
Knowl Inf Syst (2014) 38:207–229
DOI 10.1007/s10115-013-0623-0

REGULAR PAPER

Clustering Web services to facilitate service discovery

Jian Wu · Liang Chen · Zibin Zheng ·
Michael R. Lyu · Zhaohui Wu

Received: 16 December 2011 / Revised: 20 October 2012 / Accepted: 20 October 2012 /
Published online: 17 March 2013
© Springer-Verlag London 2013

Abstract Clustering Web services would greatly boost the ability of Web service search
engine to retrieve relevant services. The performance of traditional Web service description
language (WSDL)-based Web service clustering is not satisfied, due to the singleness of
data source. Recently, Web service search engines such as Seekda! allow users to manually
annotate Web services using tags, which describe functions of Web services or provide
additional contextual and semantical information. In this paper, we cluster Web services by
utilizing both WSDL documents and tags. To handle the clustering performance limitation
caused by uneven tag distribution and noisy tags, we propose a hybrid Web service tag
recommendation strategy, named WSTRec, which employs tag co-occurrence, tag mining,
and semantic relevance measurement for tag recommendation. Extensive experiments are
conducted based on our real-world dataset, which consists of 15,968 Web services. The
experimental results demonstrate the effectiveness of our proposed service clustering and
tag recommendation strategies. Specifically, compared with traditional WSDL-based Web
service clustering approaches, the proposed approach produces gains in both precision and
recall for up to 14 % in most cases.

Keywords Web service · Clustering · Tag recommendation · Service discovery

J. Wu (B) · L. Chen · Z. Wu
College of Computer Science, Zhejiang University, Hangzhou, China
e-mail: wujian2000@zju.edu.cn

L. Chen
e-mail: cliang@zju.edu.cn

Z. Wu
e-mail: wzh@zju.edu.cn

Z. Zheng · M. R. Lyu
Department of Computer Science and Engineering, Shenzhen Research Institute,
The Chinese University of Hong Kong, New Territories, Hong Kong
e-mail: zbzheng@cse.cuhk.edu.hk

M. R. Lyu
e-mail: lyu@cse.cuhk.edu.hk

123

208 J. Wu et al.

1 Introduction

A service-oriented computing (SOC) paradigm and its realization through standardized Web
service technologies provide a promising solution for the seamless integration of single-
function applications to create new large-grained and value-added services. SOC attracts
industry’s attention and is applied in many domains, e.g., workflow management, finances,
e-Business, and e-Science. With a growing number of Web services, discovering the user-
required Web services is becoming more and more important.

Web service discovery can be achieved by two main approaches: universal description
discovery and integration (UDDI) and Web service search engines. Recently, the availability
of Web services in UDDI decreases rapidly as many Web service providers decided to publish
their Web services through their own Web site instead of using public registries. Al-Masri
et al. [1] show that more than 53 % of registered services in UDDI business registries are
invalid, while 92 % of Web services cached by Web service search engines are valid and active.
Compared with UDDI, using search engine to discover Web services becomes common and
effective.

In the field of service computing, Web service search is typically limited to keyword
matching on names, locations, businesses, and buildings defined in the Web service descrip-
tion file [2]. If the query term does not contain at least one exact word such as the service
name, the service is not returned. It is difficult for users to be aware of the concise and
correct keywords to retrieve the targeted services satisfactorily. The keyword-based search
mode suffers from low recall, where results containing synonyms or concepts at a higher
(or lower) level of abstraction describing the same service are not returned. For example, a
service named “Mobile Messaging Service” may not be returned from the query term “SMS”
submitted by the user, even these two keywords are obviously the same at the conceptual
level.

To handle the drawbacks of the keyword-based Web service search engines, some
approaches are proposed to extend the search result. Lim et al. [3] propose to make use
of ontology to return an expanded set of results including subclass, superclass, and sibling
classes of the concept entered by the user, while Elgazzar et al. [4] and Liu et al. [5] propose
to handle the drawbacks of traditional search engine by clustering Web services based on
WSDL documents. In these previous works, if Web services with similar functionality are
placed into the same cluster, then more relevant Web services could be included in the search
result. In fact, many experiments have demonstrated that good Web service clustering boosts
the performance of Web service search. In this paper, we attempt to improve the performance
of Web service clustering for the purpose of more accurate Web service discovery.

Although WSDL-based Web service clustering approaches improve the precision and
recall, the search result is still not satisfactory. Recently, tagging, the act of adding keywords
(tags) to objects, has become a popular means to annotate various Web 2.0 objects, e.g.,
Web page bookmarks, online documents, and multimedia objects. Tags provide meaningful
descriptions of objects and allow users to organize and index their contents [6]. In fact, tags
have been demonstrated as one of the best textual features to be exploited by various informa-
tion retrieval (IR) services, such as automatic object classification and clustering. Recently, a
real-world Web services search engine Seekda!1 allows users to manually associate tags with
Web services. Figure 1 shows two examples of tags of Web services in Seekda!. Meteorol-
ogyWS2 in Fig. 1a is a Web service providing weather forecasting service and is associated

1 http://webservices.seekda.com.
2 http://www.premis.cz/PremisWS/MeteorologyWS.asmx?WSDL.

123

http://webservices.seekda.com
http://www.premis.cz/PremisWS/MeteorologyWS.asmx?WSDL

Clustering Web services 209

Fig. 1 Two Web services annotated with tags in Seekda!

with two tags, i.e., weather and waether (wrong spelling). However, there is no word weather
in its service name or WSDL document, due to the naming convention of the service provider.
Therefore, if users use weather as their query term, this service will not be retrieved if only
WSDL document is utilized. CarRentalAgentService3 in Fig. 1b is a Web service providing
car rental information and is associated with tags car rental and tourism. If we utilize the
tagging data, this service may not only be included in the search result about car rental, but
also be recommended to the users who need Web services about tourism. From these two
cases, we can find that the tagging data are helpful in clustering functionality-similar services
and achieving more relevant services.

In contrast to previous work [4,5] in which only WSDL documents are employed, we
jointly exploit both WSDL documents and tags for Web service clustering. Specifically, we
take advantage of previous WSDL-based clustering approach [4], extracting five features from
WSDL documents, i.e., Content, Type, Message, Port, and Service Name and computing the
WSDL-level similarities among Web services. Further, we compute the tag-level similarities
among Web services. Finally, WSDL-level similarity and tag-level similarity are merged to
be a composite similarity, which is used to cluster Web services.

When employing tags to help Web service clustering, there are two main problems, which
limit the effectiveness of tag data in Web service clustering: (1) Uneven distribution: some
Web services have more than 20 tags, while some have only 1 or even no tag; and (2) Noise:
tags are created by end users and thus may contain noises (e.g., misspellings or unrelated
terms). To handle the first problem, we propose a hybrid tag recommendation strategy, named
WSTRec, which employs tag co-occurrence [7], tag mining, and relevance measurement for
tag recommendation. Specifically, tag co-occurrence is employed to suggest candidate tags
for Web services by extracting association rules among existing tags, while the tag mining
technique is used to mine candidate tags from WSDL textual features (e.g., service description
and service name) for Web services with no tags. Relevance metrics are adopted to rank the
candidate tags in the process of tag recommendation and filter noisy tags or reduce their
importance. By employing WSTRec, tagging data are smoothed, which is helpful for more
accurate Web service clustering.

To evaluate the performance of the proposed web service clustering approach and tag
recommendation strategy, we crawl 15,968 real Web services from Seekda! Specifically,
for each service, we crawl service name, service description, WSDL document, and tags.

3 http://rpc.test.sunnycars.com/CarRentalAgentService121/CarRentalAgentService.asmx?wsdl.

123

http://rpc.test.sunnycars.com/CarRentalAgentService121/Car RentalAgentService.asmx?wsdl

210 J. Wu et al.

Experimental results show that our proposed clustering approach produces gains in both
precision and recall for up to 14 % in most cases.

The contribution of this paper can be summarized as follows:

• We propose a Web service clustering approach, which improves the performance of Web
service clustering by utilizing both WSDL documents and Web service tags.

• We propose a hybrid tag recommendation strategy to attack the service clustering per-
formance limitation caused by uneven tag distribution and noisy tags.

• We crawl 15,968 real Web services to evaluate the performance of Web service clustering
and tag recommendation strategy.

The rest of this paper is organized as follows: Sect. 2 introduces the related work of Web
service discovery and clustering. Section 3 presents the architecture of Web service clustering.
The detailed processes of data preprocessing and Web service clustering are introduced in
Sect. 4, while tag recommendation strategy is presented in Sect. 5. Section 6 shows the
experimental results and Sect. 7 concludes this paper.

2 Related work

With the development of service computing, searching Web services according to users’
requirements, i.e., Web service discovery [8–11], is becoming a hot research topic. Much
work has been done to address it. Web services can be classified into two main kinds, i.e.,
semantic and non-semantic, based on the description language. Approaches for discovering
semantic and non-semantic Web services are different. The semantic-based approaches adopt
the formalized description languages such as OWL-S4 and WSMO5 for services and develop
the reasoning-based similarity algorithms to retrieve the satisfied Web services [12,13]. High
level match-making approaches are usually adopted in the discovery of semantic Web ser-
vices. Specifically, Boualem Benatallah et al. [14] propose to tackle the problem of service
discovery in the context of description logics.

There are a number of approaches proposed in recent years for non-semantic Web service
discovery [2,15–23]. Dong et al. [16] propose to compute the similarity between Web services
by employing the structures of Web services (including name, text, operation descriptions,
and input/output description). They also propose a search engine called Woogle6 which
supports similarity search for Web services. Nayak [2] attempts to handle the problem by
suggesting to the current user with other related search terms based on what other users had
used in similar queries by applying clustering techniques. Web services are clustered based
on search sessions instead of individual queries. Hu et al. [17] make use of the content-
based publish/subscribe model to handle the problem. Fangfang et al. [18] try to reflect the
underlying semantics of Web services by utilizing the terms within WSDL fully. In their
work, external knowledge is firstly employed to compute the semantic distance of terms
from two compared services and then the similarity between them is measured upon these
distances.

Recently, Web service clustering [24,25] is proved as an effective solution to boost the
performance of Web service discovery. The most widely employed approach for it is similarity
based, including (1) semantic based and (2) non-semantic based. Ontology is utilized to

4 http://www.w3.org/Submission/OWL-S/.
5 http://www.w3.org/Submission/WSMO/.
6 http://db.cs.washington.edu/woogle.html.

123

http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSMO/
http://db.cs.washington.edu/woogle.html

Clustering Web services 211

compute the semantic similarity between Web services in many studies [26–29]. Specifically,
Cristina et al. [28] propose to use an ant-based method to cluster Web services based on
semantic similarity. In this paper, we focus on the clustering of non-semantic Web services,
as such services are more popular and more widely supported by the industry circle.

For the calculation of non-semantic similarity between Web services, WSDL-based
approaches are the most representative work [4,5,30]. Liu et al. [5,30] propose to extract 4
features, i.e., content, context, host name, and service name, from the WSDL document to
cluster Web services. They take the process of clustering as the preprocessor to discovery,
hoping to help in building a search engine to crawl and cluster non-semantic Web services.
Khalid et al. [4] also propose to extract features from WSDL documents to cluster Web ser-
vices. Different from the work [5,30], Khalid extracts content, types, messages, ports, and
service name from WSDL documents.

Although WSDL-based techniques are widely adopted, the performance is rather limited
since only WSDL documents are employed. With the development of Web service commu-
nity, more and more tags are annotated to Web services by users. These tags can be employed
to enhance the accuracy of service discovery. However, limited work has exploited tagging
data for service discovery. In our preliminary work [31], we investigated the benefits of utiliz-
ing both WSDL documents and tagging data to cluster Web services. The findings motivate
our present study. In this paper, we improve the performance of Web service clustering by
introducing a new WSDL-level similarity computation mechanism and by proposing a hybrid
Web service tag recommendation strategy to attack the problems of uneven tag distribution
and noisy tags.

3 Architecture of Web service clustering

Figure 2 shows the architecture of our proposed Web service clustering approach. It consists of
three modules: (1) data preprocessing, (2) WSTRec (i.e., Web service tag recommendation),
and (3) Web services clustering. In the first module, WSDL documents and tags of Web
services are crawled from the Internet. Similar to the work in [4], we extract five important
features from WSDL documents, i.e., Content, Type, Message, Port, and Service Name. Thus,
we can obtain tagging data and five kinds of feature data for Web service clustering after data
preprocessing.

These data are sent to the module of Web service clustering, in which feature-level similar-
ities and tag-level similarities are integrated into a global similarity to cluster Web services.
Since the data preprocessing, WSTRec, and Web service clustering modules are executed
off-line, the efficiency is not a big concern, whereas the accuracy is more important.

When employing tags to help Web service clustering, there are two main problems which
limit the effectiveness of tag data in Web service clustering: (1) uneven distribution and (2)
noise. To address these problems, we introduce WSTRec strategy, in which tag co-occurrence,
tag mining, and relevant metrics are adopted. Specially, WSTRec is implemented to do
some process on the tagging data. Thus, the module of WSTRec can also be treated as data
preprocessing.

4 Web service clustering

In this section, we first describe the process of feature extraction and the corresponding
feature-level similarity computation, including tagging data and five features extracted from

123

212 J. Wu et al.

Fig. 2 Architecture of Web service clustering

a WSDL document. Then, we introduce similarity integration and service clustering. For the
convenience of our readers, Table 1 summarizes important notations used in this paper.

4.1 Feature extraction and similarity computation

Five features (i.e., Content, Type, Message, Port, and Service Name) are extracted from a
Web service’s WSDL document. These five features and tags are employed to cluster Web
services. In the following, we describe the detailed process of feature extraction and the
corresponding similarity computation.

4.1.1 Content

A WSDL document, which describes the function of Web service, is an XML style document.
Therefore, we can use IR approaches to extract a vector of meaningful content words which
can be used as a feature for similarity computation. Our approach for building the content
vector consists of four steps:

1. Building an original vector. In this step, we split the WSDL content according to the
white space to produce the original content vector.

2. Suffix Stripping. Words with a common stem will usually have the same meaning,
for example, connect, connected, connecting, connection, and connections all have the
same stem connect [5]. For the purpose of convenient statistics, we strip the suffix of all
these words that have the same stem by using a Porter stemmer [32]. After the step of
suffix stripping, a new content vector is produced, in which words such as connected and
connecting are replaced with the stem connect.

3. Pruning. In this step, we propose to remove two kinds of words from the content vec-
tor. The first kind is XML tag. For example, the words s:element, s:complexType, and
wsdl:operation are XML tags which are not meaningful for the comparison of content
vectors. As the XML tags used in a WSDL document are predefined, it is easy to remove
them from the content vector. Content words are typically nouns, verbs, or adjectives

123

Clustering Web services 213

Table 1 Key notations and their descriptions

Notation Definition and brief description

Sim f eature(s1, s2) Feature-level similarity between Web services s1 and s2, in Eqs. (3) and (6)

Simwsdl (s1, s2) WSDL-level similarity between Web services s1 and s2, in Eq. (8)

Simtag(s1, s2) Tag-level similarity between Web services s1 and s2, in Eq. (7)

GSim(s1, s2) Global similarity between Web services, inte-
grated by tag-level similarity and WSDL-
level similarity, in Eq. (9)

Sim(wi , w j) Semantic similarity between words wi and w j , in Eq. (4)

N G D(wi , w j) Normalized Google Distance between words wi and w j , in Eq. (5)

w1, . . . , w5 Weights of feature-level similarities in WSDL-level similarity, in Eq. (8)

λ Weight to balance tag-level similarity and
WSDL-level similarity in the global similar-
ity, in Eq. (9)

T F − I DFt,s1 The TF-IDF value of term t in the Web service s1, in Eq. (10)

T Training data in the tag recommendation

P Testing data in the tag recommendation

θ Strength of the extracted association rule

N R(n) The number of association rules extracted from n tags

� Score of candidate tag based on tag co-occurrence

� Score of candidate tag based on semantic relevance

δ Weight to balance � and � in the final tag ranking

N Number of web services in one cluster

C Number of clusters

G Number of initial tags that the target Web service has

K Number of recommended tags

and are often contrasted with function words which have little or no contribution to the
meanings of texts. Therefore, the second kind of word to be removed is function word.
Church et al. [33] state that the function words could be distinguished from content words
using a Poisson distribution to model word occurrence in documents. Typically, a way
to decide whether a word w in the content vector is a function word is by computing the
degree of overestimation of the observed document frequency of the word w, denoted by
nw using Poisson distribution. The overestimation factor can be calculated as follows.

�w = n̂w

nw

, (1)

where n̂w is the estimated document frequency of the word w. Specifically, the word with
higher value of �w has higher possibility to be a content word. In this paper, we set a
threshold �T for �w and take the words which have �w higher than threshold as content
words. The value of threshold �T is as follows.

�T =
{

avg[�] if(avg[�] > 1);
1 otherwise

(2)

123

214 J. Wu et al.

Fig. 3 Content words of two real Web services

where avg[�] is the average value of the observed document frequency of all words
considered. After the process of pruning, we can obtain a new content vector, in which
both XML tags and function words are removed.

4. Refining. Words with very high occurrence frequency are likely to be too general to
discriminate between Web services. After the step of pruning, we implement a step
of refining, in which words with too general meanings are removed. Clustering based
approaches were adopted to handle this problem in some related work [4,5]. In this
paper, we choose a simple approach by computing the frequencies of words in all WSDL
documents and setting a threshold to decide whether a word has to be removed.

After the above four steps, we can obtain the final content vector. Figure 3 shows the
content vectors of two real Web services where s1 is a weather forecast service,7 and s2

is a photograph sharing service.8 Their content vectors are quite relevant to their function
and have limited elements only, i.e., 10 and 8, respectively. Through our observation, the
dimension of content vector of most Web services for experiments (i.e., 15,969 real web
service) is in the range of 10–30.

In this paper, we use Normalized Google Distance (NGD) [34] to compute the content-
level similarity between two Web services. Given Web services s1 and s2, and their content
vector cons1 and cons2 , their content-level similarity is:

Simcon(s1, s2) =
∑

wi ∈cons1

∑
w j ∈cons2

sim(wi , w j)

|cons1 | × |cons2| , (3)

where |cons1 | means the dimension of content vector cons1 , and the equation for computing
the similarity between two words is defined as:

sim(wi , w j) = 1 − N G D(wi , w j) (4)

In (4), we compute the similarity between two words using NGD based on the word
coexistence in the Web pages. As Rudi et al. [34] proposed, the NGD between two terms wi

and w j is as follows:

7 http://ws.cdyne.com/WeatherWS/Weather.asmx?wsdl.
8 http://gordan.gorodok.net/sharpcast.wsdl.

123

http://ws.cdyne.com/WeatherWS/Weather.asmx?wsdl
http://gordan.gorodok.net/sharpcast.wsdl

Clustering Web services 215

N G D(wi , w j) = max{log f (wi), log f (w j)} − log f (wi , w j)

log N − min{log f (wi), log f (w j)} , (5)

where f (wi) denotes the number of pages containing wi , and f (wi , w j) denotes the number
of pages containing both wi and w j , as reported by Google. N is the total number of Web
pages searched by Google.

4.1.2 Type

In a WSDL document, each input and output parameter contains a name attribute and a type
attribute. Sometimes, parameters may be organized in a hierarchy by using complex types.
Due to different naming conventions, the name of a parameter is not always a useful feature,
whereas the type attribute which can partially reflect the service function is a good candidate
feature.

As Fig. 4 shows, the type of element ProcessForm (which we name t ype1) is a complextype
that has 5 parameters: FormData (string), FormID (int), GroupID (int), szPageName (string),
and nAWSAccountPageID (int). If another service s2 has a complextype t ype2 which also
contains two string-type parameters and three int type parameters, we say t ype1 and t ype2

are matched. Specifically, in the process of type matching, the order of parameters in the
complextype is not considered. We therefore extract the defined types, count the number
of different types in the complextype, and compute the type-level similarity between two
services as follows

Simtype(s1, s2) = 2 × Match(T ypes1 , T ypes2)

|T ypes1 | + |T ypes2 |
, (6)

where T ypes1 means the set of defined types in the WSDL document of s1, Match(T ypes1 ,

T ypes2) means the number of matched types between these two services, and |T ypes1 | is
the cardinality of T ypes1 .

4.1.3 Message

Message is used to deliver parameters between different operations. One message contains
one or more parameters, and each parameter is associated with a type as we discussed above.
Message definition is typically considered as an abstract definition of the message con-
tent which defines the name and type of the parameter contained in the message. Figure 4
shows two simple message definitions. In the first definition, the message named as Request-
PagePasswordHttpPostIn contains one parameter FormData of a string type. In the second
definition, RequestPagePasswordPostOut contains one parameter Body of a complextype
named as tns:boolean. Similar to Eq. (6), we match the messages’ structures to compute the
message-level similarity between Web services.

4.1.4 Port

The portType element combines multiple message elements to form a complete one-way
or round-trip operation. Figure 4 shows an example of portType SendCustomFormHttpGet
which contains some operations (due to space limitation, we only list one operation in this
portType). As the portType consists of some messages, we can get the match result of portType
according to the match result of messages. Similar to the computation of type-level and
message-level similarity, we also use Eq. (6) to compute the port-level similarity.

123

216 J. Wu et al.

Fig. 4 Types, message, port, and service name in a WSDL document

4.1.5 Service name

As the service name (sname) can at least partially reflect the service function, it is also an
important feature in WSDL document. Before computing the sname-level similarity, we first
implement a word segmentation process to service name. For example, the service name
SendCustomForm in Fig. 4 can be separated into three words: Send, Custom, and Form. A
simple version of word segmentation is to split the service name according to the capital
letters. However, its performance is not satisfied due to different naming conventions. In this
paper, we first use the capital letters to split the service name and then manually adjust the
final result. After the process of word segmentation, SNames1 , the name of service s1, can be
presented as a set of words. Then, we can use Eq. (3) to compute the sname-level similarity
between Web services.

4.1.6 Tag

The tagging data of Web services describe their function or provide additional contextual and
semantical information. In this paper, we propose to improve the performance of traditional
WSDL-based Web service clustering by utilizing the tagging data. Similar to above five
features extracted from the WSDL document, tagging data are also treated as a feature in the
process of similarity computation.

Given a Web service si with three tags t1, t2, t3, we name the tag set of si as Ti = {t1, t2, t3}.
According to the Jaccard coefficient [35] method, we can calculate the tag-level similarity
between two Web services si and s j as follows:

Simtag(si , s j) = |Ti ∩ Tj |
|Ti ∪ Tj | , (7)

123

Clustering Web services 217

where |Ti ∩ Tj | means the number of tags that are both annotated to si and s j , and |Ti ∪ Tj |
means the number of unique tags in set Ti and Tj , i.e., |Ti ∪ Tj | = |Ti | + |Tj | − |Ti ∩ Tj |.

However, the real tag-level similarity between Web services cannot be reflected if we
directly use Eq. (7) to compute the similarity based on the original tagging data. Some
inherent properties of Web service tagging data, e.g., uneven tag distribution and noisy tags,
impact the reliability of tag-level similarity. In Sect. 5, a Web service tag recommendation
strategy will be introduced to handle this problem.

4.2 Similarity integration and service clustering

In the above subsection, we calculate feature-level similarity and tag-level similarity among
Web services, i.e., Simcon , Simtype, Simmes , Sim port , Simsname, and Simtag . In this section,
we integrate them into a global similarity for the purpose of Web service clustering.

Before similarity integration, it should be noted that the WSDL document is created by ser-
vice providers and tagging data reflect users’ knowledge. Thus, these two kinds of similarities
should be treated separately. In this paper, we first merge the similarities of features extracted
from WSDL documents to derive a WSDL-level similarity and then integrate WSDL-level
similarity and tag-level similarity into a global one.

We measure the WSDL-level similarity between Web services si and s j as follows:

Simwsdl(si , s j) = w1Simcon(si , s j) + w2Simtype(si , s j)

+w3Simmes(si , s j) + w4Sim port (si , s j)

+w5Simsname(si , s j), (8)

where w1, . . . , w5 are the user-defined weights of Content, Type, Message, Port, and Service
Name, respectively, with their sum being unity. The global similarity GSim(si , s j) between
si and s j is defined as follows:

GSim(si , s j) = (1 − λ)Simwsdl(si , s j) + λSimtag(si , s j), (9)

where λ ∈ [0, 1] is the weight of the tag-level similarity for the purpose of balancing. When
λ ∈ (0, 1), GSim(si , s j) is equal to 1 if the WSDL documents and tags of these two services
are identical, and GSim(si , s j) is equal to 0 if both the WSDL documents and the tags
of these two services are completely different. Specifically, only the WSDL documents are
utilized for Web service clustering when λ = 0, while we cluster Web services according to
the tag-level similarity when λ = 1.

As for Web service clustering, we propose to use K-means [36] clustering approach. K-
means is a widely adopted clustering algorithm that is simple and fast. Its drawback is that
the number of clusters has to be predefined manually before clustering.

5 WSTRec

Some inherent properties of Web service tagging data, e.g., uneven tag distribution and noisy
tags, impact the reliability of tag-level similarity. In this section, we introduce a novel Web
service tag recommendation strategy called WSTRec, in which tag mining, tag occurrence,
and semantic relevance are all adopted.

123

218 J. Wu et al.

5.1 Tag mining

Through our observation, many Web services including new members do not have tags. In
this case, we have to mine some tags from the textual features of the services first and then
use a tag recommendation strategy to improve the quality of the tagging data.

The assumption of tag mining is that the more important a term in the textual features,
the more probable for this term to be attached as a tag. In this paper, we use a well-accepted
method Term Frequency-Inverse Document Frequency (TF-IDF) [33,37], which is widely
adopted in the domain of information retrieval and nature language processing. Specifically,
textual features used for tag mining contain three parts: (1) the service name, (2) the service
description given by service provider, and (3) content words extracted from the WSDL
document.

Given a Web service s1 and a term t extracted from s1’s textual features, TF-IDF is
calculated as follows:

TF-IDFt,s1 = T Ft,s1 × I DFt , (10)

where T Ft,s1 denotes the term frequency (i.e., number of occurrences) of term t in s1, and
I DFt is the inverse document frequency defined as follows:

I DFt = log
N

d ft
, (11)

where N is the number of services in the collection, and d ft denotes the document frequency
of the term t , that is, the number of services that contain the term t . As the term with higher
value of TF-IDF is more important, we can choose the top terms as the initial tags.

5.2 Tag co-occurrence

Typically, an initial set of tags Is associated with a Web service s is provided to the recommen-
dation method, which outputs a set of related tags Cs , where Is

⋂
Cs = ∅. Tag co-occurrence

is a commonly used method for tag recommendation.
In our preliminary work, we propose a simple tag co-occurrence-based approach by

employing Jaccard coefficient method [35]. In this paper, we extract association rules to
reflect the tag co-occurrence and compute the scores of candidate tags according to the
association rules.

5.2.1 Association rule extraction

In the process of tag recommendation, we separate Web services into two parts: (1) training
data (denoted as T), which have many associated tags; (2) testing data (denoted as P), which
have few tags and need tag recommendation. Given a Web service st in training data, st is
presented as < Ist , Yst >, where Ist contains all tags associated with service st , while Yst is
empty. As for a Web service sp in the testing data, sp =< Isp , Ysp >, where Isp is the initial
tag sets, and Ysp are recommended tags based on tags in Isp according to the association
rules extracted from the training data T .

Table 2 shows a simple scenario of tag recommendation. In this scenario, we have to
recommend some tags to sp1 based on Isp1 (i.e., report and ZIP) according to the association
rules extracted from T . The definition of an association rule is as follows.

123

Clustering Web services 219

Table 2 Examples of training
data and testing data

I Y

T
st1 Weather ZIP report USA ∅
st2 USA ZIP company free ∅
st3 Weather station report signup ∅
st4 City station ZIP temperature ∅

P
sp1 Report ZIP ?

Definition 1 An association rule is denoted as X θ−→ y, where the antecedent X is a set of

tags, and the consequent y is a predicted tag. The size of association rule X θ−→ y is the
number of tags in X , that is, |X |. The strength of the association between antecedent X and
consequent y is given by θ , which is the conditional probability of y being in Ysp given that
X ⊆ Isp .

Take the tagging data of st1 as an example, we can extract many association rules from
these four tags according to Definition 1, e.g., weather −→ report , (weather, Z I P) −→
report , and (report, U S A) −→ weather . Given n tags, the number of rules N R(n)

extracted from these tags is:

N R(n) =
n−1∑
m=1

Cm
n × (n − m)

= n
n−1∑
m=1

Cm
n−1 = n(2n−1 − 1) (12)

According to Eq. (10), it can be discovered that the association rule space is very large.
To reduce it, we propose the following lemma that could be used to control the extraction of
association rules.

Lemma 1 Rule X θ−→ y is a useful association rule for testing service sp, if and only if
X ⊆ Isp .

Take the rule (report, U S A) −→ weather and sp1 in Table 2 as an example, this rule is
useless as the set of initial tags of sp1 does not contain U S A. Thus, the extraction of association
rules depends on the initial tags in testing data. We only extract rules when the antecedent
X is the subset of or equal to the initial tags of testing service. For illustrative purposes, we
create a projected training data, T P , which consists of services s p

t =< Isp
st , Ysp

st >, where
Isp

st = {Ist

⋂
Isp } and Ysp

st = {Ist − Isp
st }. Table 3 shows the projected training data based

on data in Table 2.
For any service s p

t in the projected training data, Isp
st ⊆ Isp , we can extract association

rules in the following sense: X θ−→ y, X ⊆ Isp
st , and y ∈ Ysp

st . According to Lemma 1, 13
association rules could be extracted from Table 3 and some example rules are as follows:

1. Z I P
θ=0.67−→ U S A

2. report
θ=0.5−→ station

3. report, Z I P
θ=1−→ weather

123

220 J. Wu et al.

Table 3 Projected training data
for rule extraction IP YP

T P

s p1
t1 Report ZIP Weather USA

s p1
t2 ZIP USA company free

s p1
t3 Report Weather station signup

s p1
t4 ZIP City station temperature

5.2.2 Rule-based scoring

In order to recommend tags that are more likely to be associated with service sp ∈ P , we have
to give a score to each candidate tag by utilizing rules in Rsp which is the set of association
rules extracted based on sp and T . Given a candidate tag y, the rule-based scoring function
is as follows:

�(sp, y) =
∑

X⊆Isp

θ(X −→ y) (13)

5.3 Semantic relevance

Tags recommended only based on tag co-occurrence sometimes may be irrelevant to the

target Web service. Take the rule (report, Z I P)
θ=1−→ weather extracted from Table 3 as

an example. Tag weahter maybe wrongly recommended to a document sharing service
which has tag report as the strong association rule between weather and report . Thus, the
relevance between a candidate tag and the target Web service should be considered in the
process of tag recommendation. Further, the introduction of relevance metric can also filter
out the noisy tags (e.g., misspellings or unrelated terms) or reduce their importance.

Given a candidate tag y and the target Web service sp , the semantic relevance between
sp and y, denoted as �(sp, y), is generated by summing the semantic similarity between
tag y and textual features of sp , i.e., service name, service description, and content vector.
In particular, the semantic similarity between y and a textual feature F i

sp
is calculated as

follows:

Sem(F i
sp

, y) =
{

1, y ∈ F i
sp

maxt∈F i
sp

(1 − N G D(y, t)), y �∈ F i
sp

(14)

�(sp, y) is calculated as follows:

�(sp, y) =
N∑

i=1

Sem(F i
sp

, y), (15)

where N is the number of textual features, which is 3 in this paper.

5.4 Tag ranking

�(sp, y) reflects the association rules between candidate tag y and other tags, while �(sp, y)

shows the semantic relevance between y and sp . In WSTRec, we combine these two measure-

123

Clustering Web services 221

ments to rank candidate tags for the purpose of recommendation. Given sp , the final score
of candidate tag y is calculated as follows:

Score(sp, y) = (1 − δ)�(sp, y) + δ�(Sp, y), (16)

where δ is a weighting factor to balance the importance of tag co-occurrence and semantic
relevance in the process of tag recommendation.

6 Experiment

In this section, we present an experimental evaluation of the proposed approach by measuring:
(1) performance of different Web service clustering approaches in terms of precision and
recall; (2) impact of N (Number of Web services in one cluster), C (Number of clusters),
λ, and δ to the performance of Web service clustering; (3) performance of WSTRec; and (4)
impact of δ to the performance of WSTRec.

6.1 Experimental setup

To evaluate the performance of Web service clustering approaches and tag recommendation
strategies, we crawl 15,968 real Web services 9 from the Web service search engine Seekda!
For each Web service, we get the data of service name, service description given by service
providers, WSDL document, tags, availability information, and the name of the service
providers.

All experiments are implemented with JDK 1.6.0-21, Eclipse 3.6.0. They are conducted
on a Dell Inspire R13 machine with 2.27 GHZ Intel Core I5 CPU and 2GB RAM, running
Windows7 OS.

6.2 Performance of Web service clustering

To create the ground truth for Web service clustering performance evaluation, we randomly
select 320 Web services from the crawled 15,968 Web service. Specifically, there are 50 Web
services with no tags, and a tag mining method has to be employed to mine some initial
tags. We perform a manual classification of these 320 Web services to serve as the ground
truth for the clustering approaches. Specifically, we distinguish the following four function
categories: “Weather,” “Email,” “Stock,” and “Education.” There are 42 Web services in
“Weather” category, 37 in “Communication,” 39 in “Stock,” and 52 in “Finance.” Due to the
space limitation, the detailed information is omitted here.

To evaluate the performance of Web service clustering, we introduce two metrics (precision
and recall) which are widely adopted in the information retrieval domain.

Precisionci = succ(ci)

succ(ci) + mispl(ci)

Recallci = succ(ci)

succ(ci) + missed(ci)
, (17)

where succ(ci) is the number of services successfully placed into cluster ci , mispl(ci) is
the number of services that are incorrectly placed into ci , and missed(ci) is the number of
services that should be placed into ci but are placed into another.

9 STag Dataset 1.0, collected by Liang Chen (cliang@zju.edu.cn) and Johnny Jian (johnnyjian@gmail.com).

123

222 J. Wu et al.

In this section, we compare the performance of three Web service clustering approaches:

1. WCluster. In this approach, Web services are clustered only according to the WSDL-
level similarity between Web services (calculated in Eq. (8)). This approach was adopted
in some related work [4,5].

2. WTCluster1. In this approach, we utilize both the WSDL documents and the tagging
data, and cluster the Web services according to the composite similarity calculated in
Eq. (9). Specifically, WSTRec is not employed in W T Cluster1.

3. WTCluster2. In this approach, all the processes in our proposed Web service cluster-
ing architecture, i.e., Fig. 2, are adopted. Web service clustering is performed after the
execution of WSTRec.

Figure 5 shows the comparison results. For simplicity, we set wi = 0.2, i ∈ {1, 2, 3, 4, 5}
in all the following experiments. The values of other related parameters are set as λ =
0.5 and δ = 0.25. From Fig. 5, we can observe that our proposed WTCluster approaches
(W T Cluster1, W T Cluster2) outperform the traditional WCluster approach both in the
comparison of precision and recall. As we discussed above, the tags of Web services contain
much information, such as service function, location, and other semantical information.
Utilizing the tag information improves the performance of Web service clustering.

Further, it can be observed that the approach W T Cluster2 which contains the process
of tag recommendation outperforms W T Cluster1 approach. The introduction of WSTRec
produces gains in precision of up to 14.1 % and generates improvements in recall of up to
10.8 %. This is because the implementation of WSTRec recommends some related tags to the
Web services with few tags, which enriches the information of Web services.

6.3 Impact of C on the performance of clustering

It should be noted that if the functions of Web services in the same cluster differ a lot, litter
help can be provided by Web service clustering to the discovery of Web service. The best
situation of Web service clustering is that functions of all Web services in the same cluster are
single, such as the cluster of weather f orecast . Thus, the number of service clusters will be
a large number in the real application, for the purpose of facilitating Web service discovery.

In the experiments leading to the results in Fig. 5, the number of Web service clusters is
C =4, which is too small compared with the number of function categories in real applications.
In this section, we evaluate the performance of Web service clustering as C varies. Besides the

Fig. 5 Comparison of Web service clustering performance

123

Clustering Web services 223

Web services used in the prior experiments, we add many other Web services with different
function categories, e.g., Tourist, University, and HR. For each addition, there are about
30–40 Web services in it. The evaluation metrics for this experiment are Avg-precision and
Avg-recall, which are the average values of all clusters’ precisions and recalls.

Avg − precision = 1

C

C∑
i=1

precisionci

Avg − recall = 1

C

C∑
i=1

recallci (18)

Figure 6 shows the performance of Web service clustering versus C where λ = 0.5 and
δ = 0.25. Avg-precision and Avg-recall of WCluster decrease when C increases from 4 to 12.
Especially, the performance of WCluster decreases up to 10.2 % when C = 12. Compared
with WCluster , the performance of W T Cluster1 and W T Cluster2 is quiet stable. This is
because the introduction of tagging data improves the distinguishability among Web services
belonging to different function category. Thus, we can draw the conclusion that the scalability
of our proposed Web service clustering approaches is good in terms of C.

6.4 Impact of N on the performance of clustering

With the development of service-oriented computing, more and more Web services with
similar functions but different QoS appear in the Internet, that is, the number of Web services
in one function category may be large in the very near future. In the above experiments, the
number of Web services in each cluster is about 40, which is relatively small. In this part, we
evaluate the performance of our proposed clustering approaches when the number of services
in each cluster (i.e., N) is large. We set λ = 0.5, δ = 0.25, and C = 4.

Figure 6c, d shows the performance of three clustering approaches with N . Their precision
performance results are different when N increases: the precision values of W T Cluster1

and W T Cluster2 first decrease and then increase, while the trend of WCluster approach
is the opposite. As for the trend of the recall values, they increase with N , that is, with the
increase in the number of Web services in a cluster, the performance of Web service clustering
will be better. This is because the increase in Web services enriches the corpus and provides
more association rules.

6.5 Impact of λ

In our proposed Web service clustering approach, both WSDL document and tags are utilized
with parameter λ to balance the weights of two data in the calculation of global similarity

4 5 6 7 8 9 10 11 12
60

65

70

75

80

85

90

95

100

Number of Clusters (C)

A
vg

−P
re

ci
si

o
n

 (
%

)

WCluster
WTCluster1
WTCluster2

(a)

4 5 6 7 8 9 10 11 12
60

65

70

75

80

85

90

95

100

Number of Clusters (C)

A
vg

−R
ec

al
l (

%
)

WCluster
WTCluster1
WTCluster2

(b)

40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

N

A
vg

−P
re

ci
si

o
n

 (
%

)

WCluster
WTCluster1
WTCluster2

(c)

40 60 80 100 120 140 160 180 200
65

70

75

80

85

90

95

100

N

A
vg

−R
ec

al
l (

%
)

WCluster
WTCluster1
WTCluster2

(d)

Fig. 6 Impact of C and N

123

224 J. Wu et al.

between Web services. When λ = 0, W T Cluster equals to WCluster . When λ = 1, only
tagging data are utilized for clustering. In this part, we try to find an optimal value of λ

which leads to the best performance of service clustering. Thus, we need to evaluate the
performance of W T Cluster2 approach only. Specifically, set other parameters as follows:
C = 4, N = 40, δ = 0.25.

Figure 7a, b shows the performance of service clustering versus λ. From Fig. 7a, we can
find the optimal value of λ shifts from 0.3 to 0.5 when the best performance of precision is
reached. The optimal λ shifts from 0.6 to 0.8 when the value of recall reaches its highest
point. Thus, no optimal value of λ can make W T Cluster2 reach its best performance in
terms of both precision and recall. In this paper, therefore, we set λ as 0.5 to include the
trade-off.

6.6 Impact of δ

Tag recommendation result is determined by the scoring function which makes use of tag co-
occurrence and semantic relevance. δ is employed to balance the weights of tag co-occurrence
and semantic relevance in the final score. As tag-based similarity plays an important role in
the calculation of global similarity, the value of δ indirectly impacts the performance of Web
service clustering.

Figure 7c, d shows the trend of clustering performance versus δ. From them, we can find
that the value of precision and recall first increases and then decreases when the value of δ

varies from 0 to 0.5. Further, when δ shifts from 0.2 to 0.3, both precision and recall reach
their highest points. Thus, we choose 0.25 as the optimal value of δ in this paper.

6.7 Evaluation of tag recommendation strategies

Before evaluating the performance of W ST Rec, we select 2,200 Web services, which contain
1,254 unique tags, as the dataset for evaluation. Specifically, there are 400 Web services with
no initial tags in these 2,200 services. The ground truth is manually created through a blind
review pooling method, where for each of the 2,200 Web services, the top five recommenda-
tions from WSTRec were taken to construct the pool. The volunteers (i.e., some master and
undergraduate students in the laboratory) were then asked to evaluate the descriptiveness of
each of the recommended tags in the context of the Web services. We provide the WSDL
documents and Web service descriptions to the volunteers for helping them. The volunteers
were asked to judge the descriptiveness on a three-point scale: very good, good, and not
good. The distinction between very good and good is defined to make the assessment task
conceptually easier for the users. Finally, we get 1,948 very good judgements (19.6 %), 2,145
good judgements (21.6 %), and 5,854 not good judgements (58.8 %).

0 0.2 0.4 0.6 0.8 1
65

70

75

80

85

90

95

Lamda

A
vg

−P
re

ci
si

o
n

 (
%

)

(a)

0 0.2 0.4 0.6 0.8 1
65

70

75

80

85

90

95

Lamda

A
vg

−R
ec

al
l (

%
)

(b)

0 0.1 0.2 0.3 0.4 0.5
84

84.5
85

85.5
86

86.5

87
87.5

88
88.5

89

Delta

A
vg

−P
re

ci
si

o
n

 (
%

)

(c)

0 0.1 0.2 0.3 0.4 0.5
83

84

85

86

87

88

89

Delta

A
vg

−R
ec

al
l (

%
)

(d)

Fig. 7 Impact of λ and δ

123

Clustering Web services 225

To evaluate the performance of WSTRec, we adopt two widely adopted metrics which
capture the performance at different aspects:

• Success at rank K (S@K). The success at rank K is defined as the percentage of good
or very good tags taken in the top K recommended tags, averaged over all judged Web
services.

• Precision at rank K (P@K). Precision at rank K is defined as the proportion of retrieved
tags that is relevant, averaged over all judged Web services.

In our prior work [31], we propose two simple tag recommendation strategies, i.e.,
Sum and Vote. In this section, we compare the performance of WSTRec with Sum and
Vote.

Table 4 shows the S@K performance of three tag recommendation strategies, where
G means the number of initial tags which the target Web service contains. Specifically,
if si does not have initial tags, tag mining technique is implemented to mine G rele-
vant tags as the initial tags. Take WSTRec as an example; when G varies from 1 to 2,
the average value of S@K is over 0.77, i.e., more than 77 % recommended tags obtain
good or very good descriptiveness. For all three strategies, it can be observed that when
G increases, the value of S@K increases. When K increases, S@K decreases in most
cases. However, in any situation, WSTRec outperforms the other two strategies in terms
of S@K.

Table 5 shows the comparison of three tag recommendation strategies in terms of P@K.
From Table 5, it can be observed that P@K decreases when G increases. This is because the
number of relevant tags to a certain Web service is limited. When G increases, the number of
relevant tags left decreases, which lowers P@K. In addition, P@K achieves its largest value
when K = 1 and decreases when K increases in most cases. Similar to the observation in
Table 4, WSTRec outperforms the other two recommendation strategies in terms of P@K.

7 Conclusion

In this paper, we propose to utilize tagging data to improve the performance of traditional
WSDL document-based Web service clustering for the purpose of more accurate Web service
discovery. In our proposed clustering approach, Web services are clustered according to the

Table 4 S@K comparison of three tag recommendation strategies

G Method K = 1 K = 2 K = 3 K = 4 K = 5

1–2 Sum 0.7584 0.7387 0.6925 0.6901 0.6847

Vote 0.6913 0.6548 0.6987 0.7125 0.7048

WSTRec 0.8102 0.7843 0.7776 0.7489 0.7463

3–5 Sum 0.7665 0.7444 0.7281 0.6998 0.6914

Vote 0.7485 0.7254 0.7351 0.7041 0.7015

WSTRec 0.8351 0.8025 0.7877 0.7654 0.7414

>5 Sum 0.7759 0.7744 0.7568 0.7358 0.7025

Vote 0.7895 0.7768 0.7712 0.7489 0.7345

WSTRec 0.8598 0.8248 0.8079 0.7758 0.7681

Larger values are shown in bold

123

226 J. Wu et al.

Table 5 P@K comparison of three tag recommendation strategies

G Method K = 1 K = 2 K = 3 K = 4 K = 5

1–2 Sum 0.6548 0.6143 0.5989 0.5418 0.4986

Vote 0.6859 0.6458 0.6215 0.6249 0.5615

WSTRec 0.7102 0.7015 0.6899 0.6874 0.6589

3–5 Sum 0.6672 0.6415 0.6015 0.5687 0.5145

Vote 0.6245 0.6325 0.6018 0.6245 0.6178

WSTRec 0.7018 0.6948 0.6812 0.6741 0.6254

>5 Sum 0.5658 0.5147 0.4958 0.4256 0.3958

Vote 0.6214 0.5847 0.5141 0.4478 0.3845

WSTRec 0.6544 0.6014 0.5663 0.4979 0.4875

Larger values are shown in bold

global similarities among services, which are calculated based on tagging data and five
features extracted from the WSDL document.

Furthermore, we propose a hybrid Web service tag recommendation approach WSTRec
to improve the performance limited by the uneven tag distribution and noisy tags. Tag
co-occurrence, tag mining, and semantic relevance are adopted in WSTRec. Specifically,
tag mining technique is employed to mine some initial tags for Web services with no tags.

To evaluate the performance of Web service clustering, we crawl 15,968 real Web services
from the Web service search engine Seekda! Compared with traditional WSDL-based Web
service clustering, our proposed clustering approach produces gains in both precision and
recall of up to 14 % in most cases. Moreover, WSTRec outperforms two widely accepted tag
recommendation strategies in terms of both S@K and P@K.

The scale of tag-related experiments in this paper is small, due to the limited tagging data
of Web services. In our future work, we plan to enlarge the scale of Web service tagging data
by attracting more users to annotate Web services in our proposed Titan10 Web service search
engine. Tagging data of Web services will also be employed in other applications, e.g., Web
service search and collaborative filtering-based Web service recommendation. Furthermore,
we will conduct more research in utilizing social network information to facilitate Web
service mining.

Acknowledgments This research was partially supported by the National Technology Support Program
under the grant of 2011BAH16B04, the National Natural Science Foundation of China under the grant of No.
61173176, Science and Technology Program of Zhejiang Province under the grant of 2008C03007, National
High-Tech Research and Development Plan of China under the Grant No. 2011AA010501, and a grant from
the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK
415409).

References

1. Al-Masri E, Mahmoud QH (2008) Investigating web services on the world wide web. In: Proceedings of
international World Wide Web conference, pp 795–804

2. Nayak, Richi (2008) Data mining in web service discovery and monitoring. Int J Web Serv Res 5(1):62–80
3. Lim SY, Song MH, Lee SJ (2004) The construction of domain ontology and its application to document

retrieval. Lect Notes Comput Sci 3261:117–127

10 http://ccnt.zju.edu.cn:8080.

123

http://ccnt.zju.edu.cn:8080

Clustering Web services 227

4. Elgazzar K, Hassan AE, Martin P (2009) Clustering wsdl documents to bootstrap the discovery of web
services. In: Proceedings of international conference on Web services, pp 147–154

5. Liu W, Wong W (2009) Web service clustering using text mining techniques. Int J Agent-Oriented Softw
Eng 3(1):6–26

6. Lipczak M, Hu Y, Kollet Y, Milios E (2009) Tag sources for recommendation in collaborative tagging
systems. ECML PKDD Discov Chall 497:157–172

7. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of international
conference on very large data bases, pp 487–499

8. Wu Z, Deng S, Li Y, Wu J (2009) Computing compatibility in dynamic service composition. Int J Knowl
Inf Syst 19(1):107–129

9. Hu C, Zhu Y, Huai J, Liu Y, Ni LM (2007) S-club: an overlay-based efficient service discovery mechanism
in crown grid. Int J Knowl Inf Syst 12(1):55–75

10. Liang QA, Chung J-Y, Miller S (2007) Modeling semantics in composite web service requests by utility
elicitation. Int J Knowl Inf Syst 13(3):367–394

11. Wu J, Chen L, Xie Y, Zheng Z (2012) Titan: a system for effective web service discovery. In: Proceedings
of international conference companion on World Wide Web, pp 441–444

12. Agarwal S, Studer R (2006) Automatic matchmaking of web services. In: Proceedings of international
conference on Web services, pp 45–54

13. Klusch M, Fries B, Sycara K (2006) Automated semantic web service discovery with owls-mx. In:
Proceedings of international conference on autonomous agents and multiagent systems, pp 915–922

14. Benatallah B, Hacid M, Leger A, Rey C, Toumani F (2005) On automating web services discovery. Int J
Very Large Data Bases 14(1):84–96

15. Zhang Y, Zheng Z, Lyu MR (2010) Wsexpress: a qos-aware search engine for web services. In: Proceedings
of international conference on Web services, pp 91–98

16. Dong X, Halevy A, Madhavan J, Nemes E, Zhang J (2004) Similarity search for web services. In:
Proceedings of international conference on very large data bases, pp 372–383

17. Hu S, Muthusamy V, Li G, Jacobsen HA (2008) Distributed automatic service composition in large-scale
systems. In: Proceedings of distributed event-based systems conference, pp 233–244

18. Liu F, Shi Y, Yu J, Wang T, Wu J (2010) Measuring similarity of web services based on wsdl. In:
Proceedings of international conference on Web services, pp 155–162

19. Ran S (2003) A model for web services discovery with qos. ACM Sigecom Exch 4(1):1–10
20. Lara R, Corella MA, Castells P (2006) A flexible model for web service discovery. In: Proceedings of

international conference on very large data bases
21. Zheng Z, Ma H, Lyu MR, King I (2009) Wsrec: a collaborative filtering based web service recommender

system. In: Proceedings of international conference on Web services, pp 437–444
22. Zheng Z, Ma H, Lyu MR, King I (2011) Qos-aware web service recommendation by collaborative filtering.

IEEE Trans Serv Comput 4(2):140–152
23. Wu J, Chen L, Feng Y, Zheng Z, Zhou M, Wu Z (2013) Predicting quality of service for selection by

neighborhood-based collaborative filtering. IEEE Trans Syst Man Cybern Part A 43(2):428–439
24. Hao Y, Junliang C, Xiangwu M, Bingyu Q (2007) Dynamically traveling web service clustering based

on spatial and temporal aspects. Lect Notes Comput Sci 4802:348–357
25. Platzer C, Rosenberg F, Dustdar S (2009) Web service clustering using multidimensional angles as

proximity measures. ACM Trans Intern Technol 9(3):1–26
26. Bianchini D, Antonellis VD, Pernici B, Plebani P (2006) Ontology-based methodology for e-service

discovery. ACM J Inf Syst 31(4):361–380
27. Sun P, Jiang C (2008) Using service clustering to facilitate process-oriented semantic web service dis-

covery. Chin J Comput 31(8):1340–1353
28. Pop CB, Chifu VR, Salomie I, Dinsoreanu M, David T, Acretoaie V (2010) Semantic web service

clustering for efficient discovery using an ant-based method. Stud Comput Intell 315:23–33
29. Dasgupta S, Bhat S, Lee Y (2010) Taxonomic clustering of web service for efficient discovery. In:

Proceedings of international conference on information and, knowledge management, pp 1617–1620
30. WeiLiu, Wong W (2008) Discovering homogeneous service communities through web service clustering.

Serv Oriented Comput Agents Semant Eng 5006:69–82
31. Chen L, Hu L, Wu J, Zheng Z, Ying J, Li Y, Deng S (2011) Wtcluster: utilizing tags for web service

clustering. In: Proceedings of international conference on service oriented, computing, pp 204–218
32. Porter MF (1980) An algorithm for suffix stripping. Program 14(3):130–137
33. Church K, Gale WA (1995) Inverse document frequency (idf): a measure of deviations from poisson. In:

Proceedings of the ACL 3rd workshop on very large corpora, pp 121–130
34. Cilibrasi RL, Vitnyi PMB (2007) The google similarity distance. IEEE Trans Knowl Data Eng 19(3):370–

383

123

228 J. Wu et al.

35. Jain A, Dubes R (1988) Algorithms for clustering data. Prentice Hall, New Jersey
36. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. In:

Proceedings of the fifth symposium on math, statistics, and probability, pp 281–297
37. Manning CD, Raghavan P, Schtze H (2008) Introduction to information retrieval. Cambridge University

Press, Cambridge

Author Biographies

Jian Wu received his B.S. and Ph.D. degrees in computer science
from Zhejiang University, Hangzhou, China, in 1998 and 2004, respec-
tively. He is currently an associate professor at the College of Computer
Science, Zhejiang University, and visiting professor at University of
Illinois at Urbana-Champaign. His research interests include service
computing and data mining. He is the recipient of the second-grade
prize of the National Science Progress Award. He is currently leading
some research projects supported by National Natural Science Foun-
dation of China and National High-tech R&D Program of China (863
Program).

Liang Chen received his B.S. degree in computer science from
Zhejiang University, Hangzhou, China in 2009. He is currently a Ph.D.
candidate in the College of Computer Science, Zhejiang University. His
publications have appeared in some well-known conference proceed-
ings and international journals. He received the award of “Excellent
Intern” from Microsoft Research Asia in 2010. He also served as a
reviewer for some international conferences and journals. His research
interests include service computing and data mining.

Zibin Zheng received his Ph.D. degree from the department of Com-
puter Science and Engineering, The Chinese University of Hong Kong
(CUHK) in 2010. He is currently an associate research fellow at the
Shenzhen Research Institute, CUHK. He received Outstanding Thesis
Award of CUHK in 2012, ACM SIGSOFT Distinguished Paper Award
at ICSE2010, Best Student Paper Award at ICWS2010, First Runner-up
Award at 2010 IEEE Hong Kong Postgraduate Student Research Paper
Competition, and 2010-2011 IBM PhD Fellowship Award. He served
as program committee member of IEEE CLOUD2009, SCC2011-2012,
and ICSOC 2012. His research interests include cloud computing, ser-
vice computing, and software engineering.

123

Clustering Web services 229

Michael R. Lyu received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan, R.O.C., in 1981; the
M.S. degree in computer engineering from University of California,
Santa Barbara, in 1985; and the Ph.D. degree in computer science
from the University of California, Los Angeles, in 1988. He is cur-
rently a Professor in the Department of Computer Science and Engi-
neering, Chinese University of Hong Kong, Hong Kong, China. He is
also Director of the Video over Internet and Wireless (VIEW) Tech-
nologies Laboratory. His research interests include software reliabil-
ity engineering, distributed systems, fault-tolerant computing, mobile
networks, Web technologies, multimedia information processing, and
E-commerce systems. He has published over 400 refereed journal and
conference papers in these areas. He has participated in more than 30
industrial projects and helped to develop many commercial systems
and software tools. He was the editor of two book volumes: Software
Fault Tolerance (New York: Wiley, 1995) and The Handbook of Soft-
ware Reliability Engineering (New York: IEEE and New McGraw-Hill,

1996). Dr. Lyu received Best Paper Awards at ISSRE’98 and ISSRE’2003. Dr. Lyu initiated the First Inter-
national Symposium on Software Reliability Engineering (ISSRE) in 1990. He was the Program Chair for
ISSRE’96 and General Chair for ISSRE’2001. He was also PRDC’99 Program Co-Chair, WWW10 Program
Co-Chair, SRDS’2005 Program Co-Chair, PRDC’2005 General Co-Chair, ICEBE’2007 Program Co-Chair,
SCC’2010 Program Co-Chair, and DSN’2011 General Chair and served in program committees for many
other conferences including HASE, ICECCS, ISIT, FTCS, DSN, ICDSN, EUROMICRO, APSEC, PRDC,
PSAM, ICCCN, ISESE, and WI. He has been frequently invited as a keynote or tutorial speaker to con-
ferences and workshops in the United States, Europe, and Asia. He has been on the Editorial Board of the
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the IEEE TRANSACTIONS
ON RELIABILITY, the Journal of Information Science and Engineering, and Software Testing, Verification
& Reliability Journal. Dr. Lyu is an IEEE Fellow and an AAAS Fellow for his contributions to software
reliability engineering and software fault tolerance. Dr. Lyu is also a Croucher Senior Research Fellow.

Zhaohui Wu received the PhD degree in computer science from Zhe-
jiang University, Hangzhou, China, in 1993. From 1991 to 1993, he
was a joint Ph.D. student in the area of knowledge representation and
expert system with the German Research Center for Artificial Intelli-
gence, Kaiserslautern, Germany. He is currently a Professor at the Col-
lege of Computer Science, and the Director of the Institute of Computer
System and Architecture, Zhejiang University. His research interests
include intelligent transportation systems, distributed artificial intel-
ligence, semantic grid, and ubiquitous embedded systems. He is the
author of four books and more than 100 referred papers. Dr. Wu is
a Standing Council Member of China Computer Federation (CCF),
Beijing. Since June 2005, he has been the Vice Chairman of the CCF
Pervasive Computing Committee. He is also on the editorial boards of
several journals and has served as a Program Chair for various interna-
tional conferences.

123

	Clustering Web services to facilitate service discovery
	Abstract
	1 Introduction
	2 Related work
	3 Architecture of Web service clustering
	4 Web service clustering
	4.1 Feature extraction and similarity computation
	4.1.1 Content
	4.1.2 Type
	4.1.3 Message
	4.1.4 Port
	4.1.5 Service name
	4.1.6 Tag

	4.2 Similarity integration and service clustering

	5 WSTRec
	5.1 Tag mining
	5.2 Tag co-occurrence
	5.2.1 Association rule extraction
	5.2.2 Rule-based scoring

	5.3 Semantic relevance
	5.4 Tag ranking

	6 Experiment
	6.1 Experimental setup
	6.2 Performance of Web service clustering
	6.3 Impact of on the performance of clustering
	6.4 Impact of on the performance of clustering
	6.5 Impact of λ
	6.6 Impact of δ
	6.7 Evaluation of tag recommendation strategies

	7 Conclusion
	Acknowledgments
	References

