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Multi-head attention is appealing for the ability to jointly attend to information from different represen-
tation subspaces at different positions. In this work, we propose two approaches to better exploit such
diversity for multi-head attention, which are complementary to each other. First, we introduce a dis-
agreement regularization to explicitly encourage the diversity among multiple attention heads.
Specifically, we propose three types of disagreement regularization, which respectively encourage the
subspace, the attended positions, and the output representation associated with each attention head to
be different from other heads. Second, we propose to better capture the diverse information distributed
in the extracted partial-representations with the routing-by-agreement algorithm. The routing algorithm
iteratively updates the proportion of how much a part (i.e. the distinct information learned from a speci-
fic subspace) should be assigned to a whole (i.e. the final output representation), based on the agreement
between parts and wholes. Experimental results on the machine translation, sentence encoding and log-
ical inference tasks demonstrate the effectiveness and universality of the proposed approaches, which
indicate the necessity of better exploiting the diversity for multi-head attention. While the two strategies
individually boost performance, combining them together can further improve the model performance.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Attention model becomes a standard component of the deep
learning networks, contributing to impressive results in machine
translation [1,2], image captioning [3], speech recognition [4],
among many other applications. Recently, the performance of
attention is further improved by multi-head mechanism [5], which
concurrently performs the attention functions on different repre-
sentation subspaces of the input sequence. Consequently, different
attention heads are able to capture distinct properties of the input,
which are embedded in different subspaces [6]. Subsequently, a
linear transformation is generally employed to aggregate the par-
tial representations extracted by different attention heads [5,7],
producing the final output representation.

However, the conventional multi-head mechanism may not
fully exploit the diversity among attention heads. First, one strong
point of multi-head attention is the ability to jointly attend to
information from different representation subspaces at different
positions. But currently there is no mechanism to guarantee that
different attention heads indeed capture distinct information. Sec-
ond, we believe that information extraction and information aggre-
gation are both important to produce an informative
representation. We argue that the straightforward linear transfor-
mation are not expressive enough to fully capture the rich informa-
tion distributed in the extracted partial-representations. In this
work, we propose two strategies to better exploit the diversity of
multi-head attention, namely disagreement regularization and ad-
vanced information aggregation.

In response to the first problem, we introduce a disagreement
regularization term to explicitly encourage the diversity among
multiple attention heads. The disagreement regularization serves
as an auxiliary objective to guide the training of the related atten-
tion component. Specifically, we propose three types of disagree-
ment regularization, which are applied to the three key
components that refer to the calculation of information vector
using multi-head attention. Two regularization terms are respec-
tively to maximize cosine distances of the input subspaces and
output representations, while the last one is to disperse the posi-
tions attended by multiple heads with element-wise multiplication
of the corresponding attention matrices. The three regularization
terms can be either used individually or in combination.
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To address the second problem, we replace the standard linear
transformation in conventional multi-head attention [5] with an
advanced routing-by-agreement algorithm, to better aggregate
the diverse information distributed in the extracted partial-
representations. Specifically, we cast information aggregation as
the assigning-parts-to-wholes problem [8], and investigate the
effectiveness of the routing-by-agreement algorithm, which is an
appealing alternative to solving this problem [9,10]. The routing
algorithm iteratively updates the proportion of how much a part
should be assigned to a whole, based on the agreement between
parts and wholes.

In addition, it is natural to combine the two types of approaches
and apply them simultaneously, since the former focuses on
extracting more diverse information while the latter aims to better
aggregate the extracted information. We apply them simultane-
ously by modifying both the training objective and network
architecture.

We evaluate the performance of the proposed approaches on
three representative NLP tasks: machine translation, sentence
encoding, and logical inference tasks. For machine translation, we
validate our approaches on top of the advanced TRANSFORMER model
[5] on both WMT14 English)German and WMT17 Chi-
nese)English data. Experimental results show that our
approaches consistently improve the translation performance
across language pairs while keeping the computational efficiency.
For sentence encoding, we evaluate with the linguistic probing
tasks [11], which consist of 10 classification problems to study
what linguistic properties are captured by input encoding repre-
sentations. Probing analysis shows that our approaches indeed
produce more informative representation, which embeds more
syntactic and semantic information. Experiments on logical infer-
ence further demonstrate the ability of modeling hierarchical
structure. Precisely, our study reveals that:

� Directly applying disagreement regularization on the output
representations of multiple attention heads is most effective.

� The EM routing algorithm shows its superiority on information
aggregation over the standard linear transformation and other
aggregation algorithms.

� Disagreement regularization and advanced information aggre-
gation are complementary to each other, as indicated from anal-
yses in machine translation and sentence encoding.

This paper combines and extends results presented at the 2018
Conference on Empirical Methods in Natural Language Processing
(entitled ‘‘Multi-Head Attention with Disagreement Regulariza-
tion” [12]) and at the 2019 Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics
(entitled ‘‘Information Aggregation for Multi-Head Attention with
Routing-by-Agreement” [13]). The extensions include

1. We further refine our proposed model by combining the two
sorts of strategies and exploiting the advantages of simultane-
ously applying them (Section 3.3). We demonstrate the effec-
tiveness of the combined method in experiments (Table 5).

2. We carry out more experiments and in-depth analyses to vali-
date the effectiveness of our approaches on more tasks, includ-
ing linguistic probing tasks (Section 4.2) and and logical
inference tasks (Section 4.3). Results on linguistic probing tasks
prove the superiority of our approach on capturing surface, syn-
tactic and semantic information. Results on logical inference
tasks show that the proposed approach performs better at mod-
eling hierarchical structure.

3. We present a more comprehensive description of the proposed
models and algorithms (Section 3).
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4. For reproducibility, we release the source code, preprocessed
data, and trained models, which make it easy to reproduce
the experiments in this work.1

2. Background

Attention mechanism aims at modeling the relevance between
representation pairs, thus a representation is allowed to build a
direct relation with another representation. Instead of performing
a single attention function, Vaswani et al. [5] found it is beneficial
to capture different context features with multiple individual
attention functions, namely multi-head attention. Fig. 1 shows an
example of a two–head attention model. For the query word
‘‘Bush”, green and red heads pay attention to different positions
of ‘‘talk” and ‘‘Sharon”.

Formally, attention function maps a sequence of query
Q ¼ q1; . . . ;qnf g and a set of key-value pairs
K;Vf g ¼ k1;v1ð Þ; . . . ; km;vmð Þf g to outputs, where
Q 2 Rn�d; K;Vf g 2 Rm�d. More specifically, multi-head attention
model first transforms Q ;K, and V into H subspaces with different,
learnable linear projections:

Q h;Kh;Vh ¼ QWQ
h ;KW

K
h ;VW

V
h ; ð1Þ

where Q h;Kh;Vhf g are respective the query, key, and value repre-

sentations of the h-th head. WQ
h ;W

K
h ;W

V
h

n o
2 Rd�d

H denote parame-

ter matrices associated with the h-th head, where d represents
the dimensionality of the model hidden states. Furthermore, H
attention functions are applied in parallel to produce the output
states O1; . . . ;OHf g, among them:

Oh ¼ Att Q h;Khð ÞVh; ð2Þ

where Oh 2 Rn�d
H;Att �ð Þ is an attention model. In this work, we use

scaled dot-product attention [2], which achieves similar perfor-
mance with its additive counterpart [1] while is much faster and
more space-efficient in practice [5].

Finally, the H output states are concatenated and linear trans-
formed to produce the final state:

Concat : bO ¼ O1; . . . ;OH½ �; ð3Þ
Linear : O ¼ bOWO; ð4Þ

where O 2 Rn�d denotes the final output states,WO 2 Rd�d is a train-
able parameter matrix.

3. Approach

In this work, we propose to better exploit the diversity of multi-
head attention from two perspectives:

� Disagreement Regularization: Conventional multi-head attention
conducts multiple attention functions in parallel (Eq. 2), while
there is no mechanism to guarantee that different attention
heads indeed capture distinct information. In response to this
problem, we introduce disagreement regularizations to explic-
itly encourage different attention heads to extract distinct infor-
mation (Section 3.1);

� Advanced Information aggregation: As shown in Eqs. 3 and 4, the
standard multi-head attention uses a straightforward concate-
nation and linear mapping to aggregate the partial-
representations captured by multiple attention heads. We argue
that this straightforward strategy may not fully exploit the
expressiveness of multi-head attention, which can benefit from
1 https://github.com/jack57lee/Diversify-MHA



Fig. 1. Illustration of the multi-head attention, which jointly attends to different
representation subspaces (colored boxes) at different positions (darker color
denotes higher attention probability).
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advanced information aggregation. In this study, we exploit
more advanced routing-by-agreement method to aggregate
the information extracted by different attention heads
(Section 3.2).

The disagreement regularization encourages multiple attention
functions to extract different information, and advanced informa-
tion aggregation helps better aggregate the extracted information.
Therefore, the two approaches are complementary to each other
and can be employed simultaneously, which we will describe in
Section 3.3.

3.1. Disagreement Regularization

Multi-head attention allows the model to jointly attend to
information from different representation subspaces at different
positions. To further guarantee the diversity, we enlarge the dis-
tances among multiple attention heads with disagreement regular-
ization. To this end, we introduce an auxiliary regularization term
in order to encourage the diversity among multiple attention
heads. Taking the machine translation task as example, the training
objective is revised as:

J hð Þ ¼ argmaxh L yjx; hð Þ|fflfflfflfflffl{zfflfflfflfflffl}likelihood þ k � D ajx; y; hð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}disagreement

� �
;

where a is the referred attention matrices, k is a hyper-parameter
and is empirically set to 1.0 in this paper. The auxiliary regulariza-
tion term D �ð Þ guides the related attention component to capture
different features from the corresponding projected subspaces. Note
that the introduced regularization term works like L1 and L2 terms,
which do not introduce any new parameters and only influence the
training of the standard model parameters.

Specifically, we propose three types of disagreement regulariza-
tion to encourage each head vector Oh to be different from other
heads:

� Disagreement on Subspaces. This disagreement is designed to
maximize the cosine distance between the projected values.
Specifically, we first calculate the cosine similarity cos �ð Þ
between the vector pair Vi and Vj in different value subspaces,
through the dot product of the normalized vectors2, which mea-

sures the cosine of the angle between Vi and Vj. Thus, the cosine
distance is defined as negative similarity, i.e, � cos �ð Þ. Our training
objective is to enlarge the average cosine distance among all head
pairs. The regularization term is formally expressed as:
2 We
absolut
Dsubpace ¼ � 1
H2

XH
i¼1

XH
j¼1

Vi � Vj

kVikkVjk
: ð5Þ
did not employ the Euler Distance between vectors since we do not care the
e value in each vector.
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� Disagreement on Attended Positions. Another strategy is
to disperse the attended positions predicted by multiple
heads. Inspired by the agreement regularization [14,15]
which encourages multiple alignments to be similar, in this
work, we deploy a variant of the original term by introducing
an alignment disagreement regularization. Formally, we
employ the sum of element-wise multiplication of corre-
sponding matrix cells3, to measure the similarity between

two alignment matrices Ai and Aj (Att �ð Þ in Eq. 2) of two heads:

Dposition ¼ � 1
H2

XH
i¼1

umH
j¼1jAi � Ajj: ð6Þ

� Disagreement on Outputs. This disagreement directly
applies regularization on the outputs of each attention head,
by maximizing the difference among them. Similar to the
subspace strategy, we employ negative cosine similarity to
measure the distance:

Doutput ¼ � 1
H2

XH
i¼1

XH
j¼1

Oi � Oj

kOikkOjk
: ð7Þ

3.2. Advanced Information Aggregation

Information aggregation in multi-head attention (e.g. Eqs. 3 and
4) aims at composing the partial representations captured by dif-
ferent attention heads to a final representation. Recent work shows
that representation composition benefits greatly from advanced
functions beyond simple concatenation or mean/max pooling
[16–18]. In this work, we cast information aggregation in multi-
head attention as the problem of assigning-parts-to-wholes, to
which an appealing solution is the routing-by-agreement algorithm,
as shown in Fig. 2.

The routing algorithm consists of two layers: input capsules and
output capsules. The input capsules are constructed from the trans-
formation of the partial representations extracted by different
attention heads. For each output capsule, each input capsule pro-
poses a distinct ‘‘voting vector”, which represents the proportion
of how much the information is transformed from this input cap-
sule (i.e. parts) to the corresponding output capsule (i.e. wholes).
The proportion is iteratively updated based on the agreement
between the voting vectors and the output capsule. Finally, all out-
put capsules are concatenated to form the final representation.

Mathematically, the input capsules Xin ¼ Xin
1 ; . . . ;X

in
H

n o
with

Xin 2 Rn�d are constructed from the outputs of multi-head
attention:

Xin
h ¼ f h bO� �

; ð8Þ

where f h �ð Þ is a distinct non-linear transformation function associ-

ated with the input capsule Xin
h . Given N output capsules, each input

capsule Xin
h propose N ‘‘vote vectors” Vh!� ¼ Vh!1; . . . ;Vh!Nf g,

which is calculated by

Vh!n ¼ Xin
h Wh!n; ð9Þ

Each output capsule Xout
n is calculated as the normalization of its

total input, which is a weighted sum over all ‘‘vote vectors” V�!n:

Xout
n ¼

PH
h¼1Ch!nVh!nPH

h¼1Ch!n

; ð10Þ
3 We also used the squared element-wise subtraction of two matrices in our
reliminary experiments, and found it underperforms its multiplication counterpart,
hich is consistent with the results in [15].
p
w



Fig. 2. Illustration of routing-by-agreement.
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The weight Ch!n with
P

nCh!n ¼ 1 measures the agreement
between vote vector Vh!n and output capsule Xout

n , which is deter-
mined by the iterative routing as described in the next section.

Note that
PH

h¼1Ch!n is not necessarily equal to 1. After the routing
process, we concatenate the N output capsules to form the final
representation: O ¼ Xout

1 ; . . . ;Xout
N

� �
. To make the dimensionality

of the final output be consistent with that of hidden layer (i.e. d),
we set the dimensionality of each output capsule be d

N.
In this work, we explore two representative routing mecha-

nisms, namely simple routing [9] (Section 3.2.1) and EM routing
[10] (Section 3.2.2), which differ at how the agreement weights
Ch!n are calculated.

3.2.1. Simple Routing

Algorithm: 1 Iterative Simple Routing.

1: procedure RoutingV, T:
2: 8Vh!�: Bh!n ¼ 0
3: for T iterations do

4: 8Vh!�: Ch!n ¼ exp Bh!nð ÞPN

n0¼1
exp Bh!n0ð Þ

5: 8Xout
n : compute Xout

n by Eq. 10
6: 8Vh!�: Bh!nþ ¼ Xout

n � Vh!n

return X
Algorithm 1 lists a straightforward implementation of routing.

Bh!n measures the degree that the input capsule Xin
h should be cou-

pled to the output capsule Xin
h , which is initialized as all 0 (Line 2).

The agreement weights Ch!n are then iteratively refined by mea-
suring the agreement between the vote vector Vh!n and the output
capsule Xout

n (Lines 4–6), which is implemented as a simple scalar
product Xout

n � Vh!n (Line 5).
To represent the probability that the output capsule Xout

n is acti-
vated, we follow Sabour et al. [9] use a non-linear ‘‘squashing”
function:

Xout
n ¼ jjXout

n jj2
1þ jjXout

n jj2
Xout

n

jjXout
n jj ; ð11Þ

The scalar product Xout
n � Vh!n saturates at 1, which makes it

insensitive to the difference between a quite good agreement
and a very good agreement. In response to this problem, Hinton
et al. [10] propose a novel Expectation–Maximization (EM) routing
algorithm.
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Comparing with simple routing, EM routing has two modifica-
tions. First, it explicitly assigns an activation probability A to repre-
sent the probability of whether each output capsule is activated,
rather than the length of vector calculated by a squashing function
(Eq. 11). Second, it casts the routing process as fitting a mixture of
Gaussians using EM, where the output capsules play the role of
Gaussians and the means of the input capsules play the role of
the datapoints. Accordingly, EM routing can better estimate the
agreement by allowing activated output capsules to receive a clus-
ter of similar votes.

3.2.2. EM Routing

Algorithm 2: Iterative EM Routing.

1: procedure EM RoutingV, T:
2: 8Vh!�: Cl!n ¼ 1=N
3: for T iterations do
4: 8Xout

n : M-step(V, C) . hold C constant, adjust (ln;rn;An)
5: 8Vh!�: E-step(V, l;r;A) . hold (l;r;A) constant, adjust

Ch!�
6: 8Xout

n : Xout
n ¼ An � ln

return X

Algorithm 2 lists the EM routing, which iteratively adjusts the
means, variances, and activation probabilities (l;r;A) of the out-
put capsules, as well as the agreement weights C of the input cap-
sules (Lines 4–5). The representation of output capsule Xout

n is
calculated as

Xout
n ¼ An � ln ¼ An �

PH
h¼1Ch!nVh!nPH

h¼1Ch!n

; ð12Þ

The EM algorithm alternates between an E-step and an M-step.
The E-step determines, for each datapoint (i.e. input capsule), the
probability of agreement (i.e. C) between it and each of the Gaus-
sians (i.e. output capsules). The M-step holds the agreement
weights constant, and for each Gaussian (i.e. output capsule) con-
sists of finding the mean of these weighted datapoints (i.e. input
capsules) and the variance about that mean.

M-Step. for each Gaussian (i.e. Xout
n ) consists of finding the mean

ln of the votes from input capsules and the variance rn about that
mean:

ln ¼
PH

h¼1Ch!nVh!nPH
h¼1Ch!n

; ð13Þ

rnð Þ2 ¼
PH

h¼1Ch!n Vh!n � ln

	 
2PH
h¼1Ch!n

: ð14Þ

The incremental cost of using an active capsule Xout
n is

vn ¼
X
i

log ri
n

	 
þ 1þ log 2pð Þ
2

� �XH
h¼1

Ch!n;

where ri
n denotes the i-th dimension of the variance vector rn. The

activation probability of capsule Xout
n is calculated by

An ¼ logistic k bA � bl
XH
h¼1

Ch!n � vn

 ! !
;

where bA is a fixed cost for coding the mean and variance of Xout
n

when activating it, bl is another fixed cost per input capsule when
not activating it, and k is an inverse temperature parameter set with
a fixed schedule. We refer the readers to [10] for more details.
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E-Step. adjusts the assignment probabilities Ch!� for each input

Xin
h . First, we compute the negative log probability density of the

vote Vh!n from Xin
h under the Gaussian distribution fitted by the

output capsule Xout
n it gets assigned to:

Ph!n ¼
X
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p ri

n

	 
2q exp �
Vi

h!n � li
n

� �2
2 ri

n

	 
2
0B@

1CA:

Again, i denotes the i-th dimension of the vectors Vh!n;ln;rn
� �

.
Accordingly, the agreement weight is re-normalized by

Ch!n ¼ AnPh!nXN
n0¼1

An0Ph!n0

: ð15Þ
Table 1
Effect of regularization terms, which are applied to the encoder self-attention only.
‘‘Speed” denotes the training speed (steps/s). Results are reported on the WMT17
Zh)En translation task using Transformer-Base.

# Regularization Speed BLEU

Subspace Position Output

1 � � � 1.21 24.13
2 U � � 1.15 24.64
3 � U � 1.14 24.42
4 � � U 1.15 24.78
5 U � U 1.12 24.73
6 U U � 1.11 24.38
7 U U U 1.05 24.60
3.3. Combining disagreement regularization and information
aggregation

Coupling different representations with diversity is a well-
known technique to improve the performance [19]. While dis-
agreement regularization focuses on adjusting the training objec-
tive, i.e. the loss function, advanced information aggregation aims
at modifying the network architecture. In terms of functionality,
they are potentially complementary to each other as one improves
information extraction and the other benefits information aggrega-
tion. Therefore, it is natural to combine the two approaches and
apply them simultaneously. In consideration of computation cost,
we first respectively choose the best strategy from the two kinds
of approach, and then apply them simultaneously by modifying
both the training objective and network architecture.

Note that there are many possible ways to implement the gen-
eral idea of combining disagreement regularization and informa-
tion aggregation. The aim of this paper is not to explore this
whole space but simply to show that one fairly straightforward
implementation works well and the two methods are complemen-
tary to each other.

4. Experiments

In this section, we validate the effectiveness of our approaches
on machine translation tasks (Section 4.1), sentence encoding tasks
(Section 4.2), and logical inference tasks(Section 4.3). We conduct
ablation study of the proposed approaches on the benchmark
machine translation tasks, and carry out final evaluation on all
the other tasks.

4.1. Machine translation tasks

4.1.1. Setting
Data. We conduct experiments on the widely-used WMT2014

English)German (En)De) and WMT2017 Chinese)English
(Zh)En) translation tasks. For the En)De task, the dataset con-
sists of 4.6 M sentence pairs. We use newstest2013 as the develop-
ment set and newstest2014 as the test set. For the Zh)En task, we
use all of the available parallel data with maximum length limited
to 50, consisting of about 20.6 M sentence pairs. We use newsde-
v2017 as the development set and newstest2017 as the test set.
We employ byte pair encoding (BPE) [20] with 32 K merge opera-
tions for both language pairs. We use the case-sensitive 4-gram
NIST BLEU score [21] as evaluation metric, and bootstrap resam-
pling [22] for statistical significance test.

Models. We implement the proposed approaches on top of the
advanced TRANSFORMER model [5]. We follow Vaswani et al. [5] to
set the configurations and have reproduced their reported results
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on the En)De task with both Base and Big models. The embedding
size of and hidden size of Basemodel are 512, the filter size is 2048
and the number of attention head is 8. The Big model has embed-
ding size and hidden size of 1024, filter size of 4096 and attention
heads of 16. For both Base and Big models, the number of encoder
and decoder layers is 6, all types of dropout rate is set to 0.1. The
Adam optimizer [23] is employed with b1 ¼ 0:9; b2 ¼ 0:98 and
� ¼ 10�9. The learning rate is initially 1.0 and linearly warms up
over the first 4;000 steps, then decreases proportionally to the
inverse square root of the step number [5]. Label smoothing is
set to 0.1 during training [24]. All the models are trained on eight
NVIDIA P40 GPUs where each is allocated with a batch size of 4096
tokens. All the results we reported are based on the individual
models without using the averaging or ensemble model.

TRANSFORMER consists of three attention components: encoder-
side self-attention, decoder-side self-attention and encoder-
decoder attention, all of which are implemented as multi-head
attention. For the information aggregation in multi-head attention,
we replace the standard linear transformation with the proposed
routing mechanisms. We experimentally set the number of itera-
tions to 3 and the number of output capsules as model hidden size,
which outperform other configurations during our investigation.

4.1.2. Ablation study on disagreement regularization
4.1.2.1. Effect of regularization terms. In this section, we evaluate
the impact of different regularization terms on the Zh)En task
using Transformer-Base. For simplicity and efficiency, here we only
apply regularizations on the encoder side. As shown in Table 1, all
the models with the proposed disagreement regularizations (Rows
2–4) consistently outperform the vanilla TRANSFORMER (Row 1).
Among them, the Output term performs best which is + 0.65 BLEU
score better than the baseline model, the Position term is less effec-
tive than the other two. In terms of training speed, we do not
observe obvious decrease, which in turn demonstrates the advan-
tage of our disagreement regularizations.

However, the combinations of different disagreement regular-
izations fail to further improve translation performance (Rows 5–
7). One possible reason is that different regularization terms have
overlapped guidance, and thus combining them does not introduce
too much new information while makes training more difficult.

4.1.2.2. Effect on attention components. The TRANSFORMER consists of
three attention networks, including encoder self-attention, deco-
der self-attention, and encoder-decoder attention. In this experi-
ment, we investigate how each attention network benefits from
the disagreement regularization. As seen from Table 2, all models
consistently improve upon the baseline model. When applying dis-
agreement regularization to all three attention networks, we
achieve the best performance, which is + 0.72 BLEU score better
than the baseline model. The training speed decreases by 12%,
which is acceptable considering the performance improvement.



Table 2
Effect of regularization on different attention networks, i.e., encoder self-attention
(‘‘Encoder”), encoder-decoder attention (‘‘Encoder-Decoder”), and decoder self-atten-
tion (‘‘Decoder”). We use Output Disagreement as the regularization term. Results are
reported on the WMT17 Zh)En translation task using Transformer-Base.

Applying to Speed BLEU

Encoder Encoder-Decoder Decoder

� � � 1.21 24.13
U � � 1.15 24.78
U U � 1.10 24.67
U � U 1.11 24.69
U U U 1.06 24.85

Table 3
Effect of information aggregation on different attention components, i.e., encoder self-
attention (‘‘Enc”), encoder-decoder attention (‘‘E-D”), and decoder self-attention
(‘‘Dec”). ‘‘Para.” denotes the number of parameters, and ‘‘Speed” denotes the training
speed (steps/second). Results are reported on the WMT14 En)De translation task
using Transformer-Base.

# Applying to . . . Routing Para. Speed BLEU 4
1 Enc E-D Dec

2 � � � n/a 88.0M 1.92 27.31 –
3 U � � Simple +12.6M 1.23 27.98 +0.67
4 U � � EM +12.6M 1.20 28.28 +0.97
5 � U � EM +12.6M 1.20 27.94 +0.63
6 � � U EM +12.6M 1.21 28.15 +0.84
7 U U � EM +25.2M 0.87 28.45 +1.14
8 U U U EM +37.8M 0.66 28.47 +1.16
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In the following sections, we apply the Output Disagreement to
all the three attention networks, which we term ‘‘Disagreement”.
4.1.2.3. Visualization of attention heads. To more directly show the
effectiveness of three disagreement regularizations, we visualize
different attention heads in a two-dimensional embedding space
via the t-SNE technique [25]. Specifically, we run Transformer-
Base with different disagreements on the WMT17 Zh)En develop-
ment set and record all the head representations on the encoder
side. Then we average the representations over all the words and
all the layers, obtaining 8 representation vectors for the 8 attention
heads which are subsequently fed to t-SNE projection. We plot the
projected results in Fig. 3, where different colors denote different
disagreements. We can see that the Output Disagreement is most
effective at dispersing the attention heads while the Position Dis-
agreement almost does not have such function. This finding is con-
sistent with our results in Table 1.
4.1.3. Ablation study on information aggregation
In this section, we evaluate the impact of different information

aggregation functions on the En)De task using Transformer-Base.
As the results shown in Table 3, the proposed routing mechanisms
outperform the standard aggregation in all cases, demonstrating
the necessity of advanced aggregation functions for multi-head
attention.
4.1.3.1. Routing mechanisms. (Rows 3–4) We first apply simple
routing and EM routing to encoder self-attention. Both strategies
perform better than the standard multi-head aggregation (Row
1), verifying the effectiveness of the non-linear aggregation mech-
anisms. Specifically, the two strategies require comparable param-
eters and computational speed, but EM routing achieves better
performance on translation qualities. Considering the training
speed and performance, EM routing is used as the default multi-
head aggregation method in subsequent experiments.
Fig. 3. t-SNE visualization of attention heads with different disagreement
regularizations.
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4.1.3.2. Effect on attention components. (Rows 4–8) Concerning the
individual attention components (Rows 4–6), we found that
the encoder and decoder self-attention benefit more from the
routing-based information aggregation than the encoder-decoder
attention. This is consistent with the finding in [26], which shows
that self-attention is a strong semantic feature extractor. Encourag-
ingly, applying EM routing in the encoder (Row 4) significantly
improve the translation quality with almost no decrease in decod-
ing speed, which matches the requirement of online MT systems.
We find that this is due to the auto-regressive generation schema,
modifications on the decoder influence the decoding speed more
than the encoder.

Compared with individual attention components, applying
routing to multiple components (Rows 7–8) marginally improves
translation performance, at the cost of a significant decrease of
the training and decoding speeds. Possible reasons include that
the added complexity makes the model harder to train, and the
benefits enjoyed by different attention components are overlap-
ping to some extent. To balance translation performance and effi-
ciency, we only apply EM routing to aggregate multi-head self-
attention at the encoder in subsequent experiments.

4.1.3.3. Encoder layers. As shown in Row 4 of Table 3, applying EM
routing to all encoder layers significantly decreases the training
speed by 37.5%, which is not acceptable since TRANSFORMER is best
known for both good performance and quick training. We expect
applying to fewer layers can alleviate the training burden. Recent
studies show that different layers of NMT encoder can capture dif-
ferent levels of syntax and semantic features [27,28]. Therefore, an
investigation to study whether EM routing works for multi-head
attention at different layers is highly desirable.

As shown in Table 4, we respectively employ EM routing for
multi-head attention at the high-level three layers (Row 3) and
low-level three layers (Row 4). The translation quality marginally
drops while parameters are fewer and training speeds are quicker.
Table 4
Evaluation of different layers in the encoder, which are implemented as multi-head
self-attention with the EM routing based information aggregation. ‘‘1” denotes the
bottom layer, and ‘‘6” the top layer. Results are reported on the WMT14 En)De
translation task using Transformer-Base.

# Layers Para. Train BLEU

1 None 88.0M 1.92 27.31
2 [1-6] +12.6M 1.20 28.28
3 [4-6] +6.3M 1.54 28.26
4 [1-3] +6.3M 1.54 28.27
5 [1,2] +4.2M 1.67 28.26
6 [6] +2.1M 1.88 27.68
7 [1] 90.1M 1.88 27.75



Table 6
Evaluation on Transformer-big with 8 attention heads on the WMT14 En)De
translation task.

Model Para. BLEU 4

Transformer-Big (8 heads) 264 M 28.10 –

+ Disagreement 264 M 28.63 +0.53
+ Aggregation 288 M 28.65 +0.55
+ Both 288 M 28.94 +0.84
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This phenomena verifies that it is unnecessary to apply the pro-
posed model to all layers. We further reduce the applied layers
to low-level two (Row 5), the above phenomena still holds. How-
ever, a big drop on translation quality occurs when the number
of layer is reduced to 1 (Rows 6–7). Accordingly, to balance trans-
lation performance and efficiency, we only apply EM routing for
multi-head aggregation at the low-level two layers of the encoder,
which we term ‘‘Aggregation” in the following sections.

4.1.4. Combining together and main results
Finally, we validate the proposed disagreement regularization

and advanced information aggregation for multi-head attention
on both WMT14 En)De and WMT17 Zh)En translation tasks.
The results are concluded in Table 5. Our baseline models, both T-
ransformer-Base and Transformer-Big, outperform all existing NMT
systems on the same data, and match the results of TRANSFORMER

reported in previous works, which we believe make the evaluation
convincing.

As seen, incorporating disagreement regularization and
advanced information aggregation consistently improve transla-
tion performance for both base and big TRANSFORMER models across
language pairs, demonstrating the efficiency and universality of
the proposed approaches. Combining them together further
improves translation performances, which confirms our conjecture
that the two approaches are complementary to each other as one
improves information extraction and the other benefits informa-
tion aggregation. It is encouraging to see that Transformer-Base
with both approaches even achieves comparable performance to T-
ransformer-Big, with about two thirds fewer parameters, which
further demonstrates that our performance gains are not simply
brought by additional parameters.

Less Improvements on Transformer-Big From the last 4 rows of
Table 5, we can see that while the two proposed methods individ-
ually boost the model performance for big Transformer models,
combining them together improves translation performance little,
for instance, the improvement on the En)De dataset over baseline
is only 0.51 BLEU. One possible reason is that, Transformer-big has
more attention heads than the base model (16 vs. 8), which poten-
tially alleviate the diversity problem when augmented with indi-
vidual approach (e.g., disagreement regularization or information
aggregation). To verify this hypothesis, we conduct another
experiment on Transformer-big with only 8 attention heads. As
Table 5
Comparing with existing NMT systems on WMT14 English)German (‘‘En)De”) and WM
counterpart (p < 0:05=0:01), tested by bootstrap resampling.

Architecture En)De

# Para.

Existing NMT

RNN with 8 layers [29] n/a

CNN with 15 layers [30] n/a

Transformer-Base [5] 65 M

Transformer-Big [5] 213 M

Transformer-Big [31] n/a

Our NMT sy

Transformer-Base 88 M

+ Disagreement 88 M
+ Aggregation 92 M
+ Both 92 M

Transformer-Big 264 M

+ Disagreement 264 M
+ Aggregation 297 M
+ Both 297 M
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the results shown in Table 6, the final combination model outper-
forms baseline with 0.84 BLEU score, which is more significant
than the Transformer-big with 16 heads (i.e., 0.51 BLEU).

4.2. Linguistic probing tasks

Although we have shown that our proposed disagreement reg-
ularization and advanced information aggregation can improve
NMT systems with respect to the translation quality, we still have
a poor understanding of what they are capturing and changing
from the linguistic perspective. Recently, Conneau et al. [11]
designed 10 probing tasks to study what linguistic properties are
captured by input encoding representations. We conduct these
probing tasks here to study whether our proposed approaches
can benefit multi-head attention to produce more informative
representations.

4.2.1. Task Description
A probing task is a classification problem that focuses on simple

linguistic properties of sentences. ‘‘SeLen” is to predict the length
of sentences in terms of number of words. ‘‘WC” tests whether it
is possible to recover information about the original words given
its sentence embedding. ‘‘TrDep” checks whether an encoder infers
the hierarchical structure of sentences. In ‘‘ToCo” task, sentences
should be classified in terms of the sequence of top constituents
immediately below the sentence node. ‘‘Bshif” tests whether two
consecutive tokens within the sentence have been inverted.
‘‘Tense” asks for the tense of the main-clause verb. ‘‘SubNm”
focuses on the number of the subject of the main clause. ‘‘ObjNm”
tests for the number of the direct object of the main clause. In
‘‘SOMO”, some sentences are modified by replacing a random noun
or verb with another noun or verb and the classifier should tell
T17 Chinese)English (‘‘Zh)En”) tasks. ‘‘" = *”: significantly better than the baseline

Zh)En

BLEU # Para. BLEU

systems

26.30 n/a n/a

26.36 n/a n/a

27.3 n/a n/a

28.4 n/a n/a

n/a n/a 24:2

stems

27.31 108 M 24.13

28.20* 108 M 24.85*

28.26* 112 M 24.68*

28.41* 112 M 24.90*

28.58 304 M 24.56

28.96" 304 M 25.08*

28.96" 337 M 25.00"

29.09* 337 M 25.12*
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whether a sentence has been modified. ‘‘CoIn” benchmark contains
sentences made of two coordinate clauses. Half of the sentences
are inverted the order of the clauses and the task is to tell whether
a sentence is intact or modified.

4.2.2. Data and models
The models on each classification task are trained and examined

using the open-source dataset provided by Conneau et al. [11],
where each task is assigned 100 k sentences for training and
10 k sentences for validating and testing. Each of our probing
model consists of 6 encoding layers followed by a MLP classifier.
For each encoding layer, we employ a multi-head self-attention
block and a feed-forward block as in Transformer-Base, which have
achieved promising results on several NLP tasks [32,33]. The mean
of the top encoding layer is served as the sentence representation
passed to the classifier. The difference between the compared
models merely lies in the disagreement or aggregation mechanism
of multiple attention heads. As we have conduct ablation study on
translation task, here we merely evaluate the representative mod-
els in each category. ‘‘Disagreement” and ‘‘Aggregation” are
assigned output disagreement regularization and EM routing algo-
rithm respectively, while ‘‘Combine” denotes employing the two
mechanisms simultaneously. The learning rate is set to 0.0005 with
the Adam optimizer and the models are trained for 250 epochs.

4.2.3. Experimental results
Table 7 lists the classification accuracies of the three models on

the 10 probing tasks. We highlight the best accuracies under each
category (i.e., ‘‘Surface”, ‘‘Syntactic”, and ‘‘Semantic”) in bold. Obvi-
ously, the proposed models outperform the baseline system on
almost all the probing tasks, verifying that more informative repre-
sentations are produced by enhancing multi-head attention net-
works with disagreement regularization and advanced
information aggregation. Besides, several interesting observations
can be made here.

First, disagreement regularization gains better results on sur-
face and syntactic tasks than advanced information aggregation,
as indicated with the italic numbers in Table 7. Advanced informa-
tion aggregation, on the contrary, performs better on semantic
tasks, especially on ‘‘SubNm” and ‘‘ObjNm” tasks which are the
benchmarks for examining the semantic consistency of the model.
This empirical result also is consistent with the conclusion in [11]:
as a model captures deeper linguistic properties, it will tend to for-
get about some superficial features.
Table 7
Classification accuracies on 10 probing tasks of evaluating the linguistic properties
(‘‘Surface”, ‘‘Syntactic”, and ‘‘Semantic”) embedded in the encoding representation
produced by each model. ‘‘Ave.” denotes the averaged accuracy in each type of
linguistic tasks. ‘‘Disagreement” denotes the disagreement regularization, ‘‘Aggrega-
tion” denotes the advanced information aggregation, and ‘‘Combine” is the combi-
nation of the two mechanisms.

Task Baseline Disagreement Aggregation Combine

Surface SeLen 95.35 96.47 96.02 96.55
WC 98.03 98.65 98.31 98.87
Ave. 96.69 97.56 97.15 97.71

Syntactic TrDep 44.40 46.54 45.77 46.93
ToCo 83.48 84.24 84.05 84.17
BShif 51.45 53.54 50.97 54.26
Ave. 59.77 61.44 60.26 61.78

Semantic Tense 84.57 85.03 85.56 86.07
SubNm 82.80 83.15 85.47 85.84
ObjNm 80.31 80.49 82.46 83.38
SOMO 49.87 49.58 50.09 50.13
CoIn 69.39 68.48 70.21 69.99
Ave. 73.38 73.34 74.76 75.08
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Second, the combination of the two mechanisms achieves the
best accuracies on almost all tasks, which is on par with the results
in machine translation task. Concerning the three main categories,
the relative improvements over the baseline are respectively 1.05%,
3.36%, and 2.31%. Together with the first observation, we can con-
clude that the two types of approaches are complementary to each
other concerning extracting linguistic information of the input
sentence.

Note that the improvement on syntactic tasks is most signifi-
cant, we further conduct another experiment to evaluate the abil-
ity of modeling syntactic structures in next section.
4.3. Logical Inference Tasks

4.3.1. Task description
We finally verify the model’s performance in the logical infer-

ence task proposed by Bowman et al. [34]. This task is well suited
to evaluate the ability of modeling hierarchical structure. Models
need to learn the hierarchical and nested structures of language
in order to predict accurate logical relations between sentences
[34–36].

The task has six types of words {a, b, c, d, e, f} in the vocabulary
and three logical operators {or, and, not}. The goal of the task is to
predict one of seven logical relations between two given sentences.
These seven relations are: two entailment types @;Að Þ, equiva-
lence 	ð Þ, exhaustive and non-exhaustive contradiction ^; jð Þ, and
semantic independence #;^ð Þ. Below is a sample from the data:

not a and að Þð Þ or not eð Þð Þð Þð Þ# not dð Þ
4.3.2. Data and models
We use the data described in Bowman et al. [34]4. The train/dev/

test dataset ratios are set to 0.8/0.1/0.1 with the number of logical
operations range from 1 to 12. We follow Tran et al. [35,37] to imple-
ment the architectures: premise and hypothesis sentences are
encoded in fixed-size vectors, which are concatenated and fed to a
three layer feed-forward network for classification of the logical
relation.

We evaluate the baseline Transformer, Transformer with output
disagreement, Transformer with EM routing aggregation, and
Transformer with the two mechanisms combined together. We fol-
low Tran et al. [35] to use two hidden layers with residual connec-
tion [38] in all models and employ two trainable queries to obtain
the fixed-size representation. Both word embedding size and hid-
den size are set to 256. All models have two layers, a dropout rate
of 0.2, a learning rate of 0.0001 with Adam optimizer, and were
trained for 100 epochs.
4.3.3. Experimental results
As shown in Fig. 4, the combined model outperforms the base-

line Transformer and the two individual models on all cases. It is
interesting to see that Disagreement performs better at short
sequences while Aggregation performs better at long sequences,
verifying our hypothesis that they are complementary to each
other. Consistent with Shen et al. [36], on the longer sequences
(P 7) that were not observed in training, the combined model also
obtains the best performance and has a larger gap compared with
other models than on the shorter sequences (6 6), which verifies
that the combined model is better at modeling more complex hier-
archical structure in sequence. It also indicates that the combined
model has stronger generalization ability.
4 https://github.com/sleepinyourhat/vector-entailment



Fig. 4. The results of logical inference. ‘‘Disagreement” and ‘‘Aggregation” denote
the output disagreement regularization and EM routing aggregation respectively,
while ‘‘Combine” denotes employing the two mechanisms simultaneously.
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5. Related work

5.1. Multi-head attention

Multi-head attention has shown promising empirical results in
many NLP tasks, such as machine translation [5,39], semantic role
labeling [40], dialog [41], subject-verb agreement task [26]. The
strength of multi-head attention lies in the rich expressiveness
by using multiple attention functions in different representation
subspaces.

Previous work show that multi-head attention can be further
enhanced by encouraging individual attention heads to extract dis-
tinct information. For example, Lin et al. [42] introduce a penaliza-
tion term to reduce the redundancy of attention weights among
different attention heads, and Yang et al. [43] model the interac-
tions among attention heads. Shen et al. [44] explicitly use multi-
ple attention heads to model different dependencies of the same
word pair, and Strubell et al. [40] employ different attention heads
to capture different linguistic features. Our approach is comple-
mentary to theirs, since they focus on extracting distinct informa-
tion while ours aims at effectively aggregating the extracted
information. Our study shows that information aggregation is as
important as information extraction for multi-head attention.
5.2. Agreement learning

The regularization on attended positions is inspired by agree-
ment learning in prior works, which encourages alignments or hid-
den variables of multiple models to be similar. Liang et al. [14]
assign agreement terms for jointly training word alignment in
phrase-based statistic machine translation. The idea is further
extended into other natural language processing tasks such as
grammar induction [45]. Levinboim et al. [46] extend the agree-
ment for general bidirectional sequence alignment models with
model inevitability regularization. Cheng et la. [15] further explore
the agreement on modeling the source-target and target-source
alignments in neural machine translation model. In contrast to
the mentioned approaches which assign agreement terms into loss
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function, we deploy an alignment disagreement regularization by
maximizing the distance among multiple attention heads.

5.3. Information aggregation

Information aggregation in multi-head attention (e.g. Eqs. 3 and
4) aims at composing the partial representations of the input cap-
tured by different attention heads to a final representation. Recent
work shows that representation composition benefits greatly from
advanced functions beyond simple concatenation or mean/max
pooling. For example, Fukui et al. [16] and Ben et al. [17] succeed
on fusing multi-modal features (e.g., visual features and textual
features) more effectively via employing the higher-order bilinear
pooling instead of vector concatenation or element-wise opera-
tions. In NLP tasks, Peters et al. [28] aggregate layer representa-
tions with linear combination, and Dou et al. [18] compose deep
representations with layer aggregation and multi-layer attention
mechanisms. Li et al. [47] exploit neuron interaction to aggregate
different layers for neural machine translation.

Recently, the routing-by-agreement algorithm, which origins
from the capsule networks [8], becomes an appealing alternative
to representation composition. The majority of existing work on
capsule networks has focused on computer vision tasks, such as
MNIST tasks [9,10], CIFAR tasks [48], and object segmentation task
[49]. The applications of capsule networks in NLP tasks, however,
have not been widely investigated to date. Zhao et al. [50] testify
capsule networks on text classification tasks and Gong et al. [51]
propose to aggregate a sequence of vectors via dynamic routing
for sequence encoding. Dou et al. [52] use routing-by-agreement
strategies to aggregate layer representations dynamically. Inspired
by these successes, we apply the routing algorithms to multi-head
attention on both machine translation and linguistic probing tasks,
which demonstrates the necessity and effectiveness of advanced
information aggregation for multi-head attention.

6. Conclusion

In this work, we propose to better exploit the diversity of multi-
head attention by incorporating disagreement regularization and
employing advanced information aggregation. To this end, we pro-
pose several effective and efficient strategies to implement the dis-
agreement regularization and advanced information aggregation.
We find that the output disagreement term and EM routing algo-
rithm yield the best performances, and are complementary to each
other. Experimental results on machine translation, linguistic
probing and logical inference tasks demonstrate the effectiveness
and universality of the proposed approaches, suggesting that our
models produce more informative representation of the input
sentence.

The models also suggest a wide range of potential advantages
and extensions, from being able to improve the performance of
multi-head attention in other tasks such as reading comprehension
and language inference, to being able to combine with other tech-
niques [44,18,53] to further improve the performance of multi-
head attention.
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