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Abstract

Hough Transform (HT) is recognized as a powerful tool for graphic element extraction from images due to its global vision
and robustness in noisy or degraded environment. However, the application of HT has been limited to small-size images for a
long time. Besides the well-known heavy computation in the accumulation, the peak detection and the line verification become
much more time-consuming for large-size images. Another limitation is that most existing HT-based line recognition methods
are not able to detect line thickness, which is essential to large-size images, usually engineering drawings. We believe these
limitations arise from that these methods only work on the HT parameter space. This paper therefore proposes a new HT-
based line recognition method, which utilizes both the HT parameter space and the image space. The proposed method devises
an image-based gradient prediction to accelerate the accumulation, introduces a boundary recorder to eliminate redundant
analyses in the line verification, and develops an image-based line verification algorithm to detect line thickness and reduce
false detections as well. It also proposes to use pixel removal to avoid overlapping lines instead of rigidly suppressing the
N ×N neighborhood. We perform experiments on real images with different sizes in terms of speed and detection accuracy.
The experimental results demonstrate the significant performance improvement, especially for large-size images.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Graphical element recognition is fundamental to various
image-understanding applications. Hough Transform (HT)
is a powerful tool for finding parameterized shapes in digital
images[1]. We can easily find a large number of HT-based
graphics recognition methods in literature[2–16], which are
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capable of detecting straight lines, circles, ellipses and other
curves in both binary and grayscale images. HT-based meth-
ods are robust over different image qualities since HT con-
verts a difficult global detection problem in image space
into a more easily solvable peak detection problem in the
HT parameter space; therefore, they can deal with noise,
degradation, and partial disconnection, even in complicated
background. However, HT-based methods are seldom ap-
plied to the domain of engineering drawings because of two
common limitations:

(1) Their reported applications are limited to small-size im-
ages. The attempts of applying HT to large-size images
are usually discouraged since when the image size ex-
pands, the processing time and the memory cost grow
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rapidly, and the random aligned noises become notice-
able. Unfortunately, engineering drawings usually come
with quite large sizes.

(2) They do not detect the line thickness, which is criti-
cal to some applications, say, understanding engineering
drawings. Some methods assume the line thickness is
constant in an image and then take it as an input param-
eter to enhance the performance[13,16]. However, this
assumption is not true for most engineering drawings.

One may think that it is not necessary to apply HT-
based methods to engineering drawings since there are
already many graphics recognition methods in this do-
main. In fact, according to our study, the popular graphics
recognition methods for engineering drawings, includ-
ing skeletonization-based methods[17,18], contour-based
methods[19] and pixel-tracking methods[20,21], mainly
depend on the pixel-level connectivity of graphic elements.
As a result, they handle good quality images well, but their
performance drops significantly when the image quality
is too poor to keep the connectivity. HT is no doubt the
best choice under this circumstance. Therefore, this paper
proposes a new HT-based method which handles large-size
images more efficiently and can detect line thickness.

Besides the inherently high computation complexity of
HT, we believe the limitations of existing HT-based methods
partly come from their only working in the HT parameter
space. With the image size expanded, the number of fea-
ture points contributing to an HT parameter increases dra-
matically, leading to much larger memory cost and much
longer processing time for line verification. Moreover, since
the feature points are only a small portion of all pixels in
an image, it is impossible to detect the thickness of a line.
Therefore, this paper proposes to utilize the image space to
overcome these limitations. The experiments demonstrate
that the proposed HT-based line recognition method is very
efficient and accurate, especially for large-size images, and
it can detect line thickness as well.

The rest of this paper is organized as follows. Section
2 reviews related work. Section 3 describes the proposed
method in detail. The experimental results are reported in
Section 4. Finally, Section 5 draws our conclusions.

2. Related work

The standard HT for straight line is depicted by Eq. (1),
where(x, y) denotes a point in the Cartesian coordinates,
i.e., the image space, and(r, �) represents its parameter in
the polar coordinates, also called the HT parameter space.
All points on the same line in the image space will intersect
at one point in the HT parameter space.

r = x × cos� + y × sin �. (1)

Generally, using HT to recognize lines in images consists
of three steps: first, perform HT on feature points in the

image space and accumulate hits for each parameter in the
HT space; second, detect peaks in the HT parameter space;
and third, verify the line indicated by the peak parameter.

The first step has been well investigated so far. The con-
ventional HT treats all angles equally, which results in heavy
computation, huge parameter space, and less-salient peaks.
Consequently, current research interests focus on how to
select angles to accelerate the transform safely and effi-
ciently. An abundant number of improved HT methods, e.g.,
gradient-based HT[3,4], randomized HT[11], probabilis-
tic HT [9,12] and sampling HT[10], have been proposed to
accelerate the accumulation and to highlight the peaks.

The peak detection methods can be divided into two
classes: local peak detection methods and global peak de-
tection methods. The former class, e.g.,[5], is the common
way, which finds the local maxima within anN ×N neigh-
borhood over the HT parameter space, whereN is very crit-
ical. Using a largerN will suppress some real lines, while
using a smallerN will yield overlapping lines, i.e., repetitive
detections. To avoid the dilemma of local peak detection,
Princen et al.[8] proposed an iterative global peak detec-
tion method, which first selects the globally highest peak in
the HT parameter space, then removes those feature points
contributing to this peak, and finally repeats the HT accu-
mulation and the global peak detection. This method is more
robust than clearing a rigid-size neighborhood, but it is very
time-consuming for a large-size image due to iterative accu-
mulations. In fact, it is only applied to the sub-image level
in [8].

The line verification step has two purposes: (1) to de-
termine the exact parameters of line segments, including
starting point, end point and thickness, along the line indi-
cated by the detected peak, and (2) to eliminate the random
aligned feature points. The common method for line verifi-
cation[15] is sequentially checking the connectivity of fea-
ture points within the narrow strip area determined by the
peak parameter(r, �), the quantization interval�r, and the
sampling interval��. Since the line equation is calculated
frequently and the contributing feature points are searched
iteratively, this step may be more time-consuming than the
previous two steps for large-size images containing numer-
ous lines. Moreover, since existing methods only depend on
feature points, they cannot detect the line thickness. How-
ever, the improvement on this step is seldom addressed be-
cause small images are always considered.

3. Line recognition method

The idea of this method is to utilize the handy image
space to help accelerate the whole process and detect the
line thickness. As engineering drawings are usually scanned,
stored and processed in a binary format, we assume that
the image discussed in this paper is monochromatic (i.e.,
black for foreground and white for background). We prede-
fine two thresholds,Tmin andTmax , to indicate the thinnest
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Fig. 1. Orthogonal run length scanning.

and the thickest acceptable line thickness, respectively. The
proposed method consists of three major steps: HT ac-
cumulation (voting), peak selection and sorting, and line
verification.

3.1. Feature point selection

Considering the efficiency of a voting process, we select
only a small portion of pixels in the image, called feature
points, to participate the voting. We define the feature points
as the medial points of line-like areas. The feature points are
obtained by orthogonal run-length scanning, described as
follows. During the scan, we assume one-pixel-long white
gaps will not break a black run to tolerate the degraded
image quality.

(1) Horizontally scan the image steppingSh rows, where
Sh is the image height divided by 3000. For a horizontal
black run, if its length is betweenTmin andTmax , the
midpoint of this run is selected as a horizontal feature
point, as shown inFig. 1.

(2) After the horizontal scanning finishes, scan the image
vertically steppingSv columns, whereSv is the image
width divided by 3000. For a vertical black run, if its
length is betweenTmin andTmax , we further calculate
the length of the horizontal run passing the midpoint of
this vertical run. If the length of horizontal run is also
betweenTmin andTmax , this midpoint will be skipped
because it has already been used in the horizontal scan-
ning; otherwise, this midpoint is selected as a vertical
feature point, as shown inFig. 1.

By the above feature point selection algorithm, the points
of non-line-like areas and the non-medial points are ex-
cluded from voting, which enhances the localization accu-
racy of the resulting lines and accelerates the voting process.

3.2. Gradient prediction

In the conventional HT, a feature point votes for all angles.
This causes unnecessary computations and memory costs.
Moreover, it also produces false peaks in the parameter space
due to random aligned feature points. Following the idea of
gradient HT, we perform an image-based gradient prediction
for each feature point before voting.

According to Section 3.1, we have classified a feature
point into either a horizontal feature point or a vertical fea-
ture point. For a horizontal feature point, we calculate the
lengths of vertical, left diagonal, and right diagonal runs
passing the feature point, as shown inFig. 2a. For a vertical
feature point, we calculate the lengths of horizontal, left di-
agonal, and right diagonal runs, as shown inFig. 2b. Then,
the direction with the longest run length, denoted byL_Dir ,
is the possible line direction in the image space, which is
perpendicular to the predicted gradient direction in the pa-
rameter space, i.e.,�. The voting angle range for this feature
point is finally determined by the predicted gradient direc-
tion, as shown in Eq. (2).Fig. 2c illustrates that the voting
angle ranges of neighboring gradient directions are partly
overlapped. This is to tolerate the prediction error. The ex-
tent of overlapping can be reduced to speed up the voting
process. According to Eq. (2), the voting angle range spans
60◦, which is one third of the range of conventional HT. Of
course, one can check more directions to achieve more ac-
curate gradient prediction; however, checking any other di-
rections in the image space will be much slower than these
four directions.

Voting angle range(in degree)

=




0���30 Y
150���180, L_Dir = Vertical

60���120, L_Dir = Horizontal
15���75, L_Dir = Right diagonal
105���165, L_Dir = Left diagonal.

(2)

3.3. Thickness-weighted voting

Since only using feature points to vote does not conform
to the human perception that thick lines are more salient than
thin lines, and moreover, this will lower the signal-to-noise
ratio. Therefore, we employ the thickness-weighted voting.
In the previous processing, we have obtained the lengths of
runs in four directions passing a feature point. Denote the
lengths of horizontal, vertical, left diagonal, and right diag-
onal runs byH_Len, V_Len, LD_Len, andRD_Len, respec-
tively. The voting weight for a feature point is determined
by Eq. (3), which uses the length of the run perpendicular
to the line direction to approximate the line thickness:

Voting weight

=




H_Len, L_Dir = Vertical
V_Len, L_Dir = Horizontal
LD_Len, L_Dir = Right diagonal
RD_Len, L_Dir = Left diagonal.

(3)
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Fig. 2. Gradient prediction for feature points.

3.4. Boundary recorder

For the efficiency of processing large-size images, the
proposed method does not store the feature points contribut-
ing to each parameter. Some existing methods also do the
same way; however, one important reason for their time-
inefficiency is that they do not know which part of the strip
area contains feature points. Thus they have to either

recalculate all feature points with the known� to pick out
those with the same (or similar)r, or check every position
within the strip area in the image. Obviously, neither way
is fast for a large-size image. Usually, only a small part of
the strip area contains the feature points. According to this
fact, we add a boundary recorder to each parameter cell to
record theminimum scopethat contains the feature points
contributing to this parameter.

The boundary of each parameter consists of two fea-
ture points, called “upper boundary” and “lower boundary”,
which enclose all other feature points contributing to this
parameter. Since the dimension of parameter space grows
rapidly when the image size becomes large, one should be
careful in adding any byte to the parameter cell. According
to Eq. (1), givenr and�, one dimension of the image co-
ordinates can be calculated from another dimension. So we
only need to record one dimension of the coordinates in the

parameter cell. The choice of X- orY-dimension coordinates
depends on� (Fig. 3). When 45◦< �<135◦, the line in the
image space is nearly horizontal, so X-dimension is chosen
to record the boundary; otherwise, Y-dimension is chosen.
The initialization and the recording process of the boundary
recorders are described by the following C pseudo-codes,
where min(a, b) returns the smaller one betweena andb,
and max(a, b) returns the bigger one.

Initialization: for all parameter cells
Param[r][�].accumulator= 0;
Param[r][�].lower_boundary= max(image_height, image_width);
Param[r][�].upper_boundary= min(0,0);

Recording: when a feature point(x, y) contributes to a parameter(r, �)
Param[r][�].accumulator+ =voting_weight;
IF (45◦< �<135◦) {

Param[r][�].lower_boundary= min(Param[r][�].lower_boundary, point.x);
Param[r][�].upper_boundary= max(Param[r][�].upper_boundary, point.x);

}ELSE {
Param[r][�].lower_boundary= min(Param[r][�].lower_boundary, point.y);
Param[r][�].upper_boundary= max(Param[r][�].upper_boundary, point.y);

}

Consider an image of sizeW × H (width by height),

whose range breadth ofr is [−W,
√
H2 +W2] for

0◦ ���180◦. The memory requirement for the 2D HT
parameter space can be calculated as follows:

Memory Requirement

= (
√
H2 +W2 +W)

�r
× 180

��
× size of (param cell) bytes.

We choose�r = 2 and�� = 1◦ to keep both the accuracy
of direction and the clustering effect. The parameter cell
contains one accumulator, usually an integer (4 bytes), and
two boundary recorders that are short integers (2 bytes for
each), totally 8 bytes. For a large image of A0-size engineer-
ing drawing scanned with 300 dpi, which is fine enough to
digitize a line as thin as 0.003 in,W is about 14,000 pixels
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Fig. 3. Choice of the recording dimension.

and H about 9900 pixels. Then, the memory requirement
for the parameter space is approximately 23.8 MB, which is
obviously affordable for modern computers.

3.5. Peak detection

In this step, we introduce a thresholdLmin standing for
the minimum acceptable line length. The threshold for peak
height in the parameter space are derived by Eq. (4), which
represents a line with both the minimum length and the
minimum thickness, considering the scanning steps:

Tpeak= Tmin × Lmin
max(Sh, Sv)

. (4)

After all feature points have been transformed, we detect
all peaks in the HT parameter space. A parameter can be
identified as a peak if and only if its accumulated value is
both larger thanTpeakand the maximal in the 5× 5 neigh-
borhood of the parameter. Meanwhile, all detected peaks
are sorted into a peak list in descending order of accumu-
lated value. The line verification will begin from the head of
the peak list; thus, it can also take advantage of the global
peak. The pixels corresponding to a verified line segment are
erased from the image immediately, i.e., turning them from
black to white. Since the line verification is based on the
image space but not on feature points, the overlapping lines
are successfully avoided by erasing the already-verified line
segments. Thus, it does not need the re-accumulation after
processing each peak and it is much faster than the iterative
global peak detection method[8].

3.6. Line verification

Owing to the recorded boundary information, we only
need to analyze the valuable part in the image space deter-
mined by the peak parameter to find the evidence of line
segments and detect the line thickness of each segment.

According to the boundary recording process defined in
Section 3.4, the image coordinates of two boundary points
can be calculated easily, denoted byPlb andPub. The line
verification analyzes the pixels along the straight-line di-

A B C 

Plb Pub

Fig. 4. Line verification.

rection fromPlb to Pub sequentially. To avoid the heavy
computation in solving the line equation frequently, we
adopt the off-the-shelf rasterization method—Bresenham al-
gorithm for straight line[22], which generates a straight-
line path point with at most three additions—to generate the
eight-connected path points fromPlb to Pub, denoted byPi
(i = 1 . . . n), whereP1 = Plb andPn = Pub. The detailed
image-based line verification algorithm is as follows, where
Gmax stands for the maximum acceptable gap length:

gap_count= 0; start_pos= 1;
FOR (i = 1 TO n) {

IF (Pi is black) {
gap_count= 0;
IF (start_pos= = 0) start_pos= i;
IF (i = =n) {

IF (i-start_pos� Lmin) {
IF (VerifySegment(start_pos,i) = = True) {

Accept this segment;
Erase the pixels of this segment;

}
}

}
}ELSE {

gap_count += 1;
IF (gap_count= =Gmax or i = = n) {

IF (i-gap_count-start_pos� Lmin) {
IF (VerifySegment(start_pos,

i-gap_count)= = True) {
Accept this segment;
Erase the pixels of this segment;

}
}
start_pos= 0;

}
}

}
This algorithm checks all black segments fromPlb to Pub
that are longer thanLmin and do not contain gaps longer
thanGmax . For example, there are three valid black seg-
ments inFig. 4, denoted byA, B and C, respectively. For
each segment, it calls VerifySegment(start, end) to verify
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Fig. 5. Local line thickness detection.

the validity of the segment by checking the line thickness,
displayed as arrowheaded dashed lines inFig. 4. The line
thickness of a segment is voted by all local line thickness
detected at each blackPi (i=start. . .end). If the line thick-
ness is larger thanTmax , this segment may be the cross
section of a line in other direction, e.g., the segmentB, so
that it should be rejected. Since this algorithm does not de-
pend on a single threshold for the decision purpose, it can
distinguish between true lines and a random alignment of
feature points correctly. Moreover, it can detect more than
one line segment with different line thickness in the same
straight-line direction.

Considering the degraded quality of the image, we de-
velop a missing-pixel-tolerant approach to detect the local
line thickness. For eachPi , we usePi−1 andPi+1 (if avail-
able) to help the decision (Fig. 5). LetVi denote the straight-
line path passingPi and perpendicular to the linePlbPub.
Vi is also generated by the Bresenham algorithm.Vi(k)

(k = −Tmax . . .+ Tmax ) is the point on theVi path withk
steps away fromPi , particularly,Vi(0)= Pi . The detection
starts fromk = 0 and increasesk by 1 iteratively until the
number of black pixels amongVj(t) (j = i − 1 . . . i + 1,
t = k . . . k+ 1) is less than 4, and then records the stopped

(a) (b) (c)

Fig. 6. Erasing the pixels corresponding to the horizontal line segment.

k askmax . Next, it decreasesk from 0 by 1 with the same
criteria to getkmin. Finally, the local line thickness is cal-
culated askmax − kmin + 1. This approach can detect cor-
rect line thickness from degraded quality images as well
as high quality images. The verified line segments will be
stored with three parameters: starting point, end point, and
line thickness.

3.7. Line erasing

After all line segments contributing to a peak have been
verified, the pixels corresponding to these line segments
should be erased from the image immediately to avoid over-
lapping lines. It is easy to erase the pixels of a line segment
by erasing a rectangular area determined by the parameters
(the long axis is from the starting point to the end point,
and the length of short axis equals the line thickness). This
is correct for an isolated line segment. However, if there
are other under-detected line segments intersecting this line
segment (Fig. 6a), their intersection parts will also be erased
so that the under-detected line segments will be separated
(Fig. 6b). This problem also exists in those line verification
methods based on removing feature points.

Instead, we employ an intersection-preserving approach
based on detecting the trends of branches at the intersection
[21]. It simply erases those parts whose local line thickness
are less than or similar to the thickness of this line segment
as rectangular areas. For other parts, i.e., intersection parts,
it detects the trend of branches toward the line segment to
approximate the borders for erasing and for preserving pur-
poses (Fig. 6c). This approach only erases the pixels be-
longing to the verified line segments. Thus, the overlapping
lines are avoided, and the entirety of under-detected line
segments is kept as well.

3.8. The overall paradigm

Based on the above key techniques,Fig. 7 shows the
overall paradigm of the proposed HT-based line recognition
method. The whole processing is divided into three steps
by two vertical dashed lines. The first step performs feature
point selection and gradient prediction on the image space,
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Fig. 7. Overall paradigm of the proposed HT-based line recognition method.

and then generates the HT parameter space. The second
step selects peaks from the parameter space and sorts them
in descending order of accumulated values. The last step
verifies the line segments according to the image space,
erases the verified line segments, and finally produces the
collection of resulting line segments.

4. Experiments

In our experiments, the testing images consist of five im-
ages[23] scanned from a real engineering drawing, which
contains straight lines of various thickness and texts of var-
ious font sizes.Fig. 8 illustrates the thumbnails of these im-
ages. The image size ranges from A4 to A0, as shown in
Table 1. All experiments were performed on a PC with P4
2.4G CPU and 1G RAM.

4.1. Conventional HT-based method

To demonstrate the necessity of using the image space,
we implement the conventional HT-based line recognition
algorithm to test its performance on large-size images. The
conventional HT-based method uses only feature points to
verify lines. It can be implemented in two ways: by record-
ing feature points or by re-voting feature points. The al-
gorithms implemented by these two ways are denoted by
CHT-recording and CHT-revoting, respectively. They are op-
timized for the maximized speed.

The CHT-recording algorithm selects feature points by
the orthogonal run-length scanning described in Section 3.1.
Each feature point votes for every direction. The feature
points contributing to an HT parameter are recorded with
this parameter in the parameter space. Local maximal points
in the parameter space are detected as peaks. For each peak,
the line verification checks the connectivity of contributing
feature points to recognize line segments. The experimental
result of this implementation is shown inTable 2, which
reveals two important facts:

(1) It cannot handle large-size images since recording the
contributing feature points is very space-consuming. In

this experiment, it cannot even complete the processing
of images A2, A1, and A0 due to the huge memory costs.
For the image A4, the memory cost is 870 MB, which
is affordable by the operating system. Therefore, the
processing time is reasonable. However, this algorithm
consumes 1720 MB for the image A3. Since the memory
cost is far beyond the physical memory of the operating
system, the processing time is excessively long due to
the frequent swapping between the memory and the hard
disk. This can be evidenced by the observation that the
average CPU usage during the swapping is lower than
10%.

(2) For large-size images, the peak detection and the line
verification are much more time-consuming than the HT
accumulation. Taking the experiment on image A4 as
an example, the time for HT accumulation is less than
one eighth of the total processing time.

Instead of recording the feature points contributing to ev-
ery parameter, the CHT-revoting algorithm re-votes all fea-
ture points and collects the feature points contributing to a
peak during the line verification. Since this implementation
keeps only a global list of feature points, the memory cost
is significantly reduced. Therefore, it can handle all these
five testing images, although the speed is quite slow (Table
3). The reason for the time-inefficiency is that the re-voting
mechanism makes the line verification much slower com-
paring to the HT accumulation. For the largest image A0,
the total processing time is approximately 30 times of the
time for HT accumulation.

On the other hand, the detection accuracy of both imple-
mentations of CHT is not satisfactory because of many over-
lapping lines and unavailable line thickness information.

4.2. The proposed method

The proposed method is implemented with the follow-
ing threshold setting:Tmin = 0.005× R, Tmax = 0.1 × R,
Lmin = 0.15× R, andGmax = 0.03× R, whereR is the
scan resolution of testing images. In this experiment,R is
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Fig. 8. Five testing images.

Table 1
Information of testing images

Image A4 A3 A2 A1 A0

Size (Pixel2) 3533× 2527 4990× 3537 6959× 4990 10078× 6959 13783× 10078
Storage (MB) 1.05 2.11 4.18 8.41 16.78

Table 2
Performance of the CHT-recording algorithm

Image Memory Total processing Time for
cost (MB) time HT accumulation

A4 870 133 s 16 s
A3 1720 8 h 41 min 40 s 81 s
A2, A1, A0 N/A

300 dpi; therefore, these four thresholds are 2, 30, 45 and
9 pixels, respectively. In contrast with the conventional HT-
based method, the proposed method handles all testing im-
ages efficiently and reduces both the memory cost and the
processing time significantly.

We evaluate the memory cost, processing time, and detec-
tion accuracy of our proposed method. The total processing
time for line recognition, denoted byTimeall , is further di-
vided into three parts:Timevote, Timesort, andTimeverify,
which stand for the time spent on HT accumulation, on
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Table 3
Performance of the CHT-revoting algorithm

Image Memory cost (MB) Total processing time (s) Time for HT accumulation (s)DR (%) FR (%) Detection accuracy (%)

A4 8.9 46 2 67.4 22.5 72.5
A3 14.3 122 6 65.2 23.6 70.8
A2 20.3 241 9 68.7 31.1 68.8
A1 20.5 258 10 59.8 38.6 60.6
A0 29.5 459 15 60.3 44.9 57.7

peak selection and sorting, and on line verification, respec-
tively. The detection accuracy is measured in two aspects:
Detection Rate (DR) and False Rate (FR). DR indicates
how many percent of ground-truth lines is correctly de-
tected, whileFR shows how many percent of detected lines
is wrong. The evaluation is based on both the localization
accuracy and the thickness precision. The ground-truth lines
in each testing image are manually identified. A ground-
truth line (Gi ) is described by two endpoints, length (Lig)

and thickness (T ig ). Accordingly, the length and thickness

of a detected line (Di ) are denoted byLi
d

andT i
d

. Consid-
ering the visual importance of longer lines,DR andFR are
defined as length-weighted forms.

DR=
∑
i DRi∑
i L
i
g

× 100%, where

DRi =




0, match not found

Li
d

· e
− Di

2·T ig

·
(

1 − |T id−T ig |
2·T ig · w

)
, otherwise

FR=
∑
i FRi∑
i L
i
d

× 100%, where

FRi =




1, match not found

Lig ·

1 − e

− Di
2·T ig

·
(

1 − |T id−T ig |
2·T ig · w

)]
, otherwise.

The calculation ofDR searches for the best matched de-
tected line for each ground-truth line within a predefined
searching scope. If no matched detected line is found, a zero
is accumulated; otherwise, a product of three terms regard-
ing length, endpoint localization and thickness is accumu-
lated. In the second term for endpoint localization,Di is the
sum of distance of two detected endpoints to the ground-
truth line. In the third term for thickness,w is the importance
factor of thickness, ranging from 0 to 1. In our application,
the line thickness is critical for engineering drawing inter-
pretation; thus,w is set to be 1. Similarly, the calculation
of FR searches for the best matched ground-truth line for
each detected line. Note that each ground-truth line can only

be matched once; therefore, repetitive detection will cause
false alarms. A good line detection algorithm should achieve
a high DR and a lowFR. Consequently, we can define a
unified measurement of the detection accuracy as follows:

Detection Accuracy= 0.5 × DR+ 0.5 × (1 − FR).

The performance of our method is shown inTable 4.
We observe that the memory cost is lower than that of the
CHT-revoting algorithm since our method does not record
feature points. Notably, the proposed method is much faster
than the conventional HT method. For the proposed method,
Timevote is proportional to the number of black pixels in
the image,Timesort to the number of line segments, and
Timeverify to the total length of line segments. The time
efficiency of the image-based line verification is confirmed
by analyzing the distribution of processing time. For the
medium-size images A4, A3 and A2,Timeverify is similar to
Timevote. Even for the largest image A0,Timeverify is only
three times ofTimevote. Compared with the above two CHT
algorithms, the ratio ofTimeverify to Timevote is greatly
reduced.

The proposed method also achieves stable detection accu-
racy above 82%. Compared with the detection accuracy of
the CHT-revoting algorithm shown inTable 3, the proposed
method has higher detection rates due to better endpoint
localization and thickness precision. The proposed method
also enjoys lower false rates due to less repetitive detections.
Fig. 9 shows the recognition result of the largest image A0.
As indicated in the figure, the false detections mostly come
from two sources: (1) aligned texts in the drawing, and (2)
long folds on the paper. These two types of false detections
are hard to eliminate in the graphics level, while they should
be removed by semantic analysis, such as layout analysis.
Fig. 10 shows a fraction of the test image where the line
quality is degraded (Fig. 10a) but the recognition result is
satisfactory (Fig. 10b). The recognized lines are displayed
with their detected line thickness. We can see that both the
localization and the line thickness are detected correctly.
The vertical broken lines are also recovered, while the hor-
izontal dashed lines are retained.

Fig. 11 compares the performance curves over various
image sizes between our method and the CHT-revoting al-
gorithm, demonstrating the significant performance gain by
utilizing the image space. Compared with the CHT-revoting
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Table 4
Performance of our proposed method

A4 A3 A2 A1 A0

Memory cost (MB) 6.8 8.3 13.2 17.1 26.9
Time (s) Timeall 1.96 6.53 12.17 25.43 59.28

Timevote 0.86 3.47 4.28 6.39 9.63
Timesort 0.11 0.27 1.58 5.28 18.63
Timeverify 0.80 2.36 5.38 12.88 30.03

Detection rate (%) 78.9 77.6 78.1 77.5 79.1
False rate (%) 2.8 3.0 12.5 11.8 9.9
Detection accuracy (%) 88.1 87.3 82.8 82.9 84.6

Fig. 9. Recognition result of the image A0 by our proposed method.

algorithm, the proposed method saves averagely about 25%
memory space and 94% processing time.

Furthermore, to evaluate the effect of gradient predic-
tion, we measure the performance of the proposed method
without gradient prediction. The experimental results are
shown in Table 5. The time comparison curves between
with and without gradient prediction are plotted inFig. 12.

We observe that theTimeall of recognition without gradi-
ent prediction increases over that of with gradient predic-
tion by a nearly constant value (Fig. 12a). However, when
looking into the three parts ofTimeall , we find interesting
facts. ForTimevote, as expected, voting with gradient pre-
diction speeds up the process more when the image size
becomes larger (Fig. 12b). ForTimesort, surprisingly, using
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Fig. 10. Line recognition result of a fraction of test image.
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Fig. 11. Performance comparison between our method and the CHT-revoting algorithm.

Table 5
Performance of the proposed method without gradient prediction

A4 A3 A2 A1 A0

Time (s) T imeall 3.72 9.83 17.95 33.12 67.5
Timevote 2.27 6.19 8.67 10.16 15
Timesort 0.09 0.20 0.73 3.66 8.66
Timeverify 1.16 3.14 7.63 18.70 42.94

Detection rate (%) 79.1 78.9 77.0 79.0 78.6
False rate (%) 3.6 3.9 13.4 13.5 11.4
Detection accuracy (%) 87.8 87.5 81.8 82.8 83.6

gradient prediction slows down the process, especially for
the largest image A0 (Fig. 12c). The reason is that when
voting without gradient prediction, the HT parameter space
is more “smooth” than voting with gradient prediction be-
cause the randomly aligned feature points on a direction
also accumulate to a high value. Therefore, the number of
detectable peaks (local maxima) decreases. On the other
hand, the boundary of a direction may be mistakenly en-
larged by randomly aligned feature points, which explains
why Timeverify of recognition without gradient prediction
is much slower for large images (Fig. 12d). Moreover, the
false rate of recognition without gradient prediction also in-
creases. In conclusion, the gradient prediction not only ac-
celerates the HT voting process, but also eliminates random
aligned noises.

Finally, to evaluate the effect of boundary recorder, we
measure the performance of the proposed method without
boundary recorder. The experimental results are shown in
Table 6. We find thatTimeall is greatly reduced by using
boundary recorder. The magnitude of reduction depends on
the image size in a direct ratio (Fig. 13a). The detailed
analysis of the three parts ofTimeall reveals that almost
all the acceleration comes fromTimeverify (Fig. 13b). For
the medium-size images A4 and A3, the acceleration is not
obvious; however, for the large-size images A2, A1 and
A0, Timeverify’s without boundary recorder are 2.1, 1.8,
and 1.7 times of those with boundary recorder, respectively.
On the other hand, the detection accuracy is not affected
by whether using boundary recorder or not. Therefore, we
conclude that the effect of boundary recorder is mainly on
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Table 6
Performance of the proposed method without boundary recorder

A4 A3 A2 A1 A0

Time (s) T imeall 2.88 7.97 17.65 36.16 82.70
Timevote 0.86 3.13 4.08 6.03 9.00
Timesort 0.52 0.55 2.17 6.38 21.20
Timeverify 1.38 3.89 11.09 23.52 51.11

Detection rate (%) 78.4 78.1 79.0 77.9 78.3
False rate (%) 3.1 4.0 13.1 13.6 11.7
Detection accuracy (%) 87.7 87.1 83.0 82.2 83.3

speeding up the line verification, especially for large-size
images.

5. Conclusions

This paper proposes a new method for recognizing
straight-line segments based on HT, aiming at overcoming
the long-existing limitations of HT-based methods, includ-
ing the weakness on handling large-size images and the
unawareness of line thickness. The proposed method makes
two major contributions. (1) It proposes to utilize the image
space throughout the whole recognition process. Several
novel image-based techniques are introduced to make the

process more efficient. The gradient prediction acceler-
ates the HT accumulation and helps eliminate the random
aligned noises. The boundary recorder greatly removes
the redundancy of line verification on large-size images.
Erasing the pixels belonging to newly-recognized lines
avoids overlapping lines effectively. All these techniques
work together to significantly speed up the whole recog-
nition process for large-size images, while maintaining
high detection accuracy, as confirmed by the experimen-
tal results. (2) The image-analysis-based line verification
enables the proposed method to detect line thickness cor-
rectly, which is critical to many applications. Therefore,
the success of the proposed method demonstrates that HT-
based methods can also be applied to large-size images,
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e.g., engineering drawings, if the image space is properly
utilized.

6. Summary

Graphical element recognition plays an important role
in various image-understanding applications. Hough Trans-
form is recognized as a powerful tool for graphic element
extraction from images due to its global vision and robust-
ness in noisy or degraded environment. However, the appli-
cation of Hough Transform has been limited to small-size
images for a long time. One limitation is the time ineffi-
ciency. Besides the well-known heavy computation in the
accumulation step, the peak detection step and the line ver-
ification step also become much more time-consuming for
large-size images. Another limitation is that most existing
Hough Transform-based line recognition methods are not
able to detect line thickness, which is essential to large-
size images, usually engineering drawings. We believe these
limitations arise from that these methods only work on the
Hough Transform parameter space. This paper therefore
proposes a new Hough Transform-based line recognition
method, which utilizes both the Hough Transform param-
eter space and the image space. The proposed method de-
vises an image-based gradient prediction to accelerate the
accumulation, introduces a boundary recorder to eliminate
redundant analyses in the line verification, and develops an
image-based line verification algorithm to detect line thick-
ness and reduce false detections as well. It also proposes to
use pixel-level line erasing to avoid overlapping lines instead
of rigidly suppressing theN×N neighborhood. We perform
experiments on real images with different sizes in terms
of speed and detection accuracy. The experimental results
demonstrate the significant performance improvement, es-
pecially for large-size images. The proposed method makes
two major contributions. First, it proposes to utilize the im-
age space throughout the whole recognition process. Sev-
eral novel image-based techniques are introduced to make

the process more efficient. The gradient prediction acceler-
ates the HT accumulation and helps eliminate the random
aligned noises. The boundary recorder greatly removes the
redundancy of line verification on large-size images. Erasing
the pixels belonging to newly recognized lines avoids over-
lapping lines effectively. All these techniques work together
to significantly speed up the whole recognition process for
large-size images, while maintaining high detection accu-
racy, as confirmed by the experimental results. Second, the
image-analysis-based line verification enables the proposed
method to detect line thickness correctly, which is critical to
many applications. Therefore, the success of the proposed
method demonstrates that Hough Transform-based methods
can also be applied to large-size images, e.g., engineering
drawings, if the image space is properly utilized.
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