
~ Achieving Software
Quality with Testing
Coverage Measures
Joseph R. Horgan, Saul London, and Michael R. Lyu, Bellcore

When is a program
considered acceptable?

Investigating the
relationship between

the quality of dataflow
testing and the

subsequent detection of
field faults may lead to

new criteria.
60

overage testing helps the tester create a thorough set of tests and gives a
measure of test completeness. The concepts of coverage testing are well-
described in the However, there are few tools that actually im-

plement these concepts for standard programming languages, and their realistic use
on large-scale projects is rare.

In this article, we describe the uses of a dataflow coverage-testing tool for C pro-
grams - called ATAC for Automatic Test Analysis for C3 - in measuring, control-
ling, and understanding the testing process. We present case studies of two real-world
software projects using ATAC. The first study involves 12 program versions devel-
oped by a universityhdustry fault-tolerant software project for a critical automatic-
flight-control ~ y s t e m . ~ . ~ The second study involves a Bellcore project of 33 program
modules.

These studies indicate that coverage analysis of programs during testing not only
gives a clear measure of testing quality but also reveals important aspects of software
structure. Understanding the structure of a program, as revealed in coverage testing,
can be a significant component in confident assessment of overall software quality.

Metrics in dataflow testing
The purpose of software testing is to detect errors in a program and, in the ab-

sence of errors, impart confidence in the program’s correctness. Just as an adequate
test of a used car consists of a satisfactory test drive and a complete test of the car’s
components by a mechanic, thorough software testing requires both functional and
coverage Functional testing assures that a program meets its specifications
by exercising the features described in the specification. This kind of testing depends
only on program specifications and is independent of encoding. Coverage testing
identifies constructs in program encoding that have not been exercised during test-
ing. It guides the testing of important software constructs and gives a clear checklist
of test completeness.

Each coverage criteria proposed in the literature’s7 captures some important aspect
of a program’s structure. Rapps and Weyuker’ define a family of dataflow coverage
criteria for an idealized programming language. Frank1 and Weyuker2 extend these
definitions to a subset of Pascal and describe a tool to check for test completeness

0018-916?/94/$4.000 1994 lEEE COMPUTER

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

based on the dataflow coverage criteria.
We have adapted these dataflow cover-
age definitions to define realistic
dataflow coverage measures for C pro-
grams. A coverage measure associates a
value with a set of tests for a given pro-
gram. This value indicates the complete-
ness of the set of tests for that program.
We define the following dataflow cover-
age measures for C programs based on
Rapps and Weyuker's7 definitions: block,

I decision, c-use, p-use, all-uses,
path, and du-path.

Precisely defining these con-
cepts for the C language requires
some care, but the basic ideas
can be illustrated by the exam-
ple in Figure 1. We define the
measures to be intraprocedural,
so they apply equally well to in-
dividual procedures (functions),
sets of procedures, or whole pro-
grams.

Block. The simplest example
of a coverage measure is basic
block coverage. The body of a C
procedure may be considered as
a sequence of basic blocks. These
are portions of code that nor-

Figure l. Sum.c
computes the sum

and product of
numbers from 0

to N.

I I- Du-wth~

41nclude d d i o h2
main(1
{

int n I k sum prod

prtntf('Enter an integer and 0 for + 1 for * ")

prod = 1
k i s t : ,/- \

while (I <= n)

4 definition scanf("",d ' 0 &n & k)
o f rariable i sum = 0

I ' sum += i;H U s c s of \rlriahlt! i

prod *= I ; f I++:
,4 basic block)

if(k == 0)

if(k == 1)
printf("n = Ood. sum = Ood\n'. n. sum):

printf("n = Ood. prod = Ood\n". n. prod),

C-uses P-uses

Decisions

deckion predicate
in\nl\ing \rriahle /, I

mally execute together, that is, consecu-
tive code fragments without branches.
The block coverage of a set of tests is the
ratio of the basic blocks executed (cov-
ered) to the total number in the program.
Thus, the block coverage measure indi-
cates the fraction of basic program blocks
executed by the tests. Block coverage is
similar to statement coverage but more
sensitive to program structure.

Decision. Although essential, basic
block coverage is not a sufficient measure
of test completeness. A decision exists for
each possible value of a branch predicate.
For instance, in Figure 1, the predicate k
== 1, which may be true or false, has two
decisions associated with it, and a case
predicate may have many associated de-
cisions. The decision coverage of a set of
tests is the ratio of the number of deci-
sions covered by the tests to the total
number of decisions in the program.

coverage
meesures

1 I

Figure 2. A hierarchy of control and
dataflow coverage measures.

~~
-~ ~

C-use, p-use, and all-uses. Dataflow
coverage testing directs the tester to con-
struct test cases that cover all definition-
use pairs. A definition is a statement, like
i = 1 in Figure 1, that assigns a value to a
variable, and the occurrence of i in the
statement "sum += i" is a use of i. These
two occurrences of i constitute a def-use

pair. If, as in our example, the use ap-
pears in a computational expression, the
pair is a c-use. If the use appears inside a
predicate, €or example, i in i I n, then the
pair is ap-use. An all-uses is either a c-use
or a p-use.

Path and du-path. Any sequence of
statements defined by program control
flow is a path. A path from a variable's
definition to its use, which contains no
redefinition of the variable, is called a du-
path. In Figure 1, an example of a du-path
would be execution of a sequence that
starts at i = 1, loops once in the body of
the while statement, and then continues.
However, paths with two or more loops
from i = 1 to sum += i do not constitute a
du-path because i++ redefines i.

Any of these control or dataflow con-
structs are covered if they execute dur-
ing the test.

Hierarchy. Each basic block, decision,
definition, and path in a program is an at-
tribute that may contain a fault that could
cause program failure. Therefore, as
many attributes as possible should be
tested to improve the chances of detect-
ing any remaining faults. (Note that we
use "fault" to refer to a coding error and
reserve "error" to describe incorrect pro-

gram behavior, presumably due to one
or more faults in the code.)

Figure 2 suggests an ordering of the
coverage criteria. In this hierarchy, block
coverage is weaker than decision cover-
age, which in turn is dominated by p-use
coverage. C-use coverage dominates both
block and decision coverage but is inde-
pendent of p-use coverage; both c-use and
p-use coverage fall below all-uses. Rapps
and Weyuker' originally described this
hierarchy as a containment relationship
among the various criteria. Although con-
tainment fails for the C language, the re-
lationships described by the hierarchy are
useful. We suggest, for instance, exhaust-
ing block testing before undertaking de-
cision testing. Decision testing is more ef-
fective, but it also takes more time and
effort. Therefore, working up the hierar-
chy is a prudent strategy for realizing the
benefits of coverage testing.

ATAC software
coverage tool

ATAC evaluates test-set completeness
using dataflow coverage measures. It
computes dataflow coverage adequacy,
using data collected from static analysis
of source code and dynamic analysis of
execution paths, and incorporates tech-
niques for improving software quality, us-
ing the data originally collected to com-
pute coverage adequacy. The program
constructs measured by ATAC include
blocks, decisions, c-uses, p-uses, and all-
uses. (For a simple example, see the side-
bar at right) Analysis can be performed

September 1994 61

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

for each test case, source file, and C func-
tion or for various combinations. Multiple
source files can be tested together or one
at a time. There are no explicit limits on
the size of programs tested with ATAC.

The ATAC preprocessor analyzes C
source code (according to the ANSI stan-
dard or Kernighan and Ritchie definition)
and produces a file containing dataflow
information for use in the analysis phase.
The preprocessor also creates a modified
version of the source code instrumented
with calls to the ATAC runtime routine.
The modified source code is automatically
compiled and linked as appropriate, to
produce an executable program.

During testing, the ATAC runtime
routine, invoked from the modified pro-
gram, records dataflow coverage execu-
tion slices for use in the analysis phase. In
the analysis phase, the tester can request
coverage values for any of the dataflow
coverage measures, display source code
constructs not covered by the test cases,
or obtain various other analyses of the
coverage data. Blocks not covered are
displayed in a context of surrounding
source code. Other constructs are also
displayed by highlighting the constructs
not covered in their context.

’

,

ATACuses.ATACcanbeusedinsev-
era1 ways in the software improvement
process.

Measure test-set or session complete-
ness. ATAC’s measures of test complete-
ness give an objective measure of how
completely a program or routine has been
tested. This measure is useful in evaluat-
ing test quality and program correctness.
A low coverage score indicates that the
test cases do not effectively exercise the
program; a high score establishes a degree
of confidence that the program, by pass-
ing the tests, works correctly.

Assist in generating and creating new
test cases. ATAC can be used to create
new test cases in two ways. The first way
is to use ATAC as a source code browser
to highlight code or dataflow associations
that have not been executed. With this
aid, the programmer can examine the
code and create test cases for these, as
yet uncovered, constructs. After running
the additional test cases, the programmer
can see which constructs are newly cov-
ered and examine the remaining uncov-
ered constructs. This is a simple -
though possibly time consuming - exer-
cise for block and decision coverage. (It’s

Using ATAC

We illustratr the uu) of ATAC on the sample program sum.c of Figure 1. Sum
computer the sum or @uct of Integers from 1 to n, depending on the Inputs.
We compile and llnk a program using ATAC in place of the standard compiler
and Ilnker.

>atacCC -0 sum 8um.c

ATAC creates an instrumented, executable program in sum and dataflow
tables In sum.atac. During program execution, ATAC’s runtime routine collects
execution path informstbn into sum.trace without interfering with the program’s
usual behavior. We invoke sum to Input the values 5 and 0.

>sum
Enter an integer and 0 for +, 1 for *: 5 0
n =5, sump: 15

The correct output for n = 5 has been calculated, and we examine the cover-
age achleved on 8um.c by this first test case.

>atac -8 sum.trace wm.atac
%blodu Xdedtions %C-USes x P-uses
sO(~l0) w3w 50(3/6) 75(3/4) ==total =I

We see that nlne of 10 blocks have been covered, and we can ask ATAC to
dlsplay the uncovered block with > atac -mb sum.trace sum.atac. The result is in
Figure A.

Now, we test the functionality of sum on other inputs in the hope of achieving
fuller Coverage.

>sum
Enter an integer a& 0 for +, 1 tor *: 5 1
n = 5, prod = 120
>sum
Enter an integer and 0 for +, 1 for *: 0 0
n=O,sum=O

The reaub are In sccord with our functlonal expectations. Now we ask ATAC
how we am dotng in coverage.

Mtaa -8 8um.tratx 8um.a-
%blocks % ~ l a i o r t a %C-Uses %P-Uses
100(10) lW6) 83(5/6) lOO(4) ==total c

We methat we have not covered one d the six c-urns In 8um.c. We can ask
ATAC to dlrplry thet U“ c w .

>am -mc wrn.tmca rum.atac

The result Is In Flgure B.
We tost 6um agaln on yet another Input to cover the c-use.

zswn
Enter an integer and 0 for +, 1 for *: 0 1
n=O,prod=l
~ t 8 c -6 uun.trrcd 8um.atac
%Modo KQechbm %C-USes %P-Uees
W 1 0) “5) 1 We) 1 OO(4) == total ==

62 COMPUTER

I

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

BEST COPY AVAILABLE

We have now achieved complete coverage of sums. The mixture of func-
tional and coverage testing has revded that the four tests completely carer
sum.c on ATACS measwes and that sum& iseMecton thetests sofar. M o t h
that this testing aellsqs noshing about whettl€Kwm.c was supposed to work tor 1

negative integers. A&.additional test shows that it does not.

>sum
Enter an integer and 0 for +, 1 for *: -5 0
n =-5, sum = O

This underscores the importance of functional testing in conjunction with
ATAC coverage testing. Our coverage testing has thoroughly examined the
circuitry of sum.c. Such complete coverage testing is easy for such trivial pro-
grams as sum.c. Full coverage is much more difficult for large and complex
programs.

* = : .
- I

.
- I

. . . . c L L (K = = ;)

pr;r.tf ("r. = "s, s l i m = %d\n" , n, sum) ;

4
Figure A. The block not yet covered in 8um.c.

_ _ _ _ _ - - - - - - - - - > C-USE of s i n main ; sum.c l i n e 7 < - - - - - - - - - -

prl?.Ef("Enter an integer azd G f o r - , 1 f3r*: " I ;

scanf ("%d "s", & E , & k) ;

sum = 3 ;

i = 1;
while (i < = r.)

I ..;

>

Figure 8. The missing c-use in sum.c.

September 1994

somewhat more challenging for c-use and
p-use coverage.) Since a thorough job of
unit testing can vastly reduce the overall
cost of testing a software system, this use
of ATAC is well worth its cost. We find
that the visual feedback motivates the
programmer to pursue higher levels of
unit testing coverage.

The second way to use ATAC is for ef-
fective selection of randomly generated
tests. For many applications, test cases
can be generated automatically. How-
ever, practical use of these tests requires
either a correctness oracle or a mecha-
nism for selecting an effective, small sub-
set of the many test cases generated.
ATAC coverage measures, or any cov-
erage measures that can be computed au-
tomatically, provide a basis for such a test
selection mechanism. Using coverage
measures computed by ATAC, auto-
matically generated test cases can be se-
lected on the basis of coverage improve-
ment. Unselected test cases don't have
to be evaluated for correctness (a costly
business), and the final number of test
cases is usually much smaller than the to-
tal number generated.

For example, we used ATAC as a COV-
erage oracle to cull good coverage tests
for a Unix sort program. By seeding the
test generator with functional tests and an
input syntax for sort.c, we generated sets
of 1.O00, 10,000, and 100,000 tests. We
culled the duplicate and useless tests, find-
ing 27 of the first 1,O00 and seven of the
next 10,OOO that improved coverage, but
only two of the last 100,OOO that improved
coverage. The resultant 36 tests gave rea-
sonable coverage of the approximately
900-line sort program. The process ran
ovemight unattended; thus, the real cost in
human and computer time was small.

Assist in manual detection of faults via
code inspection. ATAC coverage dis-
plays are effective aids in fault detection
via manual inspection of source code.
With them, programmers can focus on
poorly covered sections of code that may
be difficult to reach in the unit test envi-
ronment. Often, while using ATAC to
create additional test cases, programmers
notice an unexpected pattern of cover-
age that leads directly to detection of a
program fault.

The data collected by ATAC can be
used to locate a fault responsible for an
error detected by one or more test cases.
The code executed by a test can be
thought of as its execution slice. When a
test fails, the fault causing the failure

63

L

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

377
ATAC tests

Blocks Decisions P-uses All-uses
75% 65'0 38'0 44% -73 tests

Bbok8 Dd" P-OHI AH-UIXJS
6 2 % ! 5 2 % m 3 7 %

I

Figure 3. Minimizing and selecting regression tests for ATAC.
-

must be somewhere in that slice. If many
tests fail, apparently due to the same
fault, the fault causing the failure is prob-
ably in the intersection of the execution
slices of those test cases. When a program
containing a fault passes a test, the exe-
cution slice for that test may or may not
contain the fault. (The faulty code may
have executed in such a way that it does
not adversely affect program behavior
for this test.) When the execution slices
for successful tests are subtracted from
the intersection of slices for failed tests,
the remainder is apt to contain the fault.
By computing and displaying the result-
ing code fragments, ATAC helps pro-
grammers locate the code fault. The same
technique, using appropriate weighting
of successes and failures, can be used in
the face of multiple code faults.

Locate faults and features based on ex-
ecution slicing. In maintaining large soft-
ware systems, sometimes it's necessary to
locate, in unfamiliar code, the sections
that implement a particular application
feature. ATAC's fault-location technique
can also be used to locate other code fea-
tures. For example, given an association
of each test with the application features
it exercises (that is, what it does), ATAC
can combine execution slices to deter-
mine which code sections implement each
feature.

Prioritize test cases fo r regression test-
ing. The test cases run over the life of a
program are often collected as a regres-
sion test set. For each program modifica-
tion, the regression test set is rerun to ver-
ify that the modifications have not
adversely affected program behavior. At
some point, it becomes impractical to run
the entire set of tests for small program
modifications. ATAC uses the execution
slice of each test to determine a minimum
set of regression test cases to achieve a

given level of coverage. If the cost of ex-
ecuting test cases varies, costs can be as-
signed to each test so that ATAC will
provide a minimum-cost set of test cases
or a cost-effective ordering of test cases.
This technique can identify tests that add
no coverage to the regression tests and
are therefore candidates for deletion.
Tests that must be retained can be as-
signed a cost of zero so that they always
remain cost-effective.

Figure 3 shows the application of these
techniques to some ATAC regression
tests. In building the regression suite, we
found that 377 tests could be minimized
to 160 tests with no loss in coverage and
to just 18 tests with some loss in cover-
age. Such information is useful when we
must retest under time pressure.

Provide data for performance, risk, and
reliability analysis. In addition to coverage
information, ATAC collects the number
of executions of a covered code construct.
This data can be viewed in the source code
browser, with a color spectrum indicating
frequency of execution. ATAC also uses
this data to assign a risk measure to source
code fragments. The risk measure, or the
likelihood of faults in a section of code, is
based on local code complexity, coverage,
and execution frequency.

Software reliability analysis uses sta-
tistical techniques, based on the pattern
of failures from previous tests, to predict
the number of error-causing faults re-
maining in software. The analysis as-
sumes uniform variability in the test se-
quence; in particular, repeated execution
of the same test should not appear the
same as execution of many different
tests. Execution slices collected by
ATAC for each test can be used to ob-
tain a difference measure over the tests.
Incorporating this measure in the soft-
ware reliability analysis improves pre-
diction accuracy.

Case study 1:
U of Iowa/Rockwell
joint project

Our first case study in software test-
ing-coverage measurement comes from
a real-world airplane landing system, or
so-called autopilot , developed by 15
programming teams at the University
of Iowa and the Rockwell/Collins
Avionics Division. Guided by an N-ver-
sion programming design paradigm,* 40
students (33 from ECE and CS DeRart-
ments at the University of Iowa and
seven from Rockwell International)
participated in this project to indepen-
dently design, code, and test the au-
topilot application.

Project overview. The selected appli-
cation, a fault-tolerant software project, is
part of a specification some aerospace
companies use for computer-controlled
landing of commercial airliners. The spec-
ification can be used to develop flight-con-
trol computer software for real aircraft,
since it's adjustable to the performance
parameters of a specific aircraft. All algo-
rithms and control laws are specified in di-
agrams certified by the Federal Aviation
Administration. The pitch-control portion
of the autopilot problem - that is, the
control of the aircraft's vertical motion -
was selected for this project.

The software development cycle was
conducted in several software engineer-
ing phases, including the Initial Design,
Detailed Design, Coding, Unit Testing,
Integration Testing, Acceptance Testing,
and Operational Phases. Software test-
ing was a major activity. In the Unit Test-
ing (UT) Phase, each team received sam-
ple test data sets for each module to
check its basic functionality. A total of
133 data files (roughly equivalent to one
execution of the completely integrated
program) was provided in this phase. In
the Integration Testing (IT) Phase, four
sets of partial flight-simulation test data,
representing 960 complete program exe-
cutions, were provided to each program-
ming team. This phase of testing was in-
tended to guarantee the software's
suitability for a flight simulation envi-
ronment in an integrated system.

Finally, in the Acceptance Testing (AT)
Phase, programmers formally submitted
their programs for an acceptance test. In
the acceptance test, each program was run
in a test harness of flight simulation pro-
files for both nominal and difficult flight

64 COMPUTER

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

Table 1. Fault distribution of each program by phases.

I Test Phase p y E 6 q 8 K h p v 6 o Total I
~ ~ ~ ~~~~~~~~ ~ ~ ~

Unit Testing (UT) 2 2 3 1 3 3 5 3 2 1 2 2 29
IntegrationTesting(1T) 4 3 4 4 1 0 3 2 2 2 3 1 29
AcceptanceTesting(AT) 2 2 3 4 3 4 1 3 5 2 5 3 37
OperationalTesting(0T) 1 0 0 0 0 0 0 0 0 0 0 0 1

Total 9 7 1 0 9 7 7 9 8 9 5 1 0 6 96

Original fault density 2.2 5.7 11.2 9.7 4.7 5.9 7.2 3.2 7.7 4.7 5.9 4.4 5.1

Fault density after AT 0 . 2 0 0 0 0 0 0 0 0 0 0 0 0.05

conditions. When a program failed a test,
it was returned to the programmers for
debugging and resubmission, along with
the input case on which it failed.

More than 21,000 different program
executions were imposed on these pro-
grams before final acceptance. Twelve of
the 15 programs passed the acceptance
test and went to the Operational Testing
(OT) Phase for further evaluations. Pro-
gram size ranged from 900 to 4,000 un-
commented lines of code, with an aver-
age of 1,550 lines.

Program metrics and statistics. A to-
tal of 96 faults were found and reported
during the project’s life cycle. Table 1

shows the distribution of the detected
software faults in the 12 accepted pro-
grams (identified by Greek letters) with
respect to each test phase. The fault den-
sities (per thousand lines of uncom-
mented code) of the original version and
the accepted version for each program
are also shown.

Later in the operational testing phase,
we conducted more than 1,000 flight sim-
ulations - over five million program ex-
ecutions. Only one operational fault (in
the p version) was found. This implies that
the program quality obtained from this
project was very high. For the 12 accepted
programs, the average fault density was
0.05 faults per thousand lines of code. This

number is close to the best current effort
in the software industry. (For a detailed
report on this project, see Lyu!)

Testing metrics measured by ATAC.
Facilitated by the ATAC tool, we further
investigated the application of testing
coverage metrics as a quality control
mechanism. Table 2 shows the coverage
obtained during each testing phase for
the four coverage metrics (block, deci-
sion, c-use, p-use). It also gives the aver-
age value and the range, from highest to
lowest, among the 12 programs.

Table 2 shows a number of interesting
results. First, there were no strong corre-
lations among the four program con-

Table 2. Testing-related coverage metrics measured by ATAC (Automatic Test Analysis for C).

Blocks
Percent in

UT
IT
AT

Decisions
Percent in

UT
IT
AT

C-uses
Percent in

UT
IT
AT

P-uses
Percent in

UT
IT
AT

511 711

65 59
85 71
95 78

216 250

36 37
71 73
88 87

935 755

60 57
83 76
96 90

413 340

30 34
66 60
84 72

531 554 679 537 367 1,132 542

62 70 44 64 56 60 68
77 83 74 86 79 76 80
88 95 88 98 91 91 90

320 297 520 284 286 357 264

37 43 27 28 33 29 42
63 67 60 72 69 62 63
78 82 77 90 82 78 79

395 696 1027 636 710 965 727

56 50 45 57 44 69 56
80 67 70 81 72 84 74
96 84 87 95 87 96 86

349 520 611 463 459 419 355

38 32 26 22 23 37 42
63 47 58 59 49 61 59
78 58 74 72 57 71 72

473

68
88
97

237

41
78
92

537

55
81
96

310

36
68
85

457

71
86
97

23 1

42
72
89

803

56
78
93

279

38
64
80

483

57
80
94

262

32
66
86

665

55
82
94

392

29
61
79

581.4

62.0
80.4
91.8

293.7

35.6
68.0
83.9

737.6

55.0
77.3
91.7

409.2

32.3
59.6
73.5

3.08

1.61
1.24
1.24

2.41

1.59
1.30
1.19

2.60

1.57
1.25
1.14

2.19

1.91
1.45
1.49

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

structs. For example, program 0's block
and p-use values were average. but i t had
the smallest decision value and a very
high c-use value. We also noticed that the
equivalence of one complete program ex-
ecution in UT exposed a variety of effects
on different program constructs of dif-
ferent program versions. which contained
a fairly large range of coverage in blocks
(44-71 percent), decisions (27-43 per-
cent), c-uses (44-69 percent). and p-uses
(22-38 percent). Moreover, the coverage
of blocks and c-uses is higher than the
coverage of decisions and p-uses.

We further observed that the programs
tested with fairly high quality. In particu-
lar, some programs achieved acceptance
test coverages as high as 98 percent of
blocks, 92 percent of decisions. 96 percent
of c-uses, and 85 percent of p-uses. Al-
though some programs had consistent
scores, others did not. For example. ver-
sion v had very high values in all measures.
and version chad the lowest value in both
c-uses and p-uses. Version 8. on the other
hand, had the highest block value and very
high decision and c-use values, but it had
a relatively low percentage of p-uses.

As the number of program executions
increased, test quality improved. and the
range of coverage percentages decreased.
Nevertheless, considering that these cov-
erage results were obtained from pro-
grams of the same application tested by
the same data. the differences in these
measures seemed significant (for exam-
ple, version €I obtained 98 percent block
coverage while version y obtained only
78 percent). On the other hand. we also
noticed a diminishing return on coverage
after the acceptance test. and the opera-

tional test data (five million program ex-
ecutions) did not increase this coverage
significantly. This meant that the 22 per-
cent of uncovered code in version y was
probably not even executed during the
operational phase.

Figure 4 summarizes the increase of
software coverage metrics. measured by
averaging coverage data from the 12 pro-
grams. achieved as testing progressed
from UT (one program execution) to IT
(960 executions) and AT (21.000 execu-
tions). As expected, the first execution
hit a large area of the programs, but the
coverage measures increased monotoni-
cally with the number of test cases. The
amount of the increase. however. de-
clined with the addition of more test cases
and finally reached a plateau.

Table 3 summarizes the effectiveness of
the three testing phases. In particular. it lists
the percentage of known faults detected up
to a certain test phase. In this table. we see
that the coverage obtained from AT was
satisfactory. but that obtained from UT and
IT was not. Achieving a higher level of cov-
erage (for example. from 80 to 90 percent
block coverage) proved to be a crucial step
toward quality and reliability (from 60 to 99
percent fault detection) among the investi-
gated programs.

We suspect there's a correlation be-
tween the number of faults detected in a
version and the coverage of its program
constructs. In theory. the better a pro-
gram is covered during testing. the more
faults will be detected. However. we did
not see strong correlations between the
total faults detected in the program ver-
sions (Table 1) and their coverage mea-
sures during various testing conditions

- Block coverage
Decision coverage
C-use coverage
P-use coverage

- - -
_ - - _ _
...... ...

Figure 4. Increase
in coverage as
testing progresses.

(Table 2). It may be that, because each
version has a different fault distribution
to begin with, the coverage measures are
not good predictors of the absolute num-
ber of program faults. Besides, the num-
ber of faults detected in each version is
not very large, which may reduce the sta-
tistical significance of the analysis.

ATAC's ability to highlight noncovered
program code permits detailed examina-
tion of construct coverage, thereby re-
vealing programming style and program
testability. In version y. for example, we
noticed that an untested error-handling
function accounted for 10 percent of the
total blocks; in most other versions, the
same function accounted for only 1 to 2
percent of block coverage. Further exam-
ination showed that version y used nu-
merous function calls to pass parameters,
and each function call was counted as an
uncovered block. This clearly indicated
the need for an extra test case to increase
version y's block coverage.

Case study 2:
A Bellcore project

A central question of coverage testing
is whether there is an exact "dose-
response'' relationship between the per-
centage of coverage and the number of
faults in a software system. The analogy
is to pharmacology, which attempts to
calibrate patient response to a particular
quantity of medicine. Ideally, the testing
manager would have tables relating "bug
killing" capacity to coverage testing level.

Two years ago. in a retrospective study
of Bellcore production software, we ad-
dressed the dose-response question. The
idea was simple. First. we would find a
production system that had carefully pre-
served versions of codes, tests, and failure
reports (called modification requests or
MRs). and we would retrieve them for
each phase. Then. test coverage would be
assessed using ATAC, faults would be as-
signed to modules. and the relationship
between percent of coverage and num-
ber of faults could be determined.

The system we studied consisted of ap-
proximately 60.000 lines of code in 60
modules. We won encountered signifi-
cant difficulties in conducting the study.
Thc versioning system and the MR sys-
tem had not been designed to facilitate a
retrospective study. Therefore, assigning
faults described in MRs to the correct
module required great care and consid-

66 COMPUTER

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

erable knowledge of the system. We de-
termined that an analysis could be per-
formed on only half of the system. Ulti-
mately. we performed the study on 33
modules, their unit tests, and 35 system
test MRs. Because several MRs could not
be accurately assigned, several modules
might have been assigned one of these
ambiguous MRs or no MRs at all. These
modules and MRs are eliminated from
the data we report here.

I 8 0.90-
.e

:+0.60-

Table 3. Testing coverage measures and known faults detected during testing.

i
8-
0

Testing Number Percent Percent Percent Percent Percent
Phase of Tests Block Decision C-Uses P-Uses Detected

Unit Testing 1 62.0 35.6 55.0 32.3 30.2
Integration
Testing 960 80.4 68.0 79.3 59.6 60.4

Acceptance
Testing 21,000 91.8 83.9 91.7 73.5 98.9

Statistics and analysis. Figure 5a dis-
plays the achieved block coverage of unit
tests for the 33 modules compared to the
number of system test faults found for
each module. Figure 5b plots the achieved
uses coverage versus faults found in sys-
tem tests.

Figure 5a plots the modules by per-
centage of block coverage on the y axis
and number of system test modification
requests (MRs - equivalent to a fault) on
the .\- axis. We had preserved the unit mod-
ules. the tests done at unit test time, the
system built for system test, and the MRs
recorded during system test. With these
artifacts, we were able to trace the MRs to
the modules with the associated faults. For
instance, we found 13 modules with no
MRs and one module with 6 MRs.

From these data on this single experi-
ment, we cannot conclude anything about
a dose-response relationship. However,
from the data presented in Figure 5a, we
can safely observe that modules with high

block coverage (70 percent and above) are
free of MRs in system test. This simple ob-
servation is in accord with the report of
Piwowarski, Ohba, and C a r ~ s o . ~ That
study of several large IBM software sys-
tems found a precise relationship between
fault density and statement coverage (vir-
tually identical to block coverage). We be-
lieve that such results will be possible
when coverage is the goal during testing.
Our study assessed coverage after testing.
The testers were unaware of the level of
testing and had no coverage goals. Obser-
vations similar to those for block cover-
age can be made for all-uses coverage.

In this single study, there is a clear re-
lationship between high statement cov-
erage in unit testing and low system test
faults, and we allow the reader to draw
parallels between the different measures
of coverage and MRs. The conclusion
that MRs decrease with higher coverage

seems sound if each module is regarded
as a function point. However, if we ad-
just for "size" (for example, dividing MRs
by the number of blocks in a module).
this apparent result is suspect.

Nonetheless, it is commonly accepted
that less than 70 percent block coverage
does not assure good testing. We there-
fore prefer to view these data as weakly
supporting the hypothesis that high cov-
erage tends to reduce faults. Further ex-
perimentation on the doseiresponse re-
lationship (if any) between coverage
testing and fault elimination is underway
in more controlled experiments. The final
judgment on the value of coverage testing
as a fault purgative will come only with
use of coverage testing in standard soft-
ware development.

Secondary study. The difficulties en-
countered in this study led us to attempt

1.004 0 I

Number of fault8 found In system tests

(a)

o.807-- -7

0.104
L I

I I 1 I I I
0.00 1.00 2.00 3.00 4.00 5.00 6.00

Number of faults found in system tests

(b)

Figure 5. System testing faults versus block coverage (a) and all-uses coverage (b).

September 1994 67

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

I 1 5 1

I

‘ 3 ‘

95 -I I

9 d

b

I

Figure 6. Unminimized and minimized tests: (a) average size; (b) average effectiveness.

a more controlled study on smaller pro7
grams with artificially seeded, but realis-
tic, bugs.1° Figure 6 summarizes some of
our findings. For each of the seven stan-
dard Unix programs, cal, checkeq, comm,
look, spline, tr, and uniq, we generated
30 test sets with 90 to 95 percent block
coverage. We then used ATAC to select
a minimal test set with the same cover-
age for each program.

The average test set sizes are repre-
sented in Figure 6a. Clearly the minimized
test sets are, on average, substantially
smaller. Figure 6b shows the average num-
ber of seeded bugs found by the test sets
and by their minimized counterparts.
While the minimized test sets are sub-
stantially smaller, they are only marginally
less effective in finding bugs. This leads us
to conclude that it’s the coverage rather
than the number of tests that is detecting
the bugs. A fuller study might establish a
dose-response between degree of cover-
age testing and bug detection.

The use of coverage testing in the soft-
ware process can be twofold. First, cov-
erage can be taken as a measure of test-
ing quality. It is not uncommon to find
that testing considered to be thorough
and complete is not very complete from
the coverage point of view. Coverage
measurement allows the manager to set
repeatable and objective targets for test-
ing quality. Second, coverage is an excel-
lent feedback mechanism for the soft-
ware engineer. An examination of Figure
5a reveals that one module had six MRs
and was block covered to less than 40 per-

cent during unit testing. Such data can fo- 2. P.G. Frank1 and E.J. Weyuker, “An Ap-
cus testing effort on faulty and poorly
covered modules.

plicable Family of Dataflow Testing Cri-
teria.” IEEE Trans. Software Eng., Vol.
SE-14. No. 10, Oct. 1988, pp. 1,483-1,498.

he ultimate question we hope to
answer is central to software en-
gineering: “When is a program

considered acceptable?” Many software
reliability models have been proposed to
answer this question.” However, few re-
s e a r c h e r ~ ~ ~ ’ ~ address the relationship of
reliability to program structure or testing
coverage. Investigating the quality of
dataflow testing and the subsequent de-
tection of field faults mav lead to a new

3. J.R. Horgan and S.A. London, “A
Dataflow Coverage Testing Tool for C,”
Proc. Symp. on Assessment of Quality Soft-
ware Development Tools, IEEE CS Press,
Los Alamitos. Calif., Order No. 2620,
1992, pp. 2-10.

4. M.R. Lyu and Y. He, “Improving the N -
Version Programming Process Through
the Evolution of a Design Paradigm,”
IEEE Trans. Reliability. Vol. 42. No. 2,
June 1993, pp. 179-189.

5. M.R. Lyu. J.R. Horgan, and S. London,
“A Coverage Analysis Tool for the Effec-

acceptance problem. W
6. W.E. Howden, Functional Program Tesr-

inz and Analvsis. McGraw-Hill. New
Y&k. 1987. ‘ Acknowledgments

7. S. Rapps and E.J. Weyuker, “Selecting
Software Test Data Using Dataflow In-
formation.” IEEE Trans. Software Eng.,

4* Apr. 1985, pp. 367-375.
our colleagues H, A ~ ~ ~ ~ ~ J and E,W,

Krauser have contributed substantially to the SE-1’
work ‘reported here. A.o. Olagunju Of 8, M,R. Lyu and A. Avizienis, ‘‘Assuring De- Delaware State College, with the aid of Bell-
core’s T.K. Ramaprasad, L.W. Smith, and E.I.
Yang, conducted the experiment that yielded
the data in Figure 5.

sign Diversity in ~ - ~ ~ ~ ~ i ~ ~ software: A
Design Paradigm for N-~ersion Program-
ming,,, Dependable Computing and Fault-
Tolerant Systems, J.F. Mever and R.D.
Schlichting, eds.. Springer:Verlag, New
York, 1992, pp. 197-218.

References 9. P.M. Piwowarski, M. Ohba, and J. Caruso,
“Coverage Measurement Experience Dur-
ing Function Test,” Proc. 15th Int’l Conj
Software Eng., IEEE CS Press, Los Alami-
tos, Calif., Order No. 3700,1993, pp. 287-

1. R.A. DeMillo et al., Software Testing and
Evaluation, Benjamin, Menlo Park, Calif..
1987. 301.

68 COMPUTER

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

10. W.E. Wong et al., “Effect of Test Set Min-
imization on the Error Detection Effec-
tiveness of the All-Uses Criterion.” Tech.
Report, Purdue University, West
Lafayette, Ind., SERC-TR-l52-P, 1994.

11. M.R. Lyu and A. Nikora, “Using Software
Reliability Models More Effectively,”
IEEE Sofiware, Vol. 9, No. 4, July 1992,
pp. 43-52.

12. M. Chen et al., “TimeiStructure-Based
Model for Estimating Software Reliabil-
ity,” Tech. Report, Purdue University,
SERC-TR-117-P, 1992.

Joseph R. Horgan is a member of the techni-
cal staff at Bellcore’s Information Sciences and
Technologies Research Laboratory. His re-
search is in software analysis, testing, and re-
liability. Before joining Bellcore in 1983, he
was with AT&T Bell Labs and on the com-

puter science faculty at the University of
Kansas. He has also worked at the University
of Delaware and IBM. Horgan received a BA
and MA in philosophy from the University of
Delaware and a PhD in computer science from
the Georgia Institute of Technology

Saul London is a member of the technical staff
at Bellcore’s Information Sciences and Tech-
nologies Research Laboratory. His research
interests include software testing, program-
ming languages, software reuse, and telecom-
munications software. London received his
BA in mathematics from Columbia Univer-
sity in 1980 and his MS in computer science
from New York University in 1982.

Michael R. Lyu has been a member of the
technical staff in the Information Sciences and
Technologies Research Laboratory at Bell-
core since 1992. His research interests include
software engineering, software reliability, and
fault-tolerant computing. He is the editor of
two books: McGraw-Hill Software Reliability
Engineering Handbook (to be published in
February 1995) and Software Fault Tolerance
(to be published by Wiley in October 1994).

Lyu received his BSEE in 1981 from the Na-
tional Taiwan University, his MS in electrical
and computer engineering in 1984 from the
University of California, Santa Barbara, and
his PhD in computer science in 1988 from the
University of California, Los Angeles.

Readers can contact the authors at Bellcore, 445 South St., Morristown, NJ 07960-6438. Lyu’s
e-mail address is lyu@bellcore.com.

KUWAIT UNIVERSITY
The Department of Electrical and Computer Engineering at Kuwait University invites applications for permanent or visiting faculty po-

sitions starting February 1995 or September 1996. Duties include teaching courses at undergraduate and graduate levels. Applicants must
have earned a doctorate degree in the field of Electrical Engineering, Computer Engineering, or related disciplines. Areas of special in-
terest include: Optoelectronics, Photonics, Solid State Devices and Electronics, Neural Networks and Circuits, Analog and Digital
=Si. Computer Engineering areas of interest include: Software Engineering, Operating Systems, Computer Graphics, Artificial In-
telligence, Programming Languages and Database Systems.

The Department of Electrical and Computer Engineering is the largest department at the College of Engineering of Kuwait University
with 796 students and 37 faculty members. Graduate studies in Computer Engineering will commence in September 1994. Teaching is em-
phasized in the laboratories with a yearly laboratory budget of approximately $2M. Research utilization is encouraged for these laboratories.
Research is supported through the Research Management Unit at Kuwait University with a $3M yearly budget for the College of Engineer-
ing. The Department of Electrical and Computer Engineering has an extensive computing environment consisting of a network of over 100
Macs and PCs, 40 SPARClO, SPARCZO and IPX, three 670/690 SPARCServers, and an Alpha axp 7610 Server with 6DEC 3000/300 LX
Workstations. The department has access to a VAX 9000-VP, and an IBM ES9000 located at the College of Engineering campus. The de-
partment also has state-of-the-art laboratories in most areas of Electrical and Computer Engmeering.

to the 12th grade), yearly travel home with family, and free housing. Additional information may be obtained from:
Faculty members enjoy many free benefits furnished by Kuwait University. These benefits include: medical care, private education (up

Embassy of the State of Kuwait
Kuwait University Office

3500 International Drive, N W
Washington, DC 20008

Tel: (202) 363-8055

Office of the Dean
College of Engineering and Petroleum

Kuwait University
P.O. Box 5969

Safat, 13060 KUWAIT
Fax: (965) 4811772 Tel: (965) 4817175

Application forms, copies of Diplomas and transcripts of all degrees obtained should be sent to:

For further information, you may send E-mail to: khachab@eng.kuniv.edu.kw.
farida8eng.kuniv.edu.kw

Dr. Nabil I. Khachab (Electronics)
Dr. Farida Ali (Computer Engineering)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore. Restrictions apply.

mailto:lyu@bellcore.com

	IT

