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Abstract

Community detection plays an important role in understanding structures and patterns in complex networks. In real-world 

networks, a node in most cases belongs to multiple communities, which makes communities overlap with each other. One 

popular technique to cope with overlapping community detection is matrix factorization (MF). However, existing MF 

approaches only make use of the existence of a link, but ignore the implicit preference information inside it. In this paper, 

we first propose a Preference-based Non-negative Matrix Factorization (PNMF) model to take link preference information 

into consideration. Distinguished from traditional value approximation-based matrix factorization approaches, our model 

maximizes the likelihood of the preference order for each node so that it overcomes the indiscriminate penalty problem in 

which non-linked pairs inside one community are equally penalized in objective functions as those across two communi-

ties. Moreover, we propose a Locality-based Non-negative Matrix Factorization (LNMF) model to further incorporate the 

concept of locality and generalize the preference system of PNMF. Particularly, we define a subgraph called “K-degree local 

network” to set a boundary between local non-neighbors and other non-neighbors, and explicitly treat these two classes of 

non-neighbors in objective function. Through experiments on various benchmark networks, we show that our PNMF model 

outperforms state-of-the-art baselines, and the generalized LNMF model further performs better than the PNMF model on 

datasets with high locality.

Keywords Complex network · Community detection · Matrix factorization

1 Introduction

Unraveling community structure in a complex network has 

been extensively investigated in the past two decades (For-

tunato and Hric 2016; Fortunato 2010). A community is 

intuitively regarded as a group of node closely connected 

inside the group but rarely making connections with nodes 

outside the group (Girvan and Newman 2002). In real world, 

communities can appear in many forms, for example, social 

circles manually categorized by users in ego networks 

(McAuley and Leskovec 2012), authors from the same insti-

tution in collaboration networks (Newman 2001), proteins 

with the same functionality in biochemical networks (Girvan 

and Newman 2002), etc. The research topic of finding such 

groups is known as community detection.

While classic community detection has a restriction that 

a node belongs to one and only one community, a real-world 

network does not usually appear this way. For example, a 

person in a social network is common to have multiple social 

identities, e.g., an alumna, a family member, a club mem-

ber, a star fan, an employer, etc. Each social identity can be 

defined by a social community, which indicates that these 

communities overlap with each other. Overlapping commu-

nity detection is the emerging topic to discover such overlap-

ping communities, which has become the research trend in 

the last decade.
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Unlike classic community detection and overlapping 

community detection cannot be directly turned into a tradi-

tional graph clustering (i.e., node clustering) problem. Thus, 

many heuristics have been proposed to deal with this task 

(Xie et al. 2013). Matrix factorization (MF), as one of the 

standard framework to solve overlapping community detec-

tion, detects communities from a global view. Taking the 

adjacency matrix A of the given network as input, matrix 

factorization-based methods assign the number of communi-

ties in advance and seek out a node-community membership 

matrix F to match the information revealed by the input as 

accurate as possible. A typical way to achieve it is to use 

an objective function consisting of both A and F. Most of 

previous work (Psorakis et al. 2011; Wang et al. 2011) sim-

ply adopts a value-approximation-based objective function 

which approximates A entry by entry with the product of 

factorized matrices. However, an entry in A is a label rep-

resenting whether there is a link or not between two nodes, 

but an entry in F is a real value representing the weight of a 

node in a community. The value-approximation-based object 

function clearly suffers from the mismatch between a label 

and a real value.

In order to tackle this mismatch issue, we propose a Pref-

erence-based Non-negative Matrix Factorization (PNMF) 

model (Zhang et al. 2015a). This model is established on two 

intuitions: (1) a node is more likely to build links with other 

nodes in the same community than those outside its com-

munity, and (2) a link can reflect the preferences of both 

sides to some extent, e.g., when Alice and Bob are friends, 

it is reasonable to argue that Alice prefers to connect with 

Bob than other strangers and vice versa. These intuitions can 

be regarded as one aspect of homophily in social networks 

(McPherson et al. 2001). Different from previous value-

approximation-based objectives, our model maximizes the 

probability that a node’s preference on neighbors is larger 

than its preference on non-neighbors, which avoids the mis-

match between a real value to a label. Specifically, assuming 

that Ai,j = 1 and A
i,k = 0 , value-approximation-based objec-

tives try to make FiF
T

j
 close to 1 and F

i
F

T

k
 close to 0, while 

our preference-based objective tries to make FiF
T

j
 to be 

larger than F
i
F

T

k
 as much as possible but making no assump-

tion about their values.

However, in the PNMF model, we simply separate 

nodes into two parts, i.e., neighbors and non-neighbors, 

while ignoring the fact that all non-neighbors are not sup-

posed to be treated equally. Inspired by the famous say-

ing “my friend’s friend is also my friend”, we propose a 

Locality-based Non-negative Matrix Factorization (LNMF) 

model (Zhang et al. 2015b) to refine the preference system of 

PNMF model by further splitting the non-neighbors into two 

parts, namely “local non-neighbors” and “distant non-neigh-

bors”. We define a “K-degree local network” to distinguish 

these two kinds of non-neighbors. We modify the objective 

function of PNMF to explicitly reflect our new assumptions: 

(1) neighbors are preferred to local non-neighbors, and (2) 

local non-neighbors are preferred to distant non-neighbors.

We employ projected stochastic gradient descent as our 

learning algorithm and provide efficient sampling strategies 

for both PNMF and LNMF models. To accelerate learning 

process, we implement a parallel paradigm to update param-

eters simultaneously with multiple processors. Experiments 

conducted on various benchmark datasets show that both 

models can outperform state-of-the-art overlapping commu-

nity detection approaches and the LNMF model manages 

to detect communities with better quality than the PNMF 

model. The results provide a strong evidence that preference 

and locality help improve the performance of overlapping 

community detection.

To sum up, in this paper, we present the PNMF 

model (Zhang et al. 2015a) and its generalization, the LNMF 

model (Zhang et al. 2015b), in a systematic way, and design 

a parallel paradigm for both models to speed up parameter 

learning. We conduct comparison in experiments and show 

the improvement of this parallel paradigm over the original 

single process implementation.

Roadmap The rest of this paper is organized as follows. In 

Sect. 2, we review the formal definition of community detec-

tion problem and introduce some most related work in more 

detail. We present our PNMF and its generalized version 

GPNMF model in the scenario of overlapping community 

detection in Sects. 3 and 4, respectively. Our learning tech-

nique with sampling strategies and parameter tuning issues 

is illustrated in Sect. 5. We show our experimental results in 

Sect. 6, followed by the conclusions in Sect. 7.

2  Problem definition

To formally define the problem of community detection, we 

need to have a graph in the first place. We denote the graph 

as G(V, E), where V is the node set and E is the link or edge 

set.

Definition 1 (Community) A community C is a subset of V 

with a certain characteristic.

According to this definition, nodes in a community share 

the same characteristic and thus are more likely to make 

connections with each other. Therefore, a community usu-

ally has stronger internal connections and weaker external 

connection, which is directly proposed as the definition of 

community in Girvan and Newman (2002).

Definition 2 (Community detection) Given a graph G(V, E), 

community detection aims to find a set of communities 
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� = {Ci|Ci ≠ �, Ci ≠ Cj, 1 ≤ i, j ≤ p} , which minimizes an 

objective function f, i.e.,

where p is the number of communities.

While classic community detection requires exhaustive 

and disjoint communities, i.e., C
1

⋃

⋅ ⋅ ⋅

⋃

Cp = V  and 

Ci

⋂

Cj = � for any i ≠ j , overlapping community detection 

has no such constraints. The relaxation makes it more real-

istic for real-world scenarios.

As we mentioned, matrix factorization is a popular class 

of methods to deal with the overlapping community detec-

tion problem. It sets the number of communities in advance 

and then assigns each node to its corresponding communi-

ties based on an optimization objective. We formally define 

matrix factorization approach for overlapping community 

detection as follows.

Definition 3 (Overlapping community detection via matrix 

factorization) Given a graph G(V, E) with its adjacency 

matrix A ∈ {0, 1}n×n , the objective of overlapping com-

munity detection via matrix factorization is to find a node-

community membership matrix F ∈ ℝ
n×p whose entry F

u,c
 

represents the weight of node u ∈ V  in community c ∈ C so 

that F can minimize a loss function l, i.e.,

 where n is the number of nodes, p is the number of commu-

nities and C is the set of communities. In the end, we obtain 

the final set of communities C according to F.

3  Related work

3.1  Overlapping community detection

Massive efforts have been made on the research of commu-

nity detection in the past two decades (Danon et al. 2005; 

Fortunato 2010; Lancichinetti and Fortunato 2009; Lesko-

vec et al. 2010). Since most of classic community detection 

methods decline multiple memberships of a node, overlap-

ping community detection attracts more and more attention 

in the past decade. Many approaches have been proposed 

to solve this specific problem (Xie et al. 2013). Accord-

ing to the key idea, we classify those approaches into local 

approaches and global approaches.

Local approaches employ a divide-and-conquer strategy 

to deal with subgraphs of relatively small size instead of the 

whole network. For example, clique percolation first finds 

(1)arg min
�

f (G,�),

(2)arg min
F

l(A, F),

all the k-cliques in the network and combines those sharing 

k − 1 nodes until no combinations can be made (Kumpula 

et al. 2008; Palla et al. 2005). Demon applies label propaga-

tion algorithm to detect small communities on ego network 

of each node, i.e., a node with its neighbors and the corre-

sponding links, and in the end merge those small communi-

ties with large overlap to be the final communities (Coscia 

et al. 2012). Seed set expansion approaches first picks seed 

nodes with a seeding strategy and runs particular algorithms 

on each seed node to expand the communities around it (Li 

et al. 2018; Whang et al. 2016).

Global approaches, on the other side, assume that com-

munities exist in the first place and aim to assign each node 

to a subset of all communities. Some typical frameworks 

include game theory (Chen et al. 2010), stochastic block 

models (Airoldi et al. 2008; Jin et al. 2015), and matrix 

factorization (MF). Here we would like to review several 

important work in the matrix factorization class. Psorakis 

et al. (2011) is the earliest method which uses the basic 

||A − WH
T|| as its optimization objective. Due to the vague 

social meaning of W and H, Wang et al. (2011) refines 

the objective function to ||A − FF
T|| . Zhang and Yeung 

(2012) extends the matrix factorization model to matrix tri-

factorization model by incorporating a community inter-

action matrix B, which results in a objective function of 

||A − FBF
T|| . Yang and Leskovec (2013) explicitly defines 

the probability of having an edge between u and v by a func-

tion of F
u
 and F

v
 , then generates the likelihood function by 

fitting the original graph. Most recently, Wu et al. (2018) 

introduce hypergraph as regularization where hyperedges 

are created based on structural similarity. Though these 

objective functions are different, they are all based on value-

approximation, which is problematic because the 0 / 1 value 

in adjacency matrix is more like a label than a value.

3.2  Bayesian personalized ranking

Baysian personalized ranking (BPR) Rendle et al. (2009b) is 

originally proposed to rank items for a user in recommender 

systems while only implicit feedback is available. Distin-

guished from explicit feedback like ratings, implicit feed-

back only consists whether a user has labeled an item, e.g., 

click history, purchase history, etc. The basic assumption of 

BPR is that a user prefers labeled items than unlabeled ones. 

While traditional methods replace missing values with zeros 

or negative ones, BPR uses pairwise preference as training 

data to learn the model parameters. Technically, the objec-

tive function maximizes a posterior probability p(Θ| >
u
) 

where Θ is a parameter and >
u
 is a latent preference struc-

ture for user u. BPR has become a widely-used model in 

one-class collaborative filtering and there are several further 

work on top of it. For example, Rendle et al. (2009a) extend 

the original matrix factorization to a tensor factorization to 
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recommend personalized tags for a user given an item. Zhao 

et al. (2014) leverage social connections to improve item 

recommendations by building a new preference system.

We adopt the basic assumption of BPR into the over-

lapping community detection task. To be specific, a node 

prefers its neighbors and its “non-neighbors”. Our objective 

function is to maximize the probability p(>u |F) , where F 

is a nonnegative matrix representing the latent node-com-

munity membership. Moreover, our extension of the basic 

assumption by incorporating locality is similar to that in 

Zhao et al. (2014).

4  A preference‑based non‑negative matrix 
factorization (PNMF) model

In this section, we introduce our PNMF model for overlap-

ping community detection. We start with model assump-

tions, followed by model formulation and parameter learning 

scheme. Particularly, we will briefly illustrate our parallel 

paradigm for parameter learning acceleration.

4.1  Preliminaries

The set of i’s neighbors is denoted by N
+(i) and 

N
−(i) ∶= N

+(i)c�{i} is defined as the “non-neighbors” of i, 

where N+(i)c denotes the complement set of N+(i) . It can be 

inferred that V = N
+(i) ∪ N

−(i) ∪ {i} for every i. Moreover, 

we define a learning set S ∶ V × V × V  by

which consists of all the triples (i, j, k), where j is a neighbor 

of i while k is not.

4.2  Model assumption

Our PNMF model is based on the intuitive idea that two 

nodes are more likely to connect with each other if they 

share more common communities. If we treat a link as the 

consequence of mutual preference, we can safely claim that 

a node has a higher preference on its neighbors than non-

neighbors. Thus, the main assumption of our PNMF model 

can be formally denoted as

where r
u,i

 is the preference of node u on node i, i.e., how 

much u wants to build a link with i, and A
u,i

 is the corre-

sponding entry in adjacency matrix A.

Moreover, we need two more independent assumptions 

before we start model formulation.

1. Node independence. The preference order of each node 

is independent with that of any other node. There will be 

S = {(i, j, k)|i ∈ V , j ∈ N+(i), k ∈ N−(i)},

(3)ru,i ≥ ru,j, if Au,i = 1 and Au,j = 0,

a link between u and v if and only if u prefers to connect 

with v and symmetrically v prefers to connect with u.

2. Pair independence. For a fixed node i, its preference 

between pair (j, k) is independent with its preference 

between pair (u, v) given (j, k) ≠ (u, v) , j, u ∈ N+(i) and 

k, v ∈ N−(i).

4.3  Model formulation

The goal of our PNMF model is to find a node-commu-

nity membership matrix that maximizes the likelihood of 

observed preference order for all the nodes. According to the 

“node independence” assumption, the overall likelihood can 

be denoted as a product of likelihood of each node. Thus, our 

objective function can be written as

where >
i
 denotes the observed preferences for node i accord-

ing to adjacency matrix A and F is the node-community 

membership matrix.

According to our main assumption as well as the “pair 

independence” assumption, the probability of preference 

order for a single node i can be written as

where S is the learning set mentioned in preliminaries and � 

is the indicator function, i.e.,

For a triple (i,  j,  k), if (i, j, k) ∈ S , then (i, k, j) ∉ S . 

Given (j >i k|F) + (k >i j|F) = 1 , it is obvious that 

(j >i k|F)𝛿((i,j,k)∈S) = (1 − (k >i j|F)𝛿((i,k,j)∉S) . Applying 

this to Eq. (5), maximizing (>
i
|F) is equivalent to

Combining Eqs. (4) and (6), our objective function can be 

rewritten as

Now the problem comes to how to define the preference 

of one node on another. A node’s community membership 

vector is represented by the corresponding row of the node-

community membership matrix F. Thus, more community 

two nodes share, more similar their membership vectors 

(4)max

F∈ℝ
n×p

+

∏

i∈V

(>i |F),

(5)

(>i �F) =
∏

(j,k)∈V×V (j >i k�F)𝛿(j∈N+(i))𝛿(k∈N−(i))

⋅(1 − (j >i k�F))1−𝛿(j∈N+(i))𝛿(k∈N−(i))

=
∏

(j,k)∈V×V (j >i k�F)𝛿((i,j,k)∈S)

⋅(1 − (j >i k�F))𝛿((i,j,k)∉S),

�(a) =

{

1 if a is true,

0 else.

(6)
max

F∈ℝ
n×p

+

∏

(j,k)∈V×V

(j >i k|F)𝛿((i,j,k)∈S)
.

(7)
max

F∈ℝ
n×p

+

∏

(i,j,k)∈S

(j >i k|F).
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will be. Considering both our intuition that two nodes have 

a higher probability to be linked if they share more com-

munities and our main assumption that a node has a higher 

preference on its neighbors, we define the probability that 

i prefers j than k given the node-community membership 

matrix as

where � is the sigmoid function �(x) ∶=
1

1+e
−x

.

The sigmoid function can map any real number into 

(0, 1). The probability that i prefers j than k is 0.5 when 

FiF
T

j
= FiF

T

k
 . Additionally, this probability approaches 0 

when FiF
T

j
≪ FiF

T

k
 and approaches 1 when FiF

T

j
≫ FiF

T

k
 . 

These properties precisely satisfy the requirements of our 

model.

For simplicity, we define x̂(i, j) ∶= Fi ⋅ FT

j
 . Equation (8) 

can be rewritten as

Now combining Eqs. (7), (8), and (9), we can construct the 

final objective function of our PNMF model as

where reg(F) is the regularization term we add to avoid 

over-fitting and � is the regularization parameter. We 

choose Frobenius norm as the regularization term, i.e., 

reg(F) =
1

2
||F||2

F
 , because it is differentiable and fits our 

parameter learning process.

(8)(j >i k|F) = 𝜎(Fi ⋅ FT

j
− Fi ⋅ FT

k
),

(9)(j >i k|F) = 𝜎(x̂(i, j) − x̂(i, k)).

(10)

l(F) ∶= maxF∈ℝ
n×p

+
ln
∏

(i,j,k)∈S (j >i k�F) − 𝜆 ⋅ reg(F)

= maxF∈ℝ
n×p

+

∑
(i,j,k)∈S ln(j >i k�F) − 𝜆 ⋅ reg(F)

= maxF∈ℝ
n×p

+

∑
(i,j,k)∈S ln 𝜎(x̂(i, j) − x̂(i, k)) − 𝜆 ⋅ reg(F),

4.4  Parameter learning

We employ the widely used stochastic gradient descent 

(SGD) as our learning method because it is efficient and easy 

to implement. In each updating step, SGD randomly selects 

a triple in the learning set S and updates the corresponding 

parameters Θ by walking along the gradient direction,

where � is the learning rate. Specifically, the derivative of 

Eq. (11) is calculated by

and

where � is the regularization parameter. Regarding the non-

negativity constraint, we exploit the idea of projected gra-

dient methods for non-negative matrix factorization, which 

maps the value of a parameter back to non-negativity (Lin 

2007).

The whole learning process is described in Algorithm 1 and 

the sampling strategy is described in Algorithm 2. Let sample 

size be t. The time complexity of each iteration is O(tp) and 

the space complexity is O(np), where n is the number of nodes 

and p is the number of communities, since we need to save the 

node-community membership matrix into memory.

(11)Θ
t+1

= Θ
t
+ �

�l

�Θ
,

(12)

𝜕l

𝜕Θ
=

𝜕

𝜕Θ
ln 𝜎(x̂(i, j) − x̂(i, k)) − 𝜆

𝜕

𝜕Θ
reg(F)

=
−ex̂(i,k)−x̂(i,j)

1+ex̂(i,k)−x̂(i,j)
⋅

𝜕

𝜕Θ
(x̂(i, j) − x̂(i, k)) − 𝜆Θ

(13)
𝜕

𝜕Θ
(x̂(i, j) − x̂(i, k)) =

⎧
⎪
⎨
⎪
⎩

Fj,t − Fk,t if Θ = Fi,t

Fi,t if Θ = Fj,t

−Fi,t if Θ = Fk,t

0 else

,
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4.5  A parallel paradigm for accelerating parameter 
learning

In Algorithm 1, the execution time for each iteration is pro-

portional to the sample size, and it increases significantly 

when the network scales to hundreds of thousands of nodes. 

To accelerate this learning process, we design a parallel 

paradigm to distribute stochastic gradient descent (SGD) 

tasks with multiple processes.

The most important steps in Algorithm 1 in terms of time 

are Step 5 to Step 10, i.e., triples sampling and parameters 

updating. The idea of our parallel paradigm is pretty straight-

forward. Given n sub-processes, each sub-process conducts 

sampling and updating independently in one iteration. Since 

the node-community membership matrix F costs a lot of 

memory to store, we can not make a copy of it for each pro-

cess. In ideal case, we expect this paradigm to run as n times 

fast as the single process paradigm. However, while sampling 

always works in parallel, the updating part suffers synchro-

nization problem. Here we discuss two possible solutions.

The first solution is to simply use locks. When a sub-

process performs updating on a particular row of the node-

community membership matrix, a lock will be assigned to 

this row to prevent other sub-processes from updating it. 

The correctness of this paradigm can be easily justified since 

two processes only perform updating simultaneously when 

there is no collision. However, if collisions happen a lot, the 

computational efficiency will be massively affected and in 

the worst case, the time cost will be as much as the single 

process paradigm.

The other solution is a lock-free paradigm (Recht et al. 

2011). In this paradigm, each sub-process has read-only 

access to the global node-community membership matrix and 

keeps the updating results on its own memory. After each iter-

ation, the main process performs updating on the global node-

community membership matrix according to the information 

it collects from all sub-processes. To be specific, for each row, 

the changes Δ from all sub-processes are summed and the sum 

is added to this row of the global node-community member-

ship matrix. Thus, in one iteration, each sub-process starts 

from the same node-community membership matrix from the 

previous iteration and is totally independent with each other. 

When no collision happens, this lock-free paradigm is exactly 

the same as the previous paradigm. On the contrast, when 

collisions happen a lot, this paradigm prevents any waiting 

time among sub-processes in one iteration. Although it may 

introduce some computation errors in updating, it still walks 

along the gradient in the right direction. Since we care more 

about the speed of our parallel paradigm, this lock-free one is 

obviously a better choice for implementation.

4.6  Other issues

There are several remaining details to be discussed.

• The number of communities. The nature of matrix factori-

zation needs us to set the number of communities which 

are unknown in advance. A cross-validation paradigm is 

used. In details, we reserve 10% of nodes as validation set 

at first. After learning the node-community membership 

matrix F, we compute the sum of log-likelihood func-

tion for all nodes in validation set via Eq. (17). Since the 

computational cost is huge for cross-validation, only a 

small set of quadruple will be sampled.

• The community membership threshold. Obtaining the 

node-community membership matrix F is still one step 

away from getting the final node-community correspond-

ence. We need to set a threshold � to decide whether a 

community accepts a node. If F
u,c

≥ � , we say that node 

u belongs to community c. According to Eq. (8), we need 

p(j >i k|F) to be closer to 1 than 0 if i prefer j than k. We 

assume that i, j share exactly one community and i, k do 

not share any communities. Thus F
i
F

T

k
= 0 . Due to the 

symmetry of i and j, we have 

 where � is in the range of (0.5, 1). When � is given, we 

can compute � by 

• The convergence criterion. First, we randomly generate a 

subset of triples to be our loss sample and compute initial 

loss on this set according to Eq. (10). After each iteration, 

we need to compute loss again and we stop stochastic 

gradient descent when the absolute difference between 

�(FiF
T

j
− FiF

T

k
) = �(�2 − 0) =

1

1 + e−�
2
= �,

(14)� =

√

− ln

(

1

�
− 1

)

.
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current loss and previous loss is smaller than a very small 

percentage, say � , of initial loss.

5  A locality‑based non‑negative matrix 
factorization (LNMF) model

In this section, we first define the concept of K-degree 

locality and formalize our LNMF model in the scenario of 

community detection. Then we discuss about our parameter 

learning process including sampling strategy.

5.1  Preliminaries

Definition 4 (K-degree local network) Given an undirected 

and unweighted graph G, for a node u ∈ G , u’s K-degree 

local network L
K
(u) is the subgraph consisting of all nodes 

whose shortest path length to u is less than or equal to K.

According to the definition above, L
0
(u) consists of only 

node u, L
1
(u) is the subgraph including node u and all its 

neighbors, L∞(u) is the whole graph, etc. We denote the 

node set of L
t
(u) except u itself as V

t
(u) , where t = 1, 2, ....

Now we further define the terms of “local non-neighbors” 

and “distant non-neighbors”.

Definition 5 (K-degree local non-neighbors) Given a 

K-degree local network L
K
(u) , the set of K-degree local 

non-neighbors S
K
(u) is defined as S

K
(u) ∶= L

K
(u)�L

1
(u) , 

where K ≥ 1.

Definition 6 (K-degree distant non-neighbors) Given a 

K-degree local network L
K
(u) , the set of K-degree distant 

non-neighbors T
K
(u) is defined as T

K
(u) ∶= L∞(u)�L

K
(u) , 

where K ≥ 1.

A summary of notations is shown in Table 1. Four simple 

propositions can be drawn from the above notations.

Proposition 1 V
K
(u) = N

+(u)
⋃

S
K
(u).

Proposition 2 N
+(u)

⋂

S
K
(u) = �.

Proposition 3 N
−(u) = S

K
(u)

⋃

T
K
(u).

Proposition 4 S
K
(u)

⋂

T
K
(u) = �.

5.2  Model assumption

Recall the main assumption of the PNMF model in Eq. (3). 

Incorporating the concept of K-degree local network, we can 

employ K-degree local non-neighbors to enhance the model 

assumption. The new model assumption for our LNMF 

model can be represented as

where ri,j is still the preference of node i on node j. It can 

be interpreted as (1) neighbors are preferred to local non-

neighbors, (2) local non-neighbors are preferred to distant 

non-neighbors. We notice that when K = 1 , S
K
(i) = � and 

T
K
(i) = N

−(i) . In this case, our model assumption degrades 

to the one of the PNMF model. Thus, the LNMF model can 

be viewed as a generalization of the PNMF model.

We also adopt the two independence assumptions listed 

in the Sect. 3.2, i.e., node independence and pair independ-

ence, when formalizing our LNMF model.

5.3  Model formulation

Given model assumptions, we are ready to present our 

LNMF model in a formal way. Since nodes are independent 

of each other, we can consider one node at first.

For a node i, the optimization criterion is to maximize the 

likelihood of preference order which can be represented as a 

product of pairwise preferences, i.e.,

where �(⋅) and �(⋅) are two indicator functions that

and

Recall the four propositions in preliminaries that V
K
(i) and 

N
−(i) can be split into two disjoint sets with different lev-

els of preference. Following the scheme proposed in Ren-

dle et al. (2009b) and Zhao et al. (2014), we can simplify 

Eq. (16) to

(15)ri,j ≥ ri,k, ri,k ≥ ri,d, j ∈ N+(i), k ∈ SK(i), d ∈ TK(i),

(16)

∏
j,k∈VK (i)

[(ri,j ≥ ri,k�F)�(i,j,k)
(1 − (ri,j ≥ ri,k�F))1−�(i,j,k)]⋅∏

k,d∈N−(i) [(ri,k ≥ ri,d�F)�(i,k,d)

(1 − (ri,k ≥ ri,d�F))1−�(i,k,d)],

�(i, j, k) =

{

1 if j ∈ N+(i) and k ∈ SK(i),

0 otherwise

�(i, k, d) =

{

1 if k ∈ S
K
(i) and d ∈ T

K
(i),

0 otherwise
.

Table 1  A summary of notations

Notation Meaning

G(V, E) Graph G with node set V and edge set E

L
K
(u) u’s K-degree local network in G

V
K
(u) Node set of L

K
(u) except u itself

S
K
(u) Node set of u’s K-degree local non-neighbors

T
K
(u) Node set of u’s K-degree distant non-neighbors

N
+(u) Node set of u’s neighbors

N
−(u) Node set of u’s non-neighbors
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Applying the sigmoid function �(x) ∶=
1

1+e
−x

 to interpret 

(ri,j ≥ ri,k|F) , i.e., (ri,j ≥ ri,k|F) = 𝜎(x̂(i, j) − x̂(i, k)) , we 

sum up the log-likelihood functions of all nodes:

where x̂(i, j) ∶= Fi ⋅ FT

j
 can be regarded as the correlation 

between i and j, and �(i) ∶=
|N+(i)|

|T
K
(i)|

 can be regarded the coef-

ficient of locality influence.

In the end, to prevent our model from over-fitting, we 

add a regularization term reg(F) =
1

2
||F||2

F
 , which is the 

Frobenius norm of the node-community membership matrix. 

Thus, the final objective function l is written as

where �
r
 is the regularization coefficient.

5.4  Parameter learning

Parameter learning for the LNMF model is mostly the same 

as that for the PNMF model except that we now need to 

(17)

∑
j∈N+(i),k∈SK (i) (ri,j≥ri,k�F)

�N+(i)�⋅�SK (i)�
+

∑
k∈SK (i),d∈TK (i) (ri,k≥ri,d�F)

�SK (i)�⋅�TK (i)�
.

(18)

∑

i[
∑

j∈N+(i),j∈SK (i)
ln 𝜎(x̂(i, j) − x̂(i, k))+

𝜆(i) ⋅
∑

k∈SK (i),d∈TK (i)
ln 𝜎(x̂(i, k) − x̂(i, d))],

(19)
l(F) =

∑

i[
∑

j∈N+(i),k∈SK (i)
ln 𝜎(x̂(i, j) − x̂(i, k))+

𝜆(i)⋅
∑

k∈SK (i),d∈TK (i)
ln 𝜎(x̂(i, k) − x̂(i, d))] − 𝜆rreg(F),

sample a set of (source, neighbor, local non-neighbor, dis-

tant non-neighbor) quadruples instead of (source, neighbor, 

non-neighbor) triples at each learning step. The learning 

process for the LNMF model is described in Algorithm 3 

and the sampling strategy is described in Algorithm 4. For 

the sampling of k, we need to pre-process the whole graph 

to record a set of local nodes of each i in the graph. Based 

on the fact that N−(i) = S
K
(i)

⋃

T
K
(i) , we keep sampling a 

random node until we get a node d neither in N+(i) nor in 

S
K
(i).

The same parallel paradigm as what we employ in the 

PNMF model is also adopted to accelerate the LNMF model. 

In each iteration, multiple sub-processes sample the quadru-

ples and update the node-community membership matrix F 

stored in the main process in parallel. We expect the parallel 

version to run much faster than the single process version 

as well.

Table 2  Statistics of six Newman’s datasets

V number of nodes, E number of links

Dataset V E

Dolphins 62 159

Les Misérables 77 254

Books about US politics 105 441

Word adjacencies 112 425

American college football 115 613

Coauthorship in network science 1589 2742
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5.5  Discussion on further extension

Our LNMF model can be further generalized by extend-

ing the preference system from three levels to n levels. 

Mathematically, according to the notations in Sect. 4.1, let 

P
K
(u) ∶= L

K
(u)�L

K−1
(u) for K = 1, 2,… , n be the node set 

of a particular preference level of node u and we assume 

that u’s preference on P
i
(u) is larger than its preference on 

Pj(u) if i > j . For model formulation, we only need to modify 

a few spots to make it a more general one. However, our 

learning algorithm is not efficient enough. Specifically, a 

trivial extension of our sampling strategy suffers from two 

problems: (1) the upper limit of K can change for different 

nodes, (2) for a node u, pre-processing the whole graph to 

record node sets of all preference levels is equal to a breath-

first search starting from u, which is too time-consuming 

for large-scale networks. We do not yet have an adequate 

solution to this problem.

6  Experiments

In this section, we compare our PNMF and LNMF models 

with both classic and state-of-the-art overlapping commu-

nity detection approaches on both synthetic and real-world 

datasets. The experimental results are evaluated by three 

metrics, namely modularity, normalized mutual index (NMI) 

and F
1
 score. We also compare our parallel implementation 

with the single process one.

6.1  Data description

For synthetic datasets, we use the Lancichinetti–Fortu-

nato–Radicchi (LFR) benchmark networks (Lancichinetti 

et al. 2008). We generate three binary undirected networks 

of 1000 nodes with different settings.

For real-world datasets, We have six benchmark networks 

collected by Newman1 which have no ground-truth com-

munities and relatively small sizes. Simple statistics of these 

datasets can be found in Table 2. We also have three net-

works with ground-truth communities collected by SNAP2 

(Yang and Leskovec 2015):

• Amazon: a products co-purchasing network based on cus-

tomers who bought this item also bought feature of the 

Amazon website;

• DBLP: a collaboration network of research paper authors 

in computer science;

• YouTube: a social network of a video-sharing website.

These SNAP networks have large sizes so that we can use 

them to test the scalability of our models. The statistics are 

shown in Table 3.

 6.2  Experimental setup

We conduct our experiments on a computer with 32 Xeon 

2.40 GHz CPUs and 128 GB memory.

6.2.1  Baselines

We select both classic and state-of-the-art methods to com-

pare with our models.

• SCP (Kumpula et al. 2008) accelerates the original CP 

method (Palla et al. 2005) in a sequential manner. We set 

k to be 4 or 5 when finding k-cliques.

• LC (Ahn et al. 2010) clusters link instead of node to get 

overlapping communities. We ignore all communities 

with only one or two nodes because they are meaningless.

• Demon (Coscia et al. 2012) uses label propagation algo-

rithm to detect small communities on ego network of each 

node and then merge communities with large overlap.

• BigCLAM (Yang and Leskovec 2013) is also claimed as 

a scalable model. It can search for the best number of 

communities given a range.

6.2.2  Evaluation metrics

We use modularity as the evaluation metric for datasets 

without ground-truth communities, NMI and F
1
 score for 

datasets with ground-truth communities.

• Modularity. The classic modularity is defined as 

 where d(u) is the degree of node u, G
u,v

 is the (u, v) entry 

of the adjacency matrix G, and I
u,v = 1 if u, v are in the 

same community otherwise 0 (Newman 2006). In the 

overlapping scenario, since a node pair may share more 

than one communities, a minor modification is made by 

Q =
1

2|E|
∑

u,v∈V

(Gu,v −
d(u)d(v)

2|E|
)Iu,v,

Table 3  Statistics of three SNAP datasets

V number of nodes, E number of links, C number of ground-truth 

communities, U average number of nodes per community

Dataset V E C U

DBLP 317k 1.0M 2.5k 429.8

Amazon 335k 926k 49k 100.0

YouTube 1.1M 3.0M 30k 9.7

1 http://www-perso nal.umich .edu/~mejn/netda ta/.
2 http://snap.stanf ord.edu/data/.

http://www-personal.umich.edu/%7emejn/netdata/
http://snap.stanford.edu/data/
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replacing I
u,v

 with |C
u
∩ C

v
| , i.e., the number of over-

lapped community between u and v: 

 From the definition, we can see that greater value of 

modularity reveals denser connectivity within the 

detected communities because only linked node pairs 

sharing common communities contribute positively to 

the value. This metric has been frequently used in other 

MF-based works as well  (Yang and Leskovec 2013; 

Zhang and Yeung 2012; Psorakis et al. 2011). As we 

know, modularity has been directly used as an opti-

mization objective in community detection, and those 

approaches are called modularity-based methods (Clauset 

et al. 2004; Duch and Arenas 2005; Guimera et al. 2004; 

Newman 2004). However, when we compare the quality 

of detected communities among non-modularity-based 

models, modularity can still be served as a useful metric.

• NMI. Normalized mutual information is very popular in 

evaluating community detection algorithms (Lancichi-

netti et al. 2009). The mutual information between two 

community partitions A and B is defined as the Kull-

back–Leibler (KL) divergence between joint distribution 

P
AB
(a, b) and the product of two marginal distributions 

P
A
(a)P

B
(b)

 where H(P
A
) = −

∑

a∈A
P

A
(a) log P

A
(a) is the entropy of 

distribution P
A
 and H(P

AB
) is the entropy of the joint dis-

tribution P
AB

 . Here P
A
(a) =

n
a

n
 and P

AB
(a, b) =

n
ab

n
 , where 

n is number of all nodes, n
a
 is the number of nodes in 

community a, and n
ab

 is the number of nodes in both com-

munity a and b. After normalization, NMI is defined as 

 In our experiment, we employ a more conventional nor-

malization corrected for overlapping scenario to avoid 

unintentional behaviors (McDaid et al. 2011).

• F
1 score. F

1
 score is also one of the best measurements 

for datasets with ground-truth communities. The F
1
 score 

of a detected community S
i
 is defined as the harmonic 

mean of precision(S
i
) and recall(S

i
) , where precision(S

i
) 

and recall(S
i
) are defined as 

 and 

Q̂ =
1

2|E|
∑

u,v∈V

(
Gu,v −

d(u)d(v)

2|E|

)
|Cu ∩ Cv|.

I(P
A
, P

B
) = H(P

A
) + H(P

B
) − H(P

AB
),

NMI(P
A
, P

B
) =

2I(P
A
, P

B
)

H(P
A
) + H(P

B
)
.

precision(Si) = max
j

Cj

⋂
Si

�Cj�
,

 where Cj is the node set of a ground-truth community. 

The average F
1
 score for the set of detected communi-

ties S is 

6.2.3  Setting the degree

Recall that if we set K = 1 in K-degree local network, the 

LNMF model will degrade to the PNMF model. We’ve tried 

both K = 2 and 3 on our datasets. The result shows that the 

average number of common communities two nodes in a 

K-degree local network share is about the same. For K ≥ 4 , 

generating K-degree local network costs too much time. 

Thus, we set K = 2 for all experiments, which means only a 

friend’s friends are regarded as local non-neighbors.

6.3  Results

The experiments in Sects. 6.3.1 and  6.3.2 are conducted 

on a single process. The experiments in Sect. 6.3.3 are con-

ducted on multiple processes.

6.3.1  Performance on LFR benchmark

For all synthetic networks, we set number of nodes as 1000, 

average degree as 10, maximum degree as 50, exponent for 

the degree distribution as 2, exponent for the community 

size distribution as 1 and mixing parameter as 0.2. The only 

two variants are number of overlapping nodes (on) and num-

ber of memberships of the overlapping nodes (om). We use 

both NMI and F
1
 score as metrics and the results are shown 

in Tables 4 and  5, respectively. We can see that the PNMF 

model is comparable to other methods while the LNMF 

model outperforms the others.

6.3.2  Performance on real‑world datasets

We set the regularization coefficient to be around 0.001 and 

the convergence parameter � to be 0.001 for all experiments. 

The sample size t is determined according to data size. For 

UMich networks, we set t = m , i.e., the number of links. 

For SNAP networks, we set t = 10
√

n to finish one iteration 

without taking too much time, where n is the number of 

nodes. The maximum times of iteration is set to 100, though 

in fact all datasets converge before reaching the limit.

The experimental results on UMich networks are shown 

in Table 6. We use modularity as the metric since these net-

works have no ground-truth communities. The comparison 

recall(Si) = max
j

Cj

⋂
Si

�Si�
,

F
1
(S) =

1

|S|
∑

S
i
∈S

F(S
i
).
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clearly reveals the dominant superiority of our PNMF and 

LNMF model over baseline methods, especially MF-based 

approaches. Moreover, the LNMF model performs slightly 

better than the PNMF model, which validates the usage of 

locality information.

The experimental results on SNAP networks are shown in 

Table 7. F
1
 score is used as measurement because these data-

sets have ground-truth communities. Here we only compare 

with BigCLAM because all the other baselines can not scale 

to datasets with such sizes. This fact can reflect the scalabil-

ity of our PNMF and LNMF model to some extent. From 

the results we can see that both of our models outperform 

the BigCLAM model overall. Specifically, the LNMF model 

has fair improvement over the PNMF model on both DBLP 

and Amazon datasets. For the YouTube dataset, we conduct 

a data observation and figure out that most of its communi-

ties are quite sparse due to the small size of communities 

and large variety of users. In other words, locality informa-

tion is not useful on the YouTube dataset. This explains the 

reason why the LNMF model fails to have improvement on 

this dataset.

During parameter learning of both PNMF and LNMF 

models, the running time of one iteration is about 1–2 h 

for DBLP and Amazon and about 4–5 h for YouTube. Fig-

ure 1a, b demonstrates the convergence speed of the learning 

algorithm of the PNMF model and LNMF model on SNAP 

datasets, respectively. Each point in the figure represents 

the ratio of current loss to initial loss after a certain number 

of iterations. The results show that both of our models can 

converge within a fair number of iterations. However, we 

notice that the final loss of the LNMF model on the YouTube 

dataset is quite large compared with the other two datasets. 

This observation actually matches our previous discussion 

in Table 7 that locality is possibly not a feature of the You-

Tube dataset.

6.3.3  Performance of parallel paradigm

With the same model parameter setting as single process 

experiments, we test the efficiency of our parallel paradigm 

on SNAP datasets. Figure 2 shows the average training time 

the PNMF model and the LNMF model take for one itera-

tion by using different numbers of processes, respectively. 

The number of total samples per iteration remains the same 

so that we can fairly compare the average time per iteration 

as the number of processes varies. It can be seen from the 

curves that the training time per iteration decreases dramati-

cally at first and turns smooth afterwards as the number of 

Table 4  Experimental results 

on LFR benchmark datasets in 

terms of NMI

RI relative improvement over PNMF

on om SCP LC Demon BigCLAM PNMF LNMF (RI)

40 2 0.593 0.329 0.625 0.502 0.598 0.643 (7.5%)

40 4 0.369 0.318 0.456 0.534 0.464 0.547 (17.9%)

80 2 0.416 0.370 0.441 0.484 0.465 0.501 (7.7%)

Table 5  Experimental results 

on LFR benchmark datasets in 

terms of F
1
 score

on om SCP LC Demon BigCLAM PNMF LNMF (RI)

40 2 0.399 0.316 0.428 0.376 0.417 0.442 (6.0%)

40 4 0.314 0.308 0.380 0.387 0.373 0.411 (10.2%)

80 2 0.329 0.326 0.378 0.364 0.361 0.394 (9.1%)

Table 6  Experimental results 

on UMich datasets in terms of 

modularity

Dataset SCP LC Demon BigCLAM PNMF LNMF (RI)

Dolphins 0.305 0.654 0.680 0.423 0.979 1.086 (10.9%)

Les Misérables 0.307 0.773 0.026 0.540 1.103 1.184 (7.3%)

Books about US politics 0.496 0.851 0.432 0.529 0.864 1.270 (47.0%)

Word adjacencies 0.071 0.271 0.032 0.231 0.668 0.701 (4.9%)

American College football 0.605 0.891 0.540 0.518 1.049 1.235 (17.7%)

Network science 0.729 0.956 0.642 0.503 1.657 2.310 (39.4%)

Table 7  Experimental results on SNAP datasets in terms of F
1
 score

Dataset BigCLAM PNMF LNMF (RI)

DBLP 0.039 0.098 0.107 (9.2%)

Amazon 0.044 0.042 0.048 (11.4%)

YouTube 0.019 0.060 0.057 (− 5.0%)
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processes increases. The significant drop when the num-

ber of processes is less than 10 validates the correctness 

of our parallel paradigm. When the number of processes is 

greater than 10, the training time hardly decreases or even 

increases a bit because the synchronization after each itera-

tion becomes the bottleneck.

As for the quality of detected communities, we do not 

show the comparison but the parallel version achieves nearly 

the same F
1
 score as the single process one regardless of the 

number of processes we use. The loss drops at a similar pace 

as well. To summarize, the parallel paradigm of our learn-

ing algorithm not only decreases the running time, but also 

preserves the the quality of detected communities.
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Fig. 1  Convergence time of learning algorithm on SNAP datasets

Fig. 2  Comparison of single-process implementation with parallel 

implementation in terms of time on SNAP datasets
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7  Conclusion and future work

In this paper, we incorporate both link preference informa-

tion and locality information into overlapping community 

detection. First, we propose a Preference-based Non-neg-

ative Matrix Factorization  (PNMF) model with an intui-

tion that a node prefers its neighbors than its non-neighbors. 

We maximize the likelihood of a preference order for each 

node instead of simply approximating the original adjacency 

matrix in value. Our PNMF model can eliminate the unrea-

sonable indiscriminate penalty on pairs inside and between 

communities. Second, we propose a Locality-based Non-

negative Matrix Factorization (LNMF) model to further 

improve the performance of PNMF model with the help 

of locality. We exploit local area around a node formally 

defined as K-degree local network to enhance the previous 

preference system. In details, we extend a two-level pref-

erence system which only distinguish neighbors and non-

neighbors to a three-level preference system which split the 

set of non-neighbors into local non-neighbors and distant 

non-neighbors. In parameter learning of both models, we 

employ stochastic gradient descent with bootstrap sampling 

to learn the parameters of node-community membership 

matrix. Experiments on several benchmark datasets includ-

ing large ones with ground-truth communities show that 

both models outperform state-of-art approaches under mul-

tiple metrics and the LNMF model achieves better results 

than the PNMF model.

Currently, our work only employs binary networks as 

input, but it can be extended to multiplex networks as well. 

In multiplex networks, all layers share the same set of nodes 

but may have different topology, and inter-layer edges are 

allowed (Boccaletti et al. 2014). For each layer, we can apply 

either PNMF or LNMF model to obtain an objective func-

tion. Since all layers share the same node set, we can simply 

sum up all the objectives functions to learn via stochastic 

gradient descent. However, such extension cannot deal with 

inter-layer edges.
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