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the quality of dataflow 
testing and the 

subsequent detection of 
field faults may lead to 

new criteria. 
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overage testing helps the tester create a thorough set of tests and gives a 
measure of test completeness. The concepts of coverage testing are well- 
described in the However, there are few tools that actually im- 

plement these concepts for standard programming languages, and their realistic use 
on large-scale projects is rare. 

In this article, we describe the uses of a dataflow coverage-testing tool for C pro- 
grams - called ATAC for Automatic Test Analysis for C3 - in measuring, control- 
ling, and understanding the testing process. We present case studies of two real-world 
software projects using ATAC. The first study involves 12 program versions devel- 
oped by a universityhdustry fault-tolerant software project for a critical automatic- 
flight-control ~ y s t e m . ~ . ~  The second study involves a Bellcore project of 33 program 
modules. 

These studies indicate that coverage analysis of programs during testing not only 
gives a clear measure of testing quality but also reveals important aspects of software 
structure. Understanding the structure of a program, as revealed in coverage testing, 
can be a significant component in confident assessment of overall software quality. 

Metrics in dataflow testing 
The purpose of software testing is to detect errors in a program and, in the ab- 

sence of errors, impart confidence in the program’s correctness. Just as an adequate 
test of a used car consists of a satisfactory test drive and a complete test of the car’s 
components by a mechanic, thorough software testing requires both functional and 
coverage Functional testing assures that a program meets its specifications 
by exercising the features described in the specification. This kind of testing depends 
only on program specifications and is independent of encoding. Coverage testing 
identifies constructs in program encoding that have not been exercised during test- 
ing. It guides the testing of important software constructs and gives a clear checklist 
of test completeness. 

Each coverage criteria proposed in the literature’s7 captures some important aspect 
of a program’s structure. Rapps and Weyuker’ define a family of dataflow coverage 
criteria for an idealized programming language. Frank1 and Weyuker2 extend these 
definitions to a subset of Pascal and describe a tool to check for test completeness 
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based on the dataflow coverage criteria. 
We have adapted these dataflow cover- 
age definitions to define realistic 
dataflow coverage measures for C pro- 
grams. A coverage measure associates a 
value with a set of tests for a given pro- 
gram. This value indicates the complete- 
ness of the set of tests for that program. 
We define the following dataflow cover- 
age measures for C programs based on 
Rapps and Weyuker's7 definitions: block, 

I decision, c-use, p-use, all-uses, 
path, and du-path. 

Precisely defining these con- 
cepts for the C language requires 
some care, but the basic ideas 
can be illustrated by the exam- 
ple in Figure 1. We define the 
measures to be intraprocedural, 
so they apply equally well to in- 
dividual procedures (functions), 
sets of procedures, or whole pro- 
grams. 

Block. The simplest example 
of a coverage measure is basic 
block coverage. The body of a C 
procedure may be considered as 
a sequence of basic blocks. These 
are portions of code that nor- 

Figure l. Sum.c 
computes the sum 

and product of 
numbers from 0 

to N. 

I I- Du-wth~ 

41nclude d d i o  h2 
main( 1 
{ 

int n I k sum prod 

prtntf('Enter an integer and 0 for + 1 for * " )  

prod = 1 
k i s t :  ,/- \ 

while ( I  <= n) 

4 definition scanf("",d ' 0  &n & k )  
o f  rariable i sum = 0 

I ' sum += i;H U s c s  of \rlriahlt! i 

prod *= I ;  f I++: 
,4 basic block ) 

if(k == 0)  

if(k == 1) 
printf("n = Ood. sum = Ood\n'. n. sum): 

printf("n = Ood. prod = Ood\n". n. prod), 

C-uses P-uses 

Decisions 

deckion predicate 
in\nl\ing \rriahle /, I 

mally execute together, that is, consecu- 
tive code fragments without branches. 
The block coverage of a set of tests is the 
ratio of the basic blocks executed (cov- 
ered) to the total number in the program. 
Thus, the block coverage measure indi- 
cates the fraction of basic program blocks 
executed by the tests. Block coverage is 
similar to statement coverage but more 
sensitive to program structure. 

Decision. Although essential, basic 
block coverage is not a sufficient measure 
of test completeness. A decision exists for 
each possible value of a branch predicate. 
For instance, in Figure 1, the predicate k 
== 1, which may be true or false, has two 
decisions associated with it, and a case 
predicate may have many associated de- 
cisions. The decision coverage of a set of 
tests is the ratio of the number of deci- 
sions covered by the tests to the total 
number of decisions in the program. 

coverage 
meesures 

1 I 

Figure 2. A hierarchy of control and 
dataflow coverage measures. 

~~ 
-~ ~ 

C-use, p-use, and all-uses. Dataflow 
coverage testing directs the tester to con- 
struct test cases that cover all definition- 
use pairs. A definition is a statement, like 
i = 1 in Figure 1, that assigns a value to a 
variable, and the occurrence of i in the 
statement "sum += i" is a use of i. These 
two occurrences of i constitute a def-use 

pair. If, as in our example, the use ap- 
pears in a computational expression, the 
pair is a c-use. If the use appears inside a 
predicate, €or example, i in i I n, then the 
pair is ap-use. An all-uses is either a c-use 
or a p-use. 

Path and du-path. Any sequence of 
statements defined by program control 
flow is a path. A path from a variable's 
definition to its use, which contains no 
redefinition of the variable, is called a du- 
path. In Figure 1, an example of a du-path 
would be execution of a sequence that 
starts at i = 1, loops once in the body of 
the while statement, and then continues. 
However, paths with two or more loops 
from i = 1 to sum += i do not constitute a 
du-path because i++ redefines i. 

Any of these control or dataflow con- 
structs are covered if they execute dur- 
ing the test. 

Hierarchy. Each basic block, decision, 
definition, and path in a program is an at- 
tribute that may contain a fault that could 
cause program failure. Therefore, as 
many attributes as possible should be 
tested to improve the chances of detect- 
ing any remaining faults. (Note that we 
use "fault" to refer to a coding error and 
reserve "error" to describe incorrect pro- 

gram behavior, presumably due to one 
or more faults in the code.) 

Figure 2 suggests an ordering of the 
coverage criteria. In this hierarchy, block 
coverage is weaker than decision cover- 
age, which in turn is dominated by p-use 
coverage. C-use coverage dominates both 
block and decision coverage but is inde- 
pendent of p-use coverage; both c-use and 
p-use coverage fall below all-uses. Rapps 
and Weyuker' originally described this 
hierarchy as a containment relationship 
among the various criteria. Although con- 
tainment fails for the C language, the re- 
lationships described by the hierarchy are 
useful. We suggest, for instance, exhaust- 
ing block testing before undertaking de- 
cision testing. Decision testing is more ef- 
fective, but it also takes more time and 
effort. Therefore, working up the hierar- 
chy is a prudent strategy for realizing the 
benefits of coverage testing. 

ATAC software 
coverage tool 

ATAC evaluates test-set completeness 
using dataflow coverage measures. It 
computes dataflow coverage adequacy, 
using data collected from static analysis 
of source code and dynamic analysis of 
execution paths, and incorporates tech- 
niques for improving software quality, us- 
ing the data originally collected to com- 
pute coverage adequacy. The program 
constructs measured by ATAC include 
blocks, decisions, c-uses, p-uses, and all- 
uses. (For a simple example, see the side- 
bar at right) Analysis can be performed 
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for each test case, source file, and C func- 
tion or for various combinations. Multiple 
source files can be tested together or one 
at a time. There are no explicit limits on 
the size of programs tested with ATAC. 

The ATAC preprocessor analyzes C 
source code (according to the ANSI stan- 
dard or Kernighan and Ritchie definition) 
and produces a file containing dataflow 
information for use in the analysis phase. 
The preprocessor also creates a modified 
version of the source code instrumented 
with calls to the ATAC runtime routine. 
The modified source code is automatically 
compiled and linked as appropriate, to 
produce an executable program. 

During testing, the ATAC runtime 
routine, invoked from the modified pro- 
gram, records dataflow coverage execu- 
tion slices for use in the analysis phase. In 
the analysis phase, the tester can request 
coverage values for any of the dataflow 
coverage measures, display source code 
constructs not covered by the test cases, 
or obtain various other analyses of the 
coverage data. Blocks not covered are 
displayed in a context of surrounding 
source code. Other constructs are also 
displayed by highlighting the constructs 
not covered in their context. 

’ 

, 

ATACuses.ATACcanbeusedinsev- 
era1 ways in the software improvement 
process. 

Measure test-set or  session complete- 
ness. ATAC’s measures of test complete- 
ness give an objective measure of how 
completely a program or routine has been 
tested. This measure is useful in evaluat- 
ing test quality and program correctness. 
A low coverage score indicates that the 
test cases do not effectively exercise the 
program; a high score establishes a degree 
of confidence that the program, by pass- 
ing the tests, works correctly. 

Assist in generating and creating new 
test cases. ATAC can be used to create 
new test cases in two ways. The first way 
is to use ATAC as a source code browser 
to highlight code or dataflow associations 
that have not been executed. With this 
aid, the programmer can examine the 
code and create test cases for these, as 
yet uncovered, constructs. After running 
the additional test cases, the programmer 
can see which constructs are newly cov- 
ered and examine the remaining uncov- 
ered constructs. This is a simple - 
though possibly time consuming - exer- 
cise for block and decision coverage. (It’s 

Using ATAC 

We illustratr the uu) of ATAC on the sample program sum.c of Figure 1. Sum 
computer the sum or @uct of Integers from 1 to n, depending on the Inputs. 
We compile and llnk a program using ATAC in place of the standard compiler 
and Ilnker. 

>atacCC -0 sum 8um.c 

ATAC creates an instrumented, executable program in sum and dataflow 
tables In sum.atac. During program execution, ATAC’s runtime routine collects 
execution path informstbn into sum.trace without interfering with the program’s 
usual behavior. We invoke sum to Input the values 5 and 0. 

>sum 
Enter an integer and 0 for +, 1 for *: 5 0 
n =5, sump: 15 

The correct output for n = 5 has been calculated, and we examine the cover- 
age achleved on 8um.c by this first test case. 

>atac -8 sum.trace wm.atac 
%blodu Xdedtions %C-USes x P-uses 
sO(~l0) w3w 50(3/6) 75(3/4) ==total =I 

We see that nlne of 10 blocks have been covered, and we can ask ATAC to 
dlsplay the uncovered block with > atac -mb sum.trace sum.atac. The result is in 
Figure A. 

Now, we test the functionality of sum on other inputs in the hope of achieving 
fuller Coverage. 

>sum 
Enter an integer a& 0 for +, 1 tor *: 5 1 
n = 5, prod = 120 
>sum 
Enter an integer and 0 for +, 1 for *: 0 0 
n=O,sum=O 

The reaub are In sccord with our functlonal expectations. Now we ask ATAC 
how we am dotng in coverage. 

Mtaa -8 8um.tratx 8um.a- 
%blocks % ~ l a i o r t a  %C-Uses %P-Uses 
100(10) lW6) 83(5/6) lOO(4) ==total c 

We methat we have not covered one d the six c-urns In 8um.c. We can ask 
ATAC to dlrplry thet U“ c w .  

>am -mc wrn.tmca rum.atac 

The result Is In Flgure B. 
We tost 6um agaln on yet another Input to cover the c-use. 

zswn 
Enter an integer and 0 for +, 1 for *: 0 1 
n=O,prod=l 
~ t 8 c  -6 uun.trrcd 8um.atac 
%Modo KQechbm %C-USes %P-Uees 
W 1 0 )  “5) 1 We) 1 OO(4) == total == 

62 COMPUTER 

I 

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 08,2021 at 09:47:05 UTC from IEEE Xplore.  Restrictions apply. 



BEST COPY AVAILABLE 

We have now achieved complete coverage of sums. The mixture of func- 
tional and coverage testing has revded that the four tests completely carer  
sum.c on ATACS measwes and that sum& iseMecton thetests sofar. M o t h  
that this testing aellsqs noshing about whettl€Kwm.c was supposed to work tor 1 

negative integers. A&.additional test shows that it does not. 

>sum 
Enter an integer and 0 for +, 1 for *: -5 0 
n =-5, sum = O  

This underscores the importance of functional testing in conjunction with 
ATAC coverage testing. Our coverage testing has thoroughly examined the 
circuitry of sum.c. Such complete coverage testing is easy for such trivial pro- 
grams as sum.c. Full coverage is much more difficult for large and complex 
programs. 

* =  : .  
- I  

. 
- I  

. .  . . c  L L ( K  = =  ;) 

pr;r.tf ("r. = "s, s l i m  = %d\n" ,  n, sum)  ; 

4 
Figure A. The block not yet covered in 8um.c. 

_ _ _ _ _ - - - - - - - - -  > C-USE of s i n  main ;  sum.c l i n e  7 < - - - - - - - - - -  

prl?.Ef("Enter an integer azd G f o r  - ,  1 f3r*: " I ; 

scanf ("%d "s", & E ,  & k )  ; 

sum = 3 ;  

i = 1; 
while (i < =  r.) 

I ..; 

> 

Figure 8. The missing c-use in sum.c. 
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somewhat more challenging for c-use and 
p-use coverage.) Since a thorough job of 
unit testing can vastly reduce the overall 
cost of testing a software system, this use 
of ATAC is well worth its cost. We find 
that the visual feedback motivates the 
programmer to pursue higher levels of 
unit testing coverage. 

The second way to use ATAC is for ef- 
fective selection of randomly generated 
tests. For many applications, test cases 
can be generated automatically. How- 
ever, practical use of these tests requires 
either a correctness oracle or a mecha- 
nism for selecting an effective, small sub- 
set of the many test cases generated. 
ATAC coverage measures, or any cov- 
erage measures that can be computed au- 
tomatically, provide a basis for such a test 
selection mechanism. Using coverage 
measures computed by ATAC, auto- 
matically generated test cases can be se- 
lected on the basis of coverage improve- 
ment. Unselected test cases don't have 
to be evaluated for correctness (a costly 
business), and the final number of test 
cases is usually much smaller than the to- 
tal number generated. 

For example, we used ATAC as a COV- 
erage oracle to cull good coverage tests 
for a Unix sort program. By seeding the 
test generator with functional tests and an 
input syntax for sort.c, we generated sets 
of 1.O00, 10,000, and 100,000 tests. We 
culled the duplicate and useless tests, find- 
ing 27 of the first 1,O00 and seven of the 
next 10,OOO that improved coverage, but 
only two of the last 100,OOO that improved 
coverage. The resultant 36 tests gave rea- 
sonable coverage of the approximately 
900-line sort program. The process ran 
ovemight unattended; thus, the real cost in 
human and computer time was small. 

Assist in manual detection of faults via 
code inspection. ATAC coverage dis- 
plays are effective aids in fault detection 
via manual inspection of source code. 
With them, programmers can focus on 
poorly covered sections of code that may 
be difficult to reach in the unit test envi- 
ronment. Often, while using ATAC to 
create additional test cases, programmers 
notice an unexpected pattern of cover- 
age that leads directly to detection of a 
program fault. 

The data collected by ATAC can be 
used to locate a fault responsible for an 
error detected by one or more test cases. 
The code executed by a test can be 
thought of as its execution slice. When a 
test fails, the fault causing the failure 
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377 
ATAC tests 

Blocks Decisions P-uses All-uses 
75% 65'0 38'0 44% -73 tests 

Bbok8 Dd" P-OHI AH-UIXJS 
6 2 % ! 5 2 % m 3 7 %  

I 

Figure 3. Minimizing and selecting regression tests for ATAC. 
- 

must be somewhere in that slice. If many 
tests fail, apparently due to the same 
fault, the fault causing the failure is prob- 
ably in the intersection of the execution 
slices of those test cases. When a program 
containing a fault passes a test, the exe- 
cution slice for that test may or may not 
contain the fault. (The faulty code may 
have executed in such a way that it does 
not adversely affect program behavior 
for this test.) When the execution slices 
for successful tests are subtracted from 
the intersection of slices for failed tests, 
the remainder is apt to contain the fault. 
By computing and displaying the result- 
ing code fragments, ATAC helps pro- 
grammers locate the code fault. The same 
technique, using appropriate weighting 
of successes and failures, can be used in 
the face of multiple code faults. 

Locate faults and features based on ex- 
ecution slicing. In maintaining large soft- 
ware systems, sometimes it's necessary to 
locate, in unfamiliar code, the sections 
that implement a particular application 
feature. ATAC's fault-location technique 
can also be used to locate other code fea- 
tures. For example, given an association 
of each test with the application features 
it exercises (that is, what it does), ATAC 
can combine execution slices to deter- 
mine which code sections implement each 
feature. 

Prioritize test cases fo r  regression test- 
ing. The test cases run over the life of a 
program are often collected as a regres- 
sion test set. For each program modifica- 
tion, the regression test set is rerun to ver- 
ify that the modifications have not 
adversely affected program behavior. At 
some point, it becomes impractical to run 
the entire set of tests for small program 
modifications. ATAC uses the execution 
slice of each test to determine a minimum 
set of regression test cases to achieve a 

given level of coverage. If the cost of ex- 
ecuting test cases varies, costs can be as- 
signed to  each test so that ATAC will 
provide a minimum-cost set of test cases 
or a cost-effective ordering of test cases. 
This technique can identify tests that add 
no coverage to the regression tests and 
are therefore candidates for deletion. 
Tests that must be retained can be as- 
signed a cost of zero so that they always 
remain cost-effective. 

Figure 3 shows the application of these 
techniques to some ATAC regression 
tests. In building the regression suite, we 
found that 377 tests could be minimized 
to 160 tests with no loss in coverage and 
to just 18 tests with some loss in cover- 
age. Such information is useful when we 
must retest under time pressure. 

Provide data for  performance, risk, and 
reliability analysis. In addition to coverage 
information, ATAC collects the number 
of executions of a covered code construct. 
This data can be viewed in the source code 
browser, with a color spectrum indicating 
frequency of execution. ATAC also uses 
this data to assign a risk measure to source 
code fragments. The risk measure, or the 
likelihood of faults in a section of code, is 
based on local code complexity, coverage, 
and execution frequency. 

Software reliability analysis uses sta- 
tistical techniques, based on the pattern 
of failures from previous tests, to predict 
the number of error-causing faults re- 
maining in software. The analysis as- 
sumes uniform variability in the test se- 
quence; in particular, repeated execution 
of the same test should not appear the 
same as execution of many different 
tests. Execution slices collected by 
ATAC for each test can be used to ob- 
tain a difference measure over the tests. 
Incorporating this measure in the soft- 
ware reliability analysis improves pre- 
diction accuracy. 

Case study 1: 
U of Iowa/Rockwell 
joint project 

Our first case study in software test- 
ing-coverage measurement comes from 
a real-world airplane landing system, or 
so-called autopilot ,  developed by 15 
programming teams at  the University 
of Iowa and the Rockwell/Collins 
Avionics Division. Guided by an N-ver- 
sion programming design paradigm,* 40 
students (33 from ECE and CS DeRart- 
ments at  the University of Iowa and 
seven from Rockwell International) 
participated in this project to indepen- 
dently design, code, and test the au- 
topilot application. 

Project overview. The selected appli- 
cation, a fault-tolerant software project, is 
part of a specification some aerospace 
companies use for computer-controlled 
landing of commercial airliners. The spec- 
ification can be used to develop flight-con- 
trol computer software for real aircraft, 
since it's adjustable to the performance 
parameters of a specific aircraft. All algo- 
rithms and control laws are specified in di- 
agrams certified by the Federal Aviation 
Administration. The pitch-control portion 
of the autopilot problem - that is, the 
control of the aircraft's vertical motion - 
was selected for this project. 

The software development cycle was 
conducted in several software engineer- 
ing phases, including the Initial Design, 
Detailed Design, Coding, Unit Testing, 
Integration Testing, Acceptance Testing, 
and Operational Phases. Software test- 
ing was a major activity. In the Unit Test- 
ing (UT) Phase, each team received sam- 
ple test data sets for each module to 
check its basic functionality. A total of 
133 data files (roughly equivalent to one 
execution of the completely integrated 
program) was provided in this phase. In 
the Integration Testing (IT) Phase, four 
sets of partial flight-simulation test data, 
representing 960 complete program exe- 
cutions, were provided to each program- 
ming team. This phase of testing was in- 
tended to guarantee the software's 
suitability for a flight simulation envi- 
ronment in an integrated system. 

Finally, in the Acceptance Testing (AT) 
Phase, programmers formally submitted 
their programs for an acceptance test. In 
the acceptance test, each program was run 
in a test harness of flight simulation pro- 
files for both nominal and difficult flight 
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Table 1. Fault distribution of each program by phases. 

I Test Phase p y E 6 q 8 K h p v 6 o Total I 
~ ~ ~ ~~~~~~~~ ~ ~ ~ 

Unit Testing (UT) 2 2 3 1 3 3 5  3 2 1 2 2  29 
IntegrationTesting(1T) 4 3 4 4 1 0 3 2 2 2 3 1 29 
AcceptanceTesting(AT) 2 2 3 4 3 4 1 3 5 2 5 3 37 
OperationalTesting(0T) 1 0 0 0 0 0 0 0 0 0 0 0 1 

Total 9 7 1 0 9 7  7 9 8 9 5 1 0  6 96 

Original fault density 2.2 5.7 11.2 9.7 4.7 5.9 7.2 3.2 7.7 4.7 5.9 4.4 5.1 

Fault density after AT 0 . 2 0  0 0 0  0 0 0 0 0 0 0 0.05 

conditions. When a program failed a test, 
it was returned to the programmers for 
debugging and resubmission, along with 
the input case on which it failed. 

More than 21,000 different program 
executions were imposed on these pro- 
grams before final acceptance. Twelve of 
the 15 programs passed the acceptance 
test and went to the Operational Testing 
(OT) Phase for further evaluations. Pro- 
gram size ranged from 900 to 4,000 un- 
commented lines of code, with an aver- 
age of 1,550 lines. 

Program metrics and statistics. A to- 
tal of 96 faults were found and reported 
during the project’s life cycle. Table 1 

shows the distribution of the detected 
software faults in the 12 accepted pro- 
grams (identified by Greek letters) with 
respect to each test phase. The fault den- 
sities (per thousand lines of uncom- 
mented code) of the original version and 
the accepted version for each program 
are also shown. 

Later in the operational testing phase, 
we conducted more than 1,000 flight sim- 
ulations - over five million program ex- 
ecutions. Only one operational fault (in 
the p version) was found. This implies that 
the program quality obtained from this 
project was very high. For the 12 accepted 
programs, the average fault density was 
0.05 faults per thousand lines of code. This 

number is close to the best current effort 
in the software industry. (For a detailed 
report on this project, see Lyu!) 

Testing metrics measured by ATAC. 
Facilitated by the ATAC tool, we further 
investigated the application of testing 
coverage metrics as a quality control 
mechanism. Table 2 shows the coverage 
obtained during each testing phase for 
the four coverage metrics (block, deci- 
sion, c-use, p-use). It also gives the aver- 
age value and the range, from highest to 
lowest, among the 12 programs. 

Table 2 shows a number of interesting 
results. First, there were no strong corre- 
lations among the four program con- 

Table 2. Testing-related coverage metrics measured by ATAC (Automatic Test Analysis for C). 

Blocks 
Percent in 

UT 
IT 
AT 

Decisions 
Percent in 

UT 
IT 
AT 

C-uses 
Percent in 

UT 
IT 
AT 

P-uses 
Percent in 

UT 
IT 
AT 

511 711 

65 59 
85 71 
95 78 

216 250 

36 37 
71 73 
88 87 

935 755 

60 57 
83 76 
96 90 

413 340 

30 34 
66 60 
84 72 

531 554 679 537 367 1,132 542 

62 70 44 64 56 60 68 
77 83 74 86 79 76 80 
88 95 88 98 91 91 90 

320 297 520 284 286 357 264 

37 43 27 28 33 29 42 
63 67 60 72 69 62 63 
78 82 77 90 82 78 79 

395 696 1027 636 710 965 727 

56 50 45 57 44 69 56 
80 67 70 81 72 84 74 
96 84 87 95 87 96 86 

349 520 611 463 459 419 355 

38 32 26 22 23 37 42 
63 47 58 59 49 61 59 
78 58 74 72 57 71 72 

473 

68 
88 
97 

237 

41 
78 
92 

537 

55 
81 
96 

310 

36 
68 
85 

457 

71 
86 
97 

23 1 

42 
72 
89 

803 

56 
78 
93 

279 

38 
64 
80 

483 

57 
80 
94 

262 

32 
66 
86 

665 

55 
82 
94 

392 

29 
61 
79 

581.4 

62.0 
80.4 
91.8 

293.7 

35.6 
68.0 
83.9 

737.6 

55.0 
77.3 
91.7 

409.2 

32.3 
59.6 
73.5 

3.08 

1.61 
1.24 
1.24 

2.41 

1.59 
1.30 
1.19 

2.60 

1.57 
1.25 
1.14 

2.19 

1.91 
1.45 
1.49 
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structs. For example, program 0's block 
and p-use values were average. but i t  had 
the smallest decision value and a very 
high c-use value. We also noticed that the 
equivalence of one complete program ex- 
ecution in UT exposed a variety of effects 
on different program constructs of dif- 
ferent program versions. which contained 
a fairly large range of coverage in blocks 
(44-71 percent), decisions (27-43 per- 
cent), c-uses (44-69 percent). and p-uses 
(22-38 percent). Moreover, the coverage 
of blocks and c-uses is higher than the 
coverage of decisions and p-uses. 

We further observed that the programs 
tested with fairly high quality. In particu- 
lar, some programs achieved acceptance 
test coverages as high as 98 percent of 
blocks, 92 percent of decisions. 96 percent 
of c-uses, and 85 percent of p-uses. Al- 
though some programs had consistent 
scores, others did not. For example. ver- 
sion v had very high values in all measures. 
and version chad the lowest value in both 
c-uses and p-uses. Version 8. on the other 
hand, had the highest block value and very 
high decision and c-use values, but it had 
a relatively low percentage of p-uses. 

As the number of program executions 
increased, test quality improved. and the 
range of coverage percentages decreased. 
Nevertheless, considering that these cov- 
erage results were obtained from pro- 
grams of the same application tested by 
the same data. the differences in these 
measures seemed significant (for exam- 
ple, version €I obtained 98 percent block 
coverage while version y obtained only 
78 percent). On the other hand. we also 
noticed a diminishing return on coverage 
after the acceptance test. and the opera- 

tional test data (five million program ex- 
ecutions) did not increase this coverage 
significantly. This meant that the 22 per- 
cent of uncovered code in version y was 
probably not even executed during the 
operational phase. 

Figure 4 summarizes the increase of 
software coverage metrics. measured by 
averaging coverage data from the 12 pro- 
grams. achieved as  testing progressed 
from UT (one program execution) to IT 
(960 executions) and AT (21.000 execu- 
tions). As expected, the first execution 
hit a large area of the programs, but the 
coverage measures increased monotoni- 
cally with the number of test cases. The 
amount of the increase. however. de- 
clined with the addition of more test cases 
and finally reached a plateau. 

Table 3 summarizes the effectiveness of 
the three testing phases. In particular. it lists 
the percentage of known faults detected up 
to a certain test phase. In this table. we see 
that the coverage obtained from AT was 
satisfactory. but that obtained from UT and 
IT was not. Achieving a higher level of cov- 
erage (for example. from 80 to 90 percent 
block coverage) proved to be a crucial step 
toward quality and reliability (from 60 to 99 
percent fault detection) among the investi- 
gated programs. 

We suspect there's a correlation be- 
tween the number of faults detected in a 
version and the coverage of its program 
constructs. In theory. the better a pro- 
gram is covered during testing. the more 
faults will be detected. However. we did 
not see strong correlations between the 
total faults detected in the program ver- 
sions (Table 1 )  and their coverage mea- 
sures during various testing conditions 

- Block coverage 
Decision coverage 
C-use coverage 
P-use coverage 

- - -  
_ - - _ _  
...... ... 

Figure 4. Increase 
in coverage as 
testing progresses. 

(Table 2). It may be that, because each 
version has a different fault distribution 
to begin with, the coverage measures are 
not good predictors of the absolute num- 
ber of program faults. Besides, the num- 
ber of faults detected in each version is 
not very large, which may reduce the sta- 
tistical significance of the analysis. 

ATAC's ability to highlight noncovered 
program code permits detailed examina- 
tion of construct coverage, thereby re- 
vealing programming style and program 
testability. In version y. for example, we 
noticed that an untested error-handling 
function accounted for 10 percent of the 
total blocks; in most other versions, the 
same function accounted for only 1 to 2 
percent of block coverage. Further exam- 
ination showed that version y used nu- 
merous function calls to pass parameters, 
and each function call was counted as an 
uncovered block. This clearly indicated 
the need for an extra test case to increase 
version y's block coverage. 

Case study 2: 
A Bellcore project 

A central question of coverage testing 
is whether there is an exact "dose- 
response'' relationship between the per- 
centage of coverage and the number of 
faults in a software system. The analogy 
is to pharmacology, which attempts to 
calibrate patient response to a particular 
quantity of medicine. Ideally, the testing 
manager would have tables relating "bug 
killing" capacity to coverage testing level. 

Two years ago. in a retrospective study 
of Bellcore production software, we ad- 
dressed the dose-response question. The 
idea was simple. First. we would find a 
production system that had carefully pre- 
served versions of codes, tests, and failure 
reports (called modification requests or 
MRs). and we would retrieve them for 
each phase. Then. test coverage would be 
assessed using ATAC, faults would be as- 
signed to modules. and the relationship 
between percent of coverage and num- 
ber of faults could be determined. 

The system we studied consisted of ap- 
proximately 60.000 lines of code in 60 
modules. We won  encountered signifi- 
cant difficulties in conducting the study. 
Thc versioning system and the MR sys- 
tem had not been designed to facilitate a 
retrospective study. Therefore, assigning 
faults described in MRs to the correct 
module required great care and consid- 
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erable knowledge of the system. We de- 
termined that an analysis could be per- 
formed on only half of the system. Ulti- 
mately. we performed the study on 33 
modules, their unit tests, and 35 system 
test MRs. Because several MRs could not 
be accurately assigned, several modules 
might have been assigned one of these 
ambiguous MRs or no MRs at all. These 
modules and MRs are eliminated from 
the data we report here. 

I 8 0.90- 
.e 

:+0.60- 

Table 3. Testing coverage measures and known faults detected during testing. 

i 
8- 
0 

Testing Number Percent Percent Percent Percent Percent 
Phase of Tests Block Decision C-Uses P-Uses Detected 

Unit Testing 1 62.0 35.6 55.0 32.3 30.2 
Integration 
Testing 960 80.4 68.0 79.3 59.6 60.4 

Acceptance 
Testing 21,000 91.8 83.9 91.7 73.5 98.9 

Statistics and analysis. Figure 5a dis- 
plays the achieved block coverage of unit 
tests for the 33 modules compared to the 
number of system test faults found for 
each module. Figure 5b plots the achieved 
uses coverage versus faults found in sys- 
tem tests. 

Figure 5a plots the modules by per- 
centage of block coverage on the y axis 
and number of system test modification 
requests (MRs - equivalent to a fault) on 
the .\- axis. We had preserved the unit mod- 
ules. the tests done at unit test time, the 
system built for system test, and the MRs 
recorded during system test. With these 
artifacts, we were able to trace the MRs to 
the modules with the associated faults. For 
instance, we found 13 modules with no 
MRs and one module with 6 MRs. 

From these data on this single experi- 
ment, we cannot conclude anything about 
a dose-response relationship. However, 
from the data presented in Figure 5a, we 
can safely observe that modules with high 

block coverage (70 percent and above) are 
free of MRs in system test. This simple ob- 
servation is in accord with the report of 
Piwowarski, Ohba, and C a r ~ s o . ~  That 
study of several large IBM software sys- 
tems found a precise relationship between 
fault density and statement coverage (vir- 
tually identical to block coverage). We be- 
lieve that such results will be possible 
when coverage is the goal during testing. 
Our study assessed coverage after testing. 
The testers were unaware of the level of 
testing and had no coverage goals. Obser- 
vations similar to those for block cover- 
age can be made for all-uses coverage. 

In this single study, there is a clear re- 
lationship between high statement cov- 
erage in unit testing and low system test 
faults, and we allow the reader to draw 
parallels between the different measures 
of coverage and MRs. The conclusion 
that MRs decrease with higher coverage 

seems sound if each module is regarded 
as a function point. However, if we ad- 
just for "size" (for example, dividing MRs 
by the number of blocks in a module). 
this apparent result is suspect. 

Nonetheless, it is commonly accepted 
that less than 70 percent block coverage 
does not assure good testing. We there- 
fore prefer to view these data as weakly 
supporting the hypothesis that high cov- 
erage tends to reduce faults. Further ex- 
perimentation on the doseiresponse re- 
lationship (if any) between coverage 
testing and fault elimination is underway 
in more controlled experiments. The final 
judgment on the value of coverage testing 
as a fault purgative will come only with 
use of coverage testing in standard soft- 
ware development. 

Secondary study. The difficulties en- 
countered in this study led us to attempt 

1.004 0 I 

Number of fault8 found In system tests 

(a) 

o.807-- -7 
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L I 
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Number of faults found in system tests 
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Figure 5. System testing faults versus block coverage (a) and all-uses coverage (b). 
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Figure 6. Unminimized and minimized tests: (a) average size; (b) average effectiveness. 

a more controlled study on smaller pro7 
grams with artificially seeded, but realis- 
tic, bugs.1° Figure 6 summarizes some of 
our findings. For each of the seven stan- 
dard Unix programs, cal, checkeq, comm, 
look, spline, tr, and uniq, we generated 
30 test sets with 90 to 95 percent block 
coverage. We then used ATAC to select 
a minimal test set with the same cover- 
age for each program. 

The average test set sizes are repre- 
sented in Figure 6a. Clearly the minimized 
test sets are, on average, substantially 
smaller. Figure 6b shows the average num- 
ber of seeded bugs found by the test sets 
and by their minimized counterparts. 
While the minimized test sets are sub- 
stantially smaller, they are only marginally 
less effective in finding bugs. This leads us 
to conclude that it’s the coverage rather 
than the number of tests that is detecting 
the bugs. A fuller study might establish a 
dose-response between degree of cover- 
age testing and bug detection. 

The use of coverage testing in the soft- 
ware process can be twofold. First, cov- 
erage can be taken as a measure of test- 
ing quality. It is not uncommon to find 
that testing considered to be thorough 
and complete is not very complete from 
the coverage point of view. Coverage 
measurement allows the manager to set 
repeatable and objective targets for test- 
ing quality. Second, coverage is an excel- 
lent feedback mechanism for the soft- 
ware engineer. An examination of Figure 
5a reveals that one module had six MRs 
and was block covered to less than 40 per- 
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he ultimate question we hope to 
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