioned ideas into consideration,

the complete objective function is designed as:

min Jw,f = f TLf + λ1
m∑
i=1

wi
1

n2i
f i
T
L if i

+ λ2

m∑
i=1

wi
1
ci

∥∥∥I i(f − f i)∥∥∥2
2
+ λ3 ‖w‖22

s.t. wT 1 = 1,wi ≥ 0 (8)

where λ1, λ2, λ3 are non-negative parameters to control each
term.

The first term of this objective function is based on the
spectral clustering of the current version. By minimizing this
term, similar instances in the current version will be classified
with the same label. f iTL if i in the second term estimates the
degree of noise in the i-th version, and the versions with less
noise will be assigned with larger weights in the learning
process. The third term considers the relevance between
previous versions and the current version, the irrelevant data
can be removed by lowering the weights of corresponding
versions. Besides, it makes the label vector of the current
version similar to version with higher data relevance. Finally,
the fourth term is a regularization of version weights.

For better understanding of (8), we can analyze the two
variable, the label vector of current version f and the
version weightsw, individually. Fixing f , versions with lower
λ1
n2i
f iTL if i + λ2

ci

∥∥I i(f − f i)∥∥22 values will be given higher

weights, in which the first term estimates the data noise and
the second term measure the data relevance. While if we
fix w, the label vectors of the current version is determined
by minimizing f TLf + λ2

ci

∥∥I i(f − f i)∥∥22, in which the first
term ensure files with similar features have similar labels,
and the second term makes the label of a file in the current

version similar to its labels in the previous versions with
higher weights.

Overall, by minimizing (8), data with high relevance
and low noise are chosen from all previous versions by
assigning higher weights to the corresponding versions, and
the labels of the current version are predicted by considering
feature similarity and defect patterns inherited from previous
versions with large weights. In this way, the two issues
discussed in Section III can be addressed during the learning
process.

2) PROBLEM SOLVING
The optimization of the objective function can be
decomposed into two sub-problems, a version-weighting
sub-problem for version weight vector w and a label
prediction sub-problem for instance label vector f . That is to
say, we can minimize the objective function by alternatively
fixing one of the vectors, and solving the other.

Fixing w, J (f) is a non-negative convex function and can
be solved as:

f = (L + λ2
m∑
i=0

1
ci
wiI i)−1λ2

m∑
i=0

1
ci
wiI if i (9)

In case L + λ2
∑m

i=0
1
ci
wiI i is not an invertible matrix,

we calculate the pseudo-inverse of matrix, instead denoted as
(L+λ2

∑m
i=0

1
ci
wiI i)†, which can be obtained using the Least

Square Method [47].
On the other hand, by fixing f , the version-weighting

sub-problem is equivalently reduced to the following opti-
mization problem:

min vTw+ λ3 ‖w‖22
s.t. wT 1 = 1,wi ≥ 0 (10)

where v = (v1, v2, . . . , vm), with vi being given by
λ1

1
n2i
f iTL if i+λ2 1

ci

∥∥I i(f − f i)∥∥22. This problem can be solved

using the method proposed in [48] as follows:

wi =

θ − vi
2λ3

i ≤ K

0 i > K ,
(11)

where

θ =
2λ3 +

∑K
i=1 vi

K
, (12)

and

K = argmax
i
(θ − vi > 0). (13)

Due to the limited space, the detailed proof procedure is
not given here. Interested readers can refer to [48] for more
details about the derivation.

The algorithm of minimizing the objective function
of CMVC is summarized in Algorithm 1. As the two
sub-problems have closed-form solutions, and the objective
function decreases in each iteration. Therefore, it is guaran-
teed to converge to an optimal solution.

110066 VOLUME 8, 2020

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

Algorithm 1 Algorithm for the Problem of Minimizing the
Objective Function

Input: m previous versions data X1,X2, . . . ,Xm and exist-
ing files data in the current version X exist , the extended label
vector of previous versions f 1, f 2, . . . , f m, and parameters
λ1, λ2, λ3.
Output: the binary label prediction vector f ′ and

version-weight vector w
1: Initialize w and f
2: Building Laplacian matrix L1,L2, . . . ,Lm and L
3: repeat
4: Optimize f according to (9)
5: Optimize w according to (11)
6: until convergence
7: Convert f to the binary label vector f ′

C. WEIGHTED SAMPLING MODEL
To predict the labels of the files that have never appeared in
previous versions, namely Xnew, we propose the Weighted
Sampling Model (WSM) to build the training set and then
train the classification model via classic algorithms.

Since CMVC already addressed the two critical issues
by giving each version a proper weight, we can directly
utilize the outcome weight vector w to build the training set.
WSM samples data from each previous version according
to the version’s corresponding weight. Since versions with
a higher data relevance and less noise are assigned with
higher weights, a larger amount of instances will be sampled
from these versions. In such a manner, we can build a more
reasonable training set than simply using the data of all
previous versions or choosing only one version.

Specifically, we set the size of training set as the total
number of instances in all previous versions, which is
N =

∑m
i=1 ni. For the i-th version, N · wi instances will

be randomly sampled with replacement. In this way, when
building the training set, WSM relies more on previous
versions with higher weights, which are more relevant to the
current version and contain less noise according to CMVC.

After that, the prediction model will be trained on the
sampled dataset with a prevalent classification algorithm,
such as Random Forest, Logistic Regression, Naive Bayes,
etc.. In this work, we choose Random Forest to train the
classification model.

V. EXPERIMENT
In this section, we present the experimental setup and
results. The experiments aim to investigate the following two
questions:
Q1 How does the proposed method perform compared with

other CVDP approaches?
Q2 Whether both CMVC and WSM achieve performance

improvement by considering version weights?
To answer these two questions, the experiments are

designed and conducted as follow.

A. EXPERIMENTAL DESIGN
1) BENCHMARK DATASET
In this work, we conducted experiments on 28 versions across
8 software projects from MORPH dataset [35]. We choose
this dataset for two main reasons: firstly, it has been widely
used in previous studies [4], [7], [12], [36], [37]. Secondly,
it is the only dataset we found that contains multiple previous
versions for each software project.

As mentioned in Section III-A, referring to TABLE 1, both
the scale and distribution of data differ drastically between
different versions of the same software project. Moreover,
results in TABLE 4 indicates that the subsequent versions of a
software project contain a large number of files inherited from
previous versions, and these files across versions can be very
similar in feature but are assigned different labels between
versions. Detailed discussions can be found in Section III-B.

2) PERFORMANCE INDICATOR
The performance of our proposed method is evaluated with
three indicators, namely F-measure, g-mean and Balance,
which are used in our preliminary studies and also widely
adopted in many previous defect prediction studies [12],
[42], [43]. Due to the limitation of space, only these three
indicators are reported in this manuscript, and results in terms
of precision and recall, along with source codes are provided
in additional materials [49].

To verify whether the prediction performances of two
models have a significant difference, we use two statistical
methods, i.e., the Wilcoxon signed-rank test [50] and Cliff’s
delta [51]. The Wilcoxon signed-rank test is a typical
non-parametric test which can be used to check whether
the performance difference between two compared methods
is statistically significant. In addition, in this work, we use
Cliff’s delta as the effect size to quantify the difference. In this
work, if the p value of theWilcoxon test is lower than 0.05 and
the d value of the Cliff’s Delta is higher than 0.146, we reject
the null hypothesis that the performance of two compared
method have no significant difference with a confidence level
of 95% [52].

3) METHODS FOR COMPARISONS
For the purpose of comparisons, we consider three baseline
methods and a state-of-the-art CVDP approach. For the
baseline methods, we adopt three classic and commonly
adopted classification algorithms, namely Random Forest,
Logistic Regression and Naive Bayes, which are widely
used [11], [29], [43], [53]–[55] and compared [1], [3], [6],
[27], [56] in the area of defect prediction.

For the state-of-the-art approach, Xu et al. proposed a
two-phase CVDP framework by combining Hybrid Active
Learning and Kernel PCA (HALKP) [12]. HALKP selects
the most informative and representative files from current
versions to query their labels, and then merges them into
the training dataset to enhance the prediction performance.
Experimental results in [12] demonstrated that HALKP

VOLUME 8, 2020 110067

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

TABLE 5. The detailed results of CDS and the baseline methods.

FIGURE 2. Box plots of baseline methods, HALKP and CDS on three indicators.

outperforms other CVDP approaches, and therefore we
compare our proposed method with HALKP to evaluate its
effectiveness.

In the experiments, both the proposed method and the
compared methods are trained on the merged data of all
previous versions to predict the defects in the last version. All
the compared methods do not take the two critical issues we
pointed out in II-C into consideration. Thus, by comparison
with these methods, we can find out whether the proposed
model can effectively overcome these issues.

B. EXPERIMENTAL RESULTS
1) ANSWERING Q1
We compare CDS with three baseline methods and one
state-of-the-art CVDP approach on 8 software projects. The
detailed experimental results are presented in TABLE 5,
in which RF, LR and NB refer to the classification algorithm
Random Forest, Logistic Regression and Naive Bayes,
respectively, and AVER denotes the average value of each
column. For each software project, the training set is the data
in all previous versions, and the current version is taken as
the test set. The entries highlighted in bold face represents
the method that outperforms others.

As we can see from TABLE 5, CDS achieves the best
performance both on average and almost on every single
software project in terms of all the three indicators. The box
plots given in FIGURE. 2 demonstrate the superiority of CDS
more clearly.

Compared with the baseline methods, CDS obtains signif-
icant performance improvement which can be reflected by
the fact that all the p values are below 0.05 and all the d
values aremuch higher than 0.146.More specifically, in terms
of F-measure, the improvement of CDS is between 36.9%
and 58.3% over the baseline methods; in terms of g-mean,
CDS is superior to baseline methods on all evaluated software
projects with the average improvement varying from 21.3%
to 43.2%; in terms of Balance, CDS also outperforms the
baseline methods by 22.6% to 38.6% on average.

On the other hand, compared with the state-of-the-art
method HALKP, CDS also achieves better performance
in most cases. Although the p value is below 0.05 only
on F-measure, the d values are all above the threshold.
In particular, the average improvements are 15.1%, 13.0%
and 15.0% in terms of F-measure, g-mean and Balance,
respectively. Besides, as discussed before, HALKP requires
defective information about the current version while our

110068 VOLUME 8, 2020

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

TABLE 6. Prediction performance of existing files.

method does not. Therefore, we also find the performance
improvement of CDS over HALKP satisfactory.

Therefore, we can conclude that the proposed CDS
method can achieve better prediction results than the
compared methods in the cross-version defect prediction
scenario, meanwhile indicating that the CDS can effectively
address the issues mentioned in Section II-C.

2) ANSWERING Q2
To further investigate the effects of the two core modules
of our model, namely CMVC and WSM, we compare the
performance of CMVC and WSM with baseline methods
on the prediction task of the existing files and new files
respectively. For fairness consideration, HALKP is not
compared here. Specifically, HALKP is based on the method
of active learning, which needs to query labels of instances
in the test set. When the size of test set is small, this
property of active learning may cause a certain degree of
unfair comparison. Therefore, the prediction performances
of CMVC and WSM are only compared with three classic
baseline methods.

TABLE 6 compares the performance of CMVC and
baseline methods on existing files, while the comparison of
WSM and baseline methods on new files are presented in
TABLES 7, 9 and 8. Since WSM can build the classifier
on the sampled data using different classification algorithms,
we compare them with the original algorithms individually.
In TABLE 7, 9 and 8, W-RF, W-LR, and W-NB denotes the
WSM classifier built with Random Forest, Naive Bayes, and
Logistic Regression, respectively.

From the results in TABLE 6, we can see that CMVC
outperforms the baseline methods on existing files in terms
of all three indicators, and the p values and d values indicate
that the performance improvement is significant. Moreover,
it should be noted that CMVC achieves better performance
than the overall performance of CDS (Refer to results
in TABLE 5). As the existing files take up the majority

TABLE 7. Prediction performance of new files–RF.

TABLE 8. Prediction performance of new files–LR.

proportion of the whole software file, the overall performance
improvement should be attributed mainly to CMVC.

For the new files, all the three tables show that WSM
can obtain better prediction performance. The average
performance of all the three indicators is higher than the
original classification algorithms, and the p values and d
values are all satisfactory only except the comparison with
RF in terms of F-measure. It indicates that the adoption
of a weighted sampling strategy using the weight vector

VOLUME 8, 2020 110069

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

TABLE 9. Prediction performance of new files–NB.

learned by CMVC can build a better training set for classical
classification algorithms. Thus, we can conclude that both
CMVC and WSM achieve performance improvement over
the baseline methods.

In summary, the experimental results give positive answers
to both questions listed at the beginning of this section.
CDS outperforms all three baseline methods and the state-of-
the-art approach in terms of all three indicators, signifying
the fact that it has indeed solved the two critical issues
discussed in Section II-C. Therefore we conclude that CDS
can be superior and more applicable for cross-version defect
prediction.

VI. CONCLUSION
In this paper, we discussed the advantages of cross-version
defect prediction (CVDP) for practical use compared with
within-project defect prediction and cross-project defect
prediction. Then we pointed out two critical issues that may
pose significantly threat to the performance of CVDPmodels
but are seldom mentioned in previous studies, and conducted
preliminary studies to verify the existence of these two issues
and the way they affect the CVDP performance. To solve
these issues and improve the prediction performance of
CVDP, we proposed a novel cross-version defect prediction
model with data seletion (CDS), where the defect labels
of existing and new files are predicted in distinct ways.
In particular, we designed a novel clustering–based multi–
version classifier (CMVC) to predict the defect labels of
the existing files by automatically selecting the training data
from the most relevant and noisy-free versions, and employ
a Weighted Sampling Model (WSD) for defect prediction of
new files. We evaluated the new framework on 28 versions
across 8 projects acquired from a public defect dataset.
The experimental results demonstrated that CDS outperforms
three classic classification algorithms and a state-of-the-art
CVDP method.

Future extensions of our work include the application
of CDS on software projects with more previous versions,
improving its performance on class-imbalance data and
exploring how to extend CDS to CPDP scenarios to solve

the problem of insufficient data for newly-started software
projects.

REFERENCES
[1] J. Nam, S. J. Pan, and S. Kim, ‘‘Transfer defect learning,’’ in Proc. IEEE

35th Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA, May 2013,
pp. 382–391.

[2] T. Zimmermann and N. Nagappan, ‘‘Predicting defects using network
analysis on dependency graphs,’’ in Proc. 30th Int. Conf. Softw. Eng.,
Leipzig, Germany, May 2008, pp. 531–540.

[3] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. 36th Int. Conf. Softw.
Eng. (ICSE), Hyderabad, India, May 2014, pp. 414–423.

[4] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
‘‘MAHAKIL: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,’’ IEEE Trans. Softw. Eng.,
vol. 44, no. 6, pp. 534–550, Jun. 2018.

[5] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, ‘‘Cross-
project defect prediction: A large scale experiment on data vs. domain vs.
process,’’ inProc. 7th JointMeeting Eur. Softw. Eng. Conf., ACMSIGSOFT
Symp. Found. Softw. Eng., 2009, pp. 91–100.

[6] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, ‘‘Cross-project defect
prediction using a connectivity-based unsupervised classifier,’’ in Proc.
IEEE 38th Int. Conf. Softw. Eng. (ICSE), Austin, TX, USA, May 2016,
pp. 309–320.

[7] S. Herbold, ‘‘Training data selection for cross-project defect prediction,’’ in
Proc. 9th Int. Conf. Predictive Models Softw. Eng., Baltimore, MD, USA,
Oct. 2013, p. 6.

[8] T. Lee, J. Nam, D. Han, S. Kim, and H. P. In, ‘‘Micro interaction metrics
for defect prediction,’’ in Proc. 19th ACM SIGSOFT Symp., 13th Eur. Conf.
Found. Softw. Eng. (SIGSOFT/FSE), Szeged, Hungary, 2011, pp. 311–321.

[9] Z. Sun, Q. Song, and X. Zhu, ‘‘Using coding-based ensemble learning to
improve software defect prediction,’’ IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 42, no. 6, pp. 1806–1817, Nov. 2012.

[10] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, ‘‘Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings,’’ IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496,
Jul. 2008.

[11] H. Lu, E. Kocaguneli, and B. Cukic, ‘‘Defect prediction between software
versions with active learning and dimensionality reduction,’’ in Proc. IEEE
25th Int. Symp. Softw. Rel. Eng., Naples, Italy, Nov. 2014, pp. 312–322.

[12] Z. Xu, J. Liu, X. Luo, and T. Zhang, ‘‘Cross-version defect prediction via
hybrid active learning with kernel principal component analysis,’’ in Proc.
IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Campobasso,
Italy, May 2018, pp. 209–220.

[13] S. Shukla, T. Radhakrishnan, K. Muthukumaran, and L. B. M. Neti,
‘‘Multi-objective cross-version defect prediction,’’ Soft Comput., vol. 22,
no. 6, pp. 1959–1980, Mar. 2018.

[14] X. Yang and W. Wen, ‘‘Ridge and lasso regression models for cross-
version defect prediction,’’ IEEE Trans. Rel., vol. 67, no. 3, pp. 885–896,
Sep. 2018.

[15] Y. Huang, X. Hu, N. Jia, X. Chen, Y. Xiong, and Z. Zheng, ‘‘Learning
code context information to predict comment locations,’’ IEEE Trans. Rel.,
vol. 69, no. 1, pp. 88–105, Mar. 2020.

[16] F. Peters, T. Menzies, and L. Layman, ‘‘LACE2: Better privacy-preserving
data sharing for cross project defect prediction,’’ in Proc. IEEE/ACM
37th Int. Conf. Softw. Eng., Amsterdam, The Netherlands, May 2015,
pp. 801–811.

[17] F. Wu, X.-Y. Jing, Y. Sun, J. Sun, L. Huang, F. Cui, and Y. Sun, ‘‘Cross-
project and within-project semisupervised software defect prediction:
A unified approach,’’ IEEE Trans. Rel., vol. 67, no. 2, pp. 581–597,
Jun. 2018.

[18] Y. Ma, G. Luo, X. Zeng, and A. Chen, ‘‘Transfer learning for cross-
company software defect prediction,’’ Inf. Softw. Technol., vol. 54, no. 3,
pp. 248–256, Mar. 2012.

[19] J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, ‘‘Heterogeneous
defect prediction,’’ IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874–896,
Sep. 2018.

[20] M. H. Halstead, Elements of Software Science (Operating and Program-
ming Systems Series). New York, NY, USA: Elsevier Science, 1977.

[21] N. Ohlsson and H. Alberg, ‘‘Predicting fault-prone software modules in
telephone switches,’’ IEEE Trans. Softw. Eng., vol. 22, no. 12, pp. 886–894,
Dec. 1996.

110070 VOLUME 8, 2020

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

[22] V. R. Basili, L. C. Briand, andW. L. Melo, ‘‘A validation of object-oriented
design metrics as quality indicators,’’ IEEE Trans. Softw. Eng., vol. 22,
no. 10, pp. 751–761, Oct. 1996.

[23] F. Rahman and P. Devanbu, ‘‘How, and why, process metrics are better,’’
in Proc. 35th Int. Conf. Softw. Eng. (ICSE), San Francisco, CA, USA,
May 2013, pp. 432–441.

[24] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and M. Nagappan,
‘‘Predicting bugs using antipatterns,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Eindhoven, The Netherlands, Sep. 2013, pp. 270–279.

[25] Q. Xie, Z. Wen, J. Zhu, C. Gao, and Z. Zheng, ‘‘Detecting duplicate bug
reports with convolutional neural networks,’’ in Proc. 25th Asia–Pacific
Softw. Eng. Conf. (APSEC), Dec. 2018, pp. 416–425.

[26] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, ‘‘MalPat: Mining patterns of
malicious and benign Android apps via permission-related APIs,’’ IEEE
Trans. Rel., vol. 67, no. 1, pp. 355–369, Mar. 2018.

[27] H. Lu, B. Cukic, and M. Culp, ‘‘Software defect prediction using semi-
supervised learning with dimension reduction,’’ in Proc. 27th IEEE/ACM
Int. Conf. Automat. Softw. Eng. (ASE), Sep. 2012, pp. 314–317.

[28] X. Yang, K. Tang, and X. Yao, ‘‘A learning-to-rank approach to software
defect prediction,’’ IEEE Trans. Rel., vol. 64, no. 1, pp. 234–246,
Mar. 2015.

[29] S. Kim, H. Zhang, R. Wu, and L. Gong, ‘‘Dealing with noise in defect
prediction,’’ in Proc. IEEE 33rd Int. Conf. Softw. Eng. (ICSE), Honolulu,
HI, USA, May 2011, pp. 481–490.

[30] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013.

[31] M. Liu, L. Miao, and D. Zhang, ‘‘Two-stage cost-sensitive learning
for software defect prediction,’’ IEEE Trans. Rel., vol. 63, no. 2,
pp. 676–686, Jun. 2014.

[32] L. Pelayo and S. Dick, ‘‘Evaluating stratification alternatives to improve
software defect prediction,’’ IEEE Trans. Rel., vol. 61, no. 2, pp. 516–525,
Jun. 2012.

[33] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and
K. Matsumoto, ‘‘The impact of mislabelling on the performance and
interpretation of defect prediction models,’’ in Proc. IEEE/ACM 37th IEEE
Int. Conf. Softw. Eng., Florence, Italy, vol. 1, May 2015, pp. 812–823.

[34] A. V. Phan, M. Le Nguyen, and L. T. Bui, ‘‘Convolutional neural networks
over control flow graphs for software defect prediction,’’ in Proc. IEEE
29th Int. Conf. Tools Artif. Intell. (ICTAI), Boston, MA, USA, Nov. 2017,
pp. 45–52.

[35] M. Jureczko and L. Madeyski, ‘‘Towards identifying software project
clusters with regard to defect prediction,’’ in Proc. 6th Int. Conf. Predictive
Models Softw. Eng., Timişoara, Romania, Sep. 2010, p. 9.

[36] L. Chen, B. Fang, Z. Shang, and Y. Tangc, ‘‘Negative samples reduction in
cross-company software defects prediction,’’ Inf. Softw. Technol., vol. 62,
pp. 67–77, Jun. 2015.

[37] S. Amasaki, K. Kawata, and T. Yokogawa, ‘‘Improving cross-project defect
prediction methods with data simplification,’’ in Proc. 41st Eur. Conf.
Softw. Eng. Adv. Appl., Madeira, Portugal, Aug. 2015, pp. 96–103.

[38] D. Spinellis, ‘‘Tool writing: A forgotten art?’’ IEEE Softw., vol. 22, no. 4,
pp. 9–11, Jul. 2005.

[39] L. Breiman, ‘‘Random forests,’’ Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[40] S. Le Cessie and J. C. Van Houwelingen, ‘‘Ridge estimators in logistic
regression,’’ J. Roy. Stat. Soc., C, Appl. Statist., vol. no. 1, pp. 191–201,
1992.

[41] G. H. John and P. Langley, ‘‘Estimating continuous distributions in
Bayesian classifiers,’’ in Proc. 11th Conf. Uncertainty Artif. Intell.,
Montreal, QC, Canada, Aug. 1995, pp. 338–345.

[42] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, ‘‘Towards building a
universal defect prediction model,’’ in Proc. 11th Working Conf. Mining
Softw. Repositories (MSR), Hyderabad, India, May 2014, pp. 182–191.

[43] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, ‘‘The impact
of class rebalancing techniques on the performance and interpretation
of defect prediction models,’’ IEEE Trans. Softw. Eng., early access,
Oct. 17, 2018, doi: 10.1109/TSE.2018.2876537.

[44] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, ‘‘The WEKA data mining software: An update,’’ ACM
SIGKDD Explor. Newslett., vol. 11, no. 1, pp. 10–18, 2009.

[45] H. V. Nguyen and L. Bai, ‘‘Cosine similarity metric learning for face ver-
ification,’’ in Proc. Asian Conf. Comput. Vis. Berlin, Germany: Springer,
2010, pp. 709–720.

[46] K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Manning, and
C. Christopher, ‘‘Spectral learning,’’ in Proc. Int. Joint Conf. Artif. Intell.,
2003, pp. 1–6.

[47] S. M. Stigler, ‘‘Gauss and the invention of least squares,’’ Ann. Statist.,
vol. 9, no. 3, pp. 465–474, May 1981.

[48] C. Chen, J. Xin, Y. Wang, L. Chen, and M. K. Ng, ‘‘A semisupervised
classification approach for multidomain networks with domain selection,’’
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 1, pp. 269–283,
Jan. 2018.

[49] J. Zhang, J. Wu, C. Chen, Z. Zheng, and M. R. Lyu. (2019).
Supplementary Material. [Online]. Available: https://zenodo.org/record/
2573882#.XG1kZ-gzaHs

[50] F. Wilcoxon, S. Katti, and R. A. Wilcox, ‘‘Critical values and probability
levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test,’’
Sel. Tables Math. Statist., vol. 1, pp. 171–259, Jun. 1970.

[51] G. Macbeth, E. Razumiejczyk, and R. D. Ledesma, ‘‘Cliff’s delta
calculator: A non-parametric effect size program for two groups of
observations,’’ Universitas Psychologica, vol. 10, no. 2, pp. 545–555,
2011.

[52] N. Cliff, Ordinal Methods for Behavioral Data Analysis. London,
U.K.: Psychology Press, 2014.

[53] T. Yu, W. Wen, X. Han, and J. H. Hayes, ‘‘ConPredictor: Concurrency
defect prediction in real-world applications,’’ IEEE Trans. Softw. Eng.,
vol. 45, no. 6, pp. 558–575, Jun. 2019.

[54] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features
for defect prediction,’’ in Proc. IEEE 38th Int. Conf. Softw. Eng. (ICSE),
May 2016, pp. 297–308.

[55] H. Hata, O.Mizuno, and T. Kikuno, ‘‘Bug prediction based on fine-grained
module histories,’’ in Proc. IEEE 34th Int. Conf. Softw. Eng. (ICSE),
Jun. 2012, pp. 200–210.

[56] J. Nam and S. Kim, ‘‘CLAMI: Defect prediction on unlabeled datasets
(T),’’ in Proc. 30th IEEE/ACM Int. Conf. Automat. Softw. Eng. (ASE),
Nov. 2015, pp. 452–463.

JIE ZHANG (Graduate Student Member, IEEE)
received the B.S. degree in software engineer-
ing from the College of Computer Science and
Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing, China, in 2017. He is
currently pursuing the master’s degree with the
School of Data and Computer Science, Sun
Yat-sen University, Guangzhou, China. His main
research interests include software engineering
and complex networks.

JIAJING WU (Senior Member, IEEE) received
the B.Eng. degree in communication engineer-
ing from Beijing Jiaotong University, Beijing,
China, in 2010, and the Ph.D. degree from The
Hong Kong Polytechnic University, Hong Kong,
in 2014.

In 2015, she joined Sun Yat-sen University,
Guangzhou, China, where she is currently an
Associate Professor. Her research interests include
network science and its applications in engineering

networked systems, such as communication networks, power grids, and
cyber-physical systems. She was a recipient of the Hong Kong Ph.D.
Fellowship Scheme during her Ph.D. degree, HongKong, from 2010 to 2014.
She serves as an Associate Editor for the IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS-II: EXPRESS BRIEFS.

VOLUME 8, 2020 110071

http://dx.doi.org/10.1109/TSE.2018.2876537

J. Zhang et al.: CDS: Cross–Version Software Defect Prediction Model With Data Selection

CHUAN CHEN (Member, IEEE) received the B.S.
degree from Sun Yat-sen University, Guangzhou,
China, in 2012, and the Ph.D. degree from
Hong Kong Baptist University, Hong Kong,
in 2016. He is currently an Associate Research
Fellow with the School of Data and Computer Sci-
ence, Sun Yat-sen University. His main research
interests include machine learning, numerical
linear algebra, and numerical optimization.

ZIBIN ZHENG (Senior Member, IEEE) received
the Ph.D. degree in computer science and engi-
neering from the Department of Computer Sci-
ence and Engineering, The Chinese University of
Hong Kong, Hong Kong, in 2010.

He is currently an Associate Professor with
the School of Data and Computer Science,
Sun Yat-sen University, Guangzhou, China. His
research interests include services computing,
software engineering, and block chain.

Dr. Zheng received the Outstanding Thesis Award of CUHK, in 2012,
the ACM SIGSOFT Distinguished Paper Award from ICSE2010, and the
Best Student Paper Award from ICWS, in 2010.

MICHAEL R. LYU (Fellow, IEEE) received the
B.S. degree in electrical engineering fromNational
Taiwan University, Taipei, Taiwan, in 1981,
the M.S. degree in computer engineering from the
University of California, Santa Barbara, CA, USA,
in 1985, and the Ph.D. degree in computer science
from the University of California, Los Angeles,
CA, in 1988.

He is currently a Professor with the Depart-
ment of Computer Science and Engineering, The

Chinese University of Hong Kong. He is also the Director of the Video
over Internet and Wireless (VIEW) Technologies Laboratory. His research
interests include software reliability engineering, distributed systems,
fault-tolerant computing, mobile networks, web technologies, multimedia
information processing, and e-commerce systems.

Dr. Lyu is a fellow of ACM, AAAS, and Croucher Senior Research.

110072 VOLUME 8, 2020

	INTRODUCTION
	BACKGROUND AND MOTIVATION
	CROSS–PROJECT DEFECT PREDICTION
	INNER–VERSION DEFECT PREDICTION
	CROSS–VERSION DEFECT PREDICTION
	DATA DISTRIBUTION DIFFERENCE
	CLASS OVERLAPPING

	PRELIMINARY STUDIES
	STUDY ON RQ1
	STUDY ON RQ2

	METHOD
	METHOD OVERVIEW
	CLUSTERING–BASED MULTI–VERSION CLASSIFIER
	OBJECTIVE FUNCTION
	PROBLEM SOLVING

	WEIGHTED SAMPLING MODEL

	EXPERIMENT
	EXPERIMENTAL DESIGN
	BENCHMARK DATASET
	PERFORMANCE INDICATOR
	METHODS FOR COMPARISONS

	EXPERIMENTAL RESULTS
	ANSWERING Q1
	ANSWERING Q2

	CONCLUSION
	REFERENCES
	Biographies
	JIE ZHANG
	JIAJING WU
	CHUAN CHEN
	ZIBIN ZHENG
	MICHAEL R. LYU

