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Abstract— Kernel methods have been successfully applied in
various applications. To succeed in these applications, it is crucial
to learn a good kernel representation, whose objective is to
reveal the data similarity precisely. In this paper, we address
the problem of multiple kernel learning (MKL), searching for
the optimal kernel combination weights through maximizing a
generalized performance measure. Most MKL methods employ
the L1-norm simplex constraints on the kernel combination
weights, which therefore involve a sparse but non-smooth solution
for the kernel weights. Despite the success of their efficiency,
they tend to discard informative complementary or orthogonal
base kernels and yield degenerated generalization performance.
Alternatively, imposing the L p-norm ( p > 1) constraint on the
kernel weights will keep all the information in the base kernels.
This leads to non-sparse solutions and brings the risk of being
sensitive to noise and incorporating redundant information.
To tackle these problems, we propose a generalized MKL
(GMKL) model by introducing an elastic-net-type constraint
on the kernel weights. More specifically, it is an MKL model
with a constraint on a linear combination of the L1-norm
and the squared L2-norm on the kernel weights to seek the
optimal kernel combination weights. Therefore, previous MKL
problems based on the L1-norm or the L2-norm constraints
can be regarded as special cases. Furthermore, our GMKL
enjoys the favorable sparsity property on the solution and also
facilitates the grouping effect. Moreover, the optimization of
our GMKL is a convex optimization problem, where a local
solution is the global optimal solution. We further derive a
level method to efficiently solve the optimization problem. A
series of experiments on both synthetic and real-world datasets
have been conducted to show the effectiveness and efficiency of
our GMKL.

Index Terms— Grouping effect, kernel methods, level method,
multiple kernel learning.

I. INTRODUCTION

KERNEL methods such as support vector machines
(SVMs), kernel principal component analysis, etc.
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[1]–[4] have become useful tools in various applications
including, e.g., pattern recognition [3], [4] and bioinformat-
ics [5], [6]. To achieve good performance, one has to define a
good kernel representation. The kernel matrix is specified by
the inner product of data points mapped in a high-dimensional
(possibly infinite dimensional) feature space. The kernel ma-
trix defines the similarity among data and usually has to be
learned from the data.

The problem of learning the optimal kernel matrix has
received much attention in recent studies of machine learn-
ing [3], [7]–[11]. One of the important kernel learning tech-
niques is multiple kernel learning (MKL), which was first
introduced in [12]. In general, MKL searches for a linear
combination of base kernel functions/matrices that maximizes
a generalized performance measure. Typical measures for
MKL include maximum margin classification errors [12],
[13], kernel–target alignment [14], and Fisher discriminative
analysis [15]. MKL methods have been shown to be usually
outperformed by SVM with uniformly weighted kernels [12],
[16]–[18].

Among various MKL methods, the L1-MKL has shown its
efficiency in learning the kernel weights. This method seeks
the kernel weights in a simplex and thus yields a sparse
solution. The sparsity of the selected kernels is helpful in
identifying the appropriate combination of data sources or
different feature subsets in real-world applications, such as
genome fusion [5], splice site detection [19], image annota-
tion [20], etc. However, when a problem contains kernels en-
coding orthogonal or correlation characterizations, the simplex
solution space may discard useful information and thus result
in suboptimal generalization performance [18]. Alternatively,
an MKL with the L2-norm constraint on the kernel weights
is proposed [17] and an MKL with the L p-norm (p > 1)
constraint on the kernel weights is further presented [18] to
improve the L1-MKL method. Unfortunately, these extensions
lead to a non-sparse solution and may be sensitive to noise.
They suffer poor interpretation ability and subsequently can
lead to high computational and storage cost.

To avoid problems of the above two types of approaches, it
is strongly desirable to keep the locally orthogonal information
in the base kernels [16], [18], while at the same time, to
yield a sparse solution. Clearly, one approach toward this
objective is first to cluster the kernel matrices/functions into
groups and then to identify the leading groups. In this way, the
complementary or locally orthogonal information can be kept
and sparse solutions can also be obtained. Similar methods,
e.g., group lasso [21], fussed lasso [22], etc., have been
introduced in statistics. Group lasso aims to find important
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explanatory factors in predicting the response variable, where
each explanatory factor can be represented by a group of de-
rived input variables. In [23], Bach has shown that group lasso
reduces to MKL when the Euclidean norms in group lasso are
replaced by reproducing kernel Hilbert norms. The composite
kernel learning [24] is an example of kernel learning approach
based on the group lasso, where the kernels are hierarchically
penalized. Despite their success, the group composition must
be specified ahead as a prior knowledge. However, in some
real-world problems, the prior knowledge on the composition
of the group structure may not be available before learning.
Moreover, the group penalization often involves high compu-
tation cost due to the projection to the hierarchical structure
of the kernel weights.

To tackle the above problems, we propose a novel gener-
alized multiple kernel learning (GMKL) model. Our model
introduces the regularization with a linear combination of the
L1-norm and the squared L2-norm on the kernel weights,
i.e., a combination of lasso and ridge penalties on the kernel
weights. This model generalizes the L1-MKL and the L2-
MKL methods. More importantly, our GMKL not only en-
joys sparse solution as the L1-MKL but also encourages the
grouping effect on the solution, where similar base kernels
tend to be either in or out of the model altogether without
specifying the group information in advance. Therefore, this
demonstrates distinct advantages over the L1-MKL [12], [25]
or the L2-MKL [17]. Furthermore, compared to group lasso-
based approaches, the proposed approach relaxes the needs for
the prior knowledge of the group structure of base kernels.

In summary, the contributions of this paper include the
following.

1) A novel GMKL model is introduced that generalizes
several previously proposed MKL models, including the
L1-MKL and the L2-MKL. The proposed GMKL model
can overcome the insufficiency of the L1-MKL and the
L2-MKL.

2) Theoretical analysis of the GMKL on why it contains
a sparse solution with the grouping effect is provided.
This guarantees the favorite properties of the GMKL.

3) The GMKL is transformed into a convex-concave op-
timization problem. So the global optimal solution is
guaranteed. An efficient method, i.e., the level method,
is proposed to solve the GMKL and its convergence
rate is provided. This solution enables the GMKL for
its potential on solving large-scale datasets.

4) A series of experiments have been conducted both on
synthetic and real-world datasets to demonstrate the
effectiveness and efficiency of the GMKL.

The rest of this paper is organized as follows. In Sec-
tion III, we outline the MKL framework and introduce the
current research progress on extending this framework. In
Section IV, we describe our proposed GMKL model and
provide theoretical analysis of its properties. In Section V, we
present the solution of the GMKL by the level method and
provide its convergence analysis. In Section VI, we report the
experimental results on both synthetic and real-world datasets.
Finally, we conclude this paper in Section VII.

II. NOTATION

We first introduce some notations here. Bold capital letters,
e.g., K, indicate matrices. Bold small letters, e.g., w and α,
indicate vectors. 1m (0m) is an m-dimensional vector with
each element being 1 (0). Letters in calligraphic or blackboard
bold fonts, e.g., X , R, indicate a set, where R

n denotes an n-
dimensional real space. z ∈ R

n+ means z is an n-dimensional
vector with zi ≥ 0 for i = 1, . . . , n. The operator � denotes
the transpose and 〈x, y〉H defines the inner product of x and
y in the space H. d(H) defines the dimension of the space H.
X � 0 denotes a matrix which is positive semidefinite. The
operator ◦ defines the Hadamard or elementwise product.

III. MKL

In this section, we first introduce the basic concept of kernel
methods. We then present the framework of MKL. Finally, the
L1-MKL and its extensions are further discussed.

A. Preliminaries

In supervised learning, a set of labeled data D = {xi , yi }N
i=1

is given, where xi ∈ X ⊂ R
d for some input space X , and

yi ∈ Y . For binary classification, Y = {±1}. For regression
problems, Y = R. The objective of supervised learning is to
find a hypothesis f ∈ H that can generalize well on unseen
data. This is attained by minimizing the following regularized
risk:

f � = arg min
f

C Remp( f ) + �( f ) (1)

where Remp( f ) = 1/N
∑N

i=1 R( f (xi ), yi ) is the empirical
risk of hypothesis f with respect to a loss function, R :
R × Y → R, and �( f ) is a regularization term. The
positive constant term C is a tradeoff parameter balancing the
regularization and the empirical risk.

For different problems, different (usually convex) loss func-
tions R( f (x), y) are adopted. Typical examples include the
hinge loss for classification in SVMs and ε-insensitive loss
function for support vector regression [26].

In this paper, similar to previous kernel methods [3], the
regularizer �( f ) is 1/2‖w‖2

2, corresponding to the squared
L2-norm on the function weights and the function f takes a
linear form with parameters w and b as

fw,b(x) = w�φ(x) + b, w ∈ R
d(H), b ∈ R (2)

where φ : X → H defines a (possible nonlinear) feature
mapping from the original input space to a Hilbert space H.
The feature mapping is usually implicitly defined by a Mercer
kernel computing the inner product in H as K(xi , x j ) =
〈φ(xi ), φ(x j )〉H [3].

The decision function can then be represented by

f (x) =
N∑

i=1

α�
i K(x, xi) + b� (3)

where the optimal parameter α� and b� are obtained by solving
the dual of the optimization in (1).
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B. MKL Framework

In the MKL framework, there are given Q base kernels.
Each base kernel Kq implicitly represents a feature mapping,
φq : X → Hq , in a reproducing kernel Hilbert space Hq , for
q = 1, . . . , Q. The hypothesis in (2) is then extended to

fŵ,b,θ (x) = ŵ�φθ (x) + b =
Q∑

q=1

√
θqw�

q φq(x) + b (4)

where the weight ŵ is defined as ŵ = (w�
1 , . . . , w�

Q)�, con-

sisting of a
∑Q

q=1 d(Hq)-dimensional vector. The composite
feature mapping is defined as φθ = √

θ1φ1 × · · · × √
θqφQ ,

and θq is the corresponding coefficient, or the kernel weights
of the kernel Kq , and needs to be learned from the data.

The objective of MKL is to seek the optimal kernel com-
bination Kθ = ∑Q

q=1 θqKq by minimizing the following
optimization while imposing the Ivanov regularization on the
kernel weights [12], [18]:

min
ŵ,b,θ≥0

C
N∑

i=1

R( fŵ,b,θ (xi ), yi ) + 1

2
ŵ�ŵ (5)

s.t. J (θ) ≤ 1 (6)

where J (θ) defines a regularizer on θ , which will be elabo-
rated in the following subsections. It is noted that an MKL
framework that seeks optimal kernels in a compact set by
minimizing a regularized functional was also studied in [27]
from a theoretical perspective. Reference [27] mainly studied
the theoretical properties on the square loss with L1-norm
regularization on the functional. This is different from what
we will propose in the next section.

In addition, we should note that the non-convexity of (5)
can be resolved by applying the variable transformation vq :=√

θqwq , as that in [18] and [28]. Hence, the objective in (5)
becomes

min
v̂,b,θ≥0

C
N∑

i=1

R( fv̂,b(xi ), yi ) + 1

2

Q∑

q=1

v�
q vq

θq
(7)

where v̂ = (v�
1 , . . . , v�

Q)� and fv̂,b(x) = ∑Q
q=1 v�

q φq(x) + b.
In (7), we use the convention that (u/0) = 0 if u = 0 and
∞ otherwise. If R is a convex function and the constraint (6)
is convex, then (7) is convex. This result can be referred to
[29, Ch. 3.1.5].

C. L1-MKL

Common approaches in MKL [12], [13], [25] and [30]
impose the L1-norm constraint on the kernel weights for the
kernel selection. That is, J (θ) = ‖θ‖1, or ‖θ‖1 ≤ 1 in the
condition of (6). We refer to this case as the L1-MKL.

In [12], the L1-MKL is first formulated into a semidefinite
programming problem. Due to its effectiveness in learning an
interpretable kernel representation, researchers have proposed
various methods to speed up its computation. Methods such
as second order cone programming [13], semi-infinite linear
programming [30], gradient descent [25], and the extended

level method [31] have been proposed to reduce the time con-
sumption in seeking the optimal kernel combination weights.

An advantage of the L1-MKL constraint on the kernel
combination weights is that it provides the favorite property of
sparsity, where the obtained kernels can be easily interpreted.
However, it may also discard some useful information when
two kernels are orthogonal [16] or yield non-unique solutions
when two kernels are strongly correlated.

D. MKL Extensions

In order to tackle the deficiency of the L1-MKL, researchers
have extended the MKL models. They include the following.

1) The MKL model with the L2-norm constraint on the
kernel weights [17], i.e., J (θ) = ‖θ‖2

2, or ‖θ‖2
2 ≤ 1

for the condition (6). Similarly, a multiple kernel ridge
regression is proposed in [16], where the kernel weights
is constrained in a ball around a positive mean.

2) The MKL with the L p-norm (p > 1) constraint on the
kernel weights [18], [32]. This corresponds to J (θ) =
‖θ‖p

p , or ‖θ‖p
p ≤ 1 in (6). The L p-MKL is more

general and includes the L2-MKL as its special case.
An interleaved optimization strategy with second order
approximation is proposed to solved the L p-MKL [18].

3) The MKL model with mixed norm regularization on
the kernel weights [33]. This model imposes a mixed
norm regularization on the kernel weights, which yields
structure sparsity on the solutions.

4) Other MKL extensions. These models reformulate the
MKL problem by imposing mixed norm regularization
on the function weights [34], or by introducing the
elastic net-type regularization, i.e., a linear combination
of the lasso penalty and the ridge penalty on the function
weights [35]. These formulations correspond to modify-
ing the regularizer to a block norm, i.e., a norm of the
vector containing the individual kernel norms [13], [36].
Now, we discuss several MKL methods incorporating
the elastic net-type regularization that may be similar to
that in this paper. Longworth and Gales [37] included the
squared L2-norm regularization on the kernel weights
while keeping the L1-norm simplex constraint on the
kernel weights. Shawe-Taylor [38] proposed a linear
combination of the square of the sum of L1-norms and
the squared L2-norm on the function weights to solve
the novelty detection problem. In [35], an MKL model
added the linear combination of the lasso penalty and the
ridge penalty on the function weights, which includes the
L1-MKL and the uniformly weighted MKL (UW-MKL)
as its special cases. However, they lack the analysis
on the properties of the models, e.g., the grouping
effect.

Among the above methods, the L1-MKL yields a sparse
solution, but cannot capture the complementary information
on the kernels. For the L p-MKL ( p > 1) models, they will
yield non-sparse solutions. As indicated in [39], in the L p

(p ≥ 1) penalty family, only the lasso penalty (p = 1) can
produce sparse solutions. The non-sparsity of the solution
has the weaknesses in interpreting the model and may be
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sensitive to the noise. In the following section, we will present
our proposed GMKL model to tackle the above insufficiency
problem of previously proposed MKL models.

IV. GMKL

In this section, we first introduce the formulation of the
GMKL model. We then provide theoretical analysis on the
properties of the GMKL model, i.e., explaining why it can
produce sparse solutions while encouraging the grouping
effect.

A. Formulation and Duality

Motivated by the fact that the L1-MKL produces sparse
solutions and the L p-MKL ( p > 1) can capture correlations
among kernels, we propose a GMKL model incorporating a
linear combined norm on the kernel weights as follows:

min
θ∈�,v̂,b

C
N∑

i=1

R( fv̂,b(xi ), yi ) + 1

2

Q∑

q=1

v�
q vq

θq
(8)

where, more specially, we set p = 2, and the domain of θ is

� = {θ ∈ R
Q
+ : v‖θ‖1 + (1 − v)‖θ‖2

2 ≤ 1} (9)

where the parameter v, 0 ≤ v ≤ 1, is a nonnegative constant
to balance the two terms in the constraint. For this MKL
extension, we have several remarks.

1) There are two main reasons that we adopt this elastic
net-type regularization, i.e., a linear combination of
the L1-norm and the squared L2-norm on the kernel
weights. One is due to computational consideration.
Through this setting, the optimization in (8) is a convex
optimization problem given that the loss R is con-
vex. More specifically, it is a quadratically constrained
quadratic programming problem when the hinge loss or
the ε-insensitive loss is used. The second reason is that,
as discussed in Section IV-B, our GMKL enjoys the
sparsity property as the L1-MKL and encourages the
grouping effect on the kernel weights similar to that of
the elastic net on the model weights.

2) Our formulation generalizes previously proposed L1-
MKL and the L2-MKL models. When v = 0, the
constraint reduces to a ridge penalty on θ and the model
is equivalent to the L2-MKL [17]. When v = 1, the
constraint is a lasso constraint and the model is the L1-
MKL [12]. This motivates us to name our model as
GMKL. When v ∈ (0, 1), the constraint contains the
characteristics of both the lasso and ridge penalty and
the model includes several favorite properties, which will
be introduced in Section IV-B.

3) The constraint can be further extended by combining the
L1-norm and the L p-norm (p > 1) on the kernel weights
and therefore generalizes previously proposed related
MKL methods [18], [32]. When v ∈ (0, 1), the extended
constraint is strictly convex on θ and contains similar
properties of our GMKL formulation, see Section IV-B
for more details.

4) Our proposed GMKL also generalizes the L2-norm
regularization proposed in [16]. A main difference is
that the L2-norm regularization in [16] introduces an
L2-ball with a predefined positive ball center. Actually,
predefining a ball center is not necessary in practical ap-
plications and is not required in our model. Furthermore,
the formulation in [16] lacks the properties of sparsity
and the grouping effect.

Now, we derive the dual form of the optimization in (8) with
respect to ŵ, b by fixing θ . Here, we consider the classification
problem where the hinge loss is adopted. Hence, the primal
problem of GMKL is equivalent to

min
θ∈�

min
v̂,b,ξ

C
N∑

i=1

ξi + 1

2

Q∑

q=1

v�
q vq

θq

s.t. yi

⎛

⎝
Q∑

q=1

v�
q φq(xi ) + b

⎞

⎠ ≥ 1 − ξi , ξi ≥ 0.

Following the standard Lagrange multipliers method [26],
[40], we construct the corresponding Lagrangian functional
L(v̂, b, ξ ,α, γ ) of the minimization on the primal variables
with fixed θ as

L(·) = C
N∑

i=1

ξi + 1

2

Q∑

q=1

v�
q vq

θq
−

N∑

i=1

γiξi

−
N∑

i=1

αi

⎛

⎝yi

⎛

⎝
Q∑

q=1

v�
q φq(xi ) + b

⎞

⎠ − 1 + ξi

⎞

⎠ (10)

where the multipliers satisfy α ≥ 0 and γ ≥ 0.
Taking the partial derivative of the Lagrangian function with

respect to the corresponding primal variables and setting them
to zeros, we obtain

∂L
∂vq

= vq −θq

N∑

i=1

αi yiφq(xi )=0, q = 1, . . . , Q (11)

∂L
∂b

=
N∑

i=1

αi yi = 0 (12)

∂L
∂ξi

= C − αi − γi = 0, i = 1, . . . , N. (13)

From (11), we can obtain the dual form of (8) as follows:

min
θ∈�

max
α∈A

D(θ ,α) (14)

where the objective function is defined as

D(θ ,α) = 1�
N α − 1

2
(α ◦ y)�

⎛

⎝
Q∑

q=1

θqKq

⎞

⎠ (α ◦ y). (15)

Correspondingly, constraints (12) and (13) with the condi-
tions of α ≥ 0 and γ ≥ 0 yield the domain of α defined in
the set of A as

A = {α ∈ R
N+, α�y = 0, α ≤ C1N }. (16)

The formulation in (14) is a convex-concave problem and
its optimal solution is guaranteed to be the global optimal
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solution. Wrapping-based methods [25], [30] have been pro-
posed to solve this kind of optimization problems. Especially,
the maximization problem in (14) corresponds to a standard
dual form of SVMs. Currently, solvers for SVMs are very
efficient [41], [42] and can be directly adopted in our model.

B. Properties

Here, we present several properties for our GMKL model.
First, we prove that the constraint on θ is tight when the
optimal solution is obtained. Second, we provide a theorem
to show that the solution of the GMKL is sparse with the
grouping effect. Third, we prove that our GMKL model
introduces the grouping effect when two kernels are strongly
correlated.

To simplify the analysis, we first define the optimal (θ�,α�)
as follows.

Definition 1: (θ�,α�) is the optimal solution of (14). That
is

θ� = arg min
θ∈�

D(θ ,α�) α� = arg max
α∈A

D(θ�,α).

Now, the following theorem shows that the optimal solution
in (14) attains when the constraint of θ is tight.

Theorem 1: Suppose the kernel matrices K1, . . . , KQ are
positive semidefinite. Then the condition v‖θ�‖1 + (1 −
v)‖θ �‖2

2 = 1 always holds.
Proof: First, we have the following two observations about

the function D(θ ,α�).

1) The function D(θq,α�) is a monotonically but not
strictly decreasing function on θq , with fixed α�. It is
because D(θq ,α�) is a linear function on θq , with each
coefficient being nonpositive. That is, D(θq ,α�) = uqθq ,
where the qth coefficient on θq is uq = −(1/2)(α� ◦
y)�Kq(α� ◦ y). Obviously, uq is nonpositive since the
kernel matrix Kq is positive semidefinite.

2) The constraint function v‖θ‖1 + (1 − v)‖θ‖2
2 is elemen-

twise and it is an increasing function on each element
of θ , or θq , with θq ≥ 0, for q = 1, . . . , Q.

Hence, we can conclude that the optimal θ� should be
attained when the constraint of (9) is tight. Otherwise, we
have the following two cases.

1) If there is an element, e.g., q , with uq < 0, we can
select θq and increase its value to make (9) tight. This
again will further reduce the function value of D(θ ,α�),
which is a better solution of (14), from the above first
observation.

2) For all q , uq = 0, we can select any θq and increase its
value to make (9) tight, while keeping the same optimal
objective function value.

We now turn to study the grouping effect of our GMKL.
First, we note that the grouping effect is only derived from
θ and it is not related to the variable α. By the Lagrange
multiplier method [29], we know that (14) is equivalent to the
following minimization problem given the fixed α� for some
λ ≥0 :

min
θ≥0

D(θ ,α�) + λ
(
v‖θ‖1 + (1 − v)‖θ‖2

2

)
. (17)

We then have the following theorem stating one aspect of
the grouping effect.

Theorem 2: Suppose λ > 0, Ki = K j , i, j ∈ {1, . . . , Q},
and θ� is a minimizer of (17); then we have:

1) if v �= 1, then

θ�
q =max

{

0,
1

2(1 − v)

(
1

2λ
(α� ◦ y)�Kq(α� ◦ y) − v

)}

(18)

and therefore θ�
i = θ�

j ;

2) if v = 1, then θ̃ is another minimizer of (17) with

θ̃q =
⎧
⎨

⎩

θ�
q if q �= i and q �= j

(θ�
i + θ�

j ) · σ if q = i
(θ�

i + θ�
j ) · (1 − σ) if q = j

for any σ ∈ [0, 1].
A detailed proof is given in Appendix I. There are some

remarks about the above theorem.

1) Theorem 2 provides an explicit solution of θ in (18).
This is different from that of the elastic net in
[39, Lemma 2].

2) Theorem 2 indicates that our GMKL can achieve the
grouping effect and that the L1-MKL does not have a
unique solution when two kernels are the same. This
analysis can be also extended to other regularizers with
strictly convex property.

3) Equation (18) also indicates that our GMKL can
yield sparse solutions when the second term in the
bracket of (18) is less than 0. On the contrary, by
setting v = 0 into (18), we can obtain θ�

q =
1/(2(1 − v))

(
(1/2)λ(α� ◦ y)�Kq(α� ◦ y)

)
for the L2-

MKL. This also shows that the L2-MKL yields the
grouping effect, but usually yields non-sparse solutions
on the kernel weights.

We further analyze the grouping effect when the given
kernels are strongly correlated. Here, we define a ratio for
two kernels to indicate the correlation of two kernels.

Definition 2: Let ri j define the ratio of two kernels on given
α� as

ri j = (α� ◦ y)�Ki (α
� ◦ y)

(α� ◦ y)�K j (α� ◦ y)
.

If ri j ≈ 1, we say Ki and K j are strongly correlated. Now,
we can easily obtain the following theorem.

Theorem 3: Given two kernels Ki and K j , if v �= 1, as ri j

approaches 1, we have θ�
i approaches θ�

j .
Proof: Since v �= 1, from (18) in Theorem 2, we note

that θ�
q can be simplified as max{0, tq}, which is a continuous

function of tq , where tq = 1/(2(1 − v))(1/(2λ)(α� ◦ y)�
Kq(α� ◦ y) − v). Hence, we have

|θ�
i − θ�

j | ≤ |ti − t j |, for i, j = 1, . . . , Q. (19)

This inequality can be obtained by analyzing the following
several cases.

1) When θ�
i and θ�

j are both positive, we have ti , t j > 0
and attain the equality in (19).

2) When θ�
i > 0 and θ�

j = 0, we have |θ�
i − θ�

j | = |ti | ≤
|ti−t j |. The inequality is due to the condition that t j ≤ 0.
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TABLE I

COMPARISON BETWEEN GMKL AND OTHER MODELS

L1-MKL L2-MKL GMKL Lasso Elastic net Group Lasso

Sparsity � × � � � �
Nonlinearity � � � × × ×

Grouping × � � × � ×

For the case of θ�
i = 0 and θ�

j > 0, we can derive the
result similarly.

3) When θ�
i = θ�

j = 0, the inequality in (19) is satisfied
for all ti and t j .

From (19), we have

|θ�
i − θ�

j | ≤ 1

2(1 − v)

1

2λ
(α� ◦ y)�K j (α

� ◦ y)|ri j − 1|. (20)

Hence, as ri j ≈ 1, we have |θ�
i − θ�

j | ≈ 0. That is, θ�
i

approaches θ�
j .

From (20), we note that the difference of two weights, i.e.,
|θ�

i − θ�
j |, is proportional to the ratio |ri j − 1|, and inversely

proportional to 2(1−v). The ratio indicates that, if two kernels
are strongly correlated, the weights are nearly the same. The
inversely proportional value 2(1−v) indicates that a smaller v
will yield closer solutions for the kernel weights. Meanwhile,
we should note that the coefficient 2 is introduced due to the
use of the L2-norm on the kernel weights. If the L p-norm is
adopted, the ratio is inversely related to p. As p increases,
e.g., approaches to infinity, it will lead to the same weights,
i.e., UW-MKL, which is the same as the result in previous
MKL models.

In summary, our GMKL contains the following properties.

1) In view of (18), we can see that out GMKL imposes the
sparsity on the coefficients of the model. This surpasses
those non-sparse MKL models [17], [18], which may be
prone to the noise and have a larger computation/storage
cost.

2) Theorems 2 and 3 state that the GMKL can provide the
grouping effect, which retains more useful information
from the data than the L1-MKL.

3) Nonlinearity is embedded in the formulation of (8) and
is represented by the kernels. Our GMKL can therefore
capture more information of the data than those statistic
models, e.g., the lasso [43] and the elastic net [39].

Table I summarizes the above arguments.

V. OPTIMIZING THE GMKL

Due to the efficiency in solving SVMs, the wrapping-based
methods have been adopted to solve the MKL models, e.g.,
[10], [18], [25], [30], [31], and [44]. In the wrapping-based
methods, the first step is to seek the optimal ŵ, b or the dual
variable α given a fixed θ by an SVM solver. The second
step is to update the kernel weights θ to further decrease the
objective value of (5) with fixed primal variables ŵ and b
or fixed dual variable α. Many previously proposed MKL
methods try to speed up the model in the second step. For
example, a gradient method is proposed in [25] and [44], an

semi-infinite linear program method is applied in [18] and
[30], and the level method is introduced in [31].

Among these optimization methods, the level method, which
is a cutting plane method derived from the family of bundle
methods [45], has shown better success in solving machine
learning and kernel learning methods. For example, it has been
introduced to efficiently solve regularized risk minimization
problems [46], the L1-MKL [31], and neighborhood kernel
learning [10]. Hence, in this paper, we adopt the level method
to solve our GMKL of (14).

A. GMKL by the Level Method

The key part of the level method is to construct the corre-
sponding lower bound and the upper bound of the objective
function. First, we know that D(θ ,α) in (14) is convex on θ

and concave on α. According to von Neumann Lemma [47],
for any optimal solution (θ�,α�), we have

D(θ�,α) ≤ max
α∈A

D(θ�,α) = D(θ�,α�)

= min
θ∈�

D(θ ,α�) ≤ D(θ ,α�). (21)

The above property indicates that our model can easily
obtain the corresponding lower bound and the upper bound.

Suppose {(θ i ,αi )}t
i=1 denote the solutions of (14) obtained

in the last t iterations. We define the corresponding lower
bound Dt and the corresponding upper bound Dt

as follows:

Dt = min
θ∈�

ht (θ), Dt = min
1≤i≤t

D(θ i ,αi ) (22)

where ht (θ) corresponds to a cutting plane as follows:

ht (θ) = max
1≤i≤t

D(θ ,αi ). (23)

It is noted that the lower bound is the minimum value at the
cutting plane and the upper bound is the minimum objective
value attained at previous steps.

We can then define the level set as follows:

Lt =
{
θ ∈ � : ht (θ) ≤ V t = τDt + (1 − τ )Dt = Dt + τ�t

}

(24)
where τ ∈ (0, 1) is a given constant controlling the tradeoff of
two bounds. The level set specifies the set of solution where
the objective is bounded by the lower bound and the upper
bound. The gap �t between the upper bound and the lower
bound at each step is defined as

�t = Dt − Dt (25)

and measures the suboptimality for the solution (θ t ,αt ) at
each step.

The final step in the level method is to project θ t onto the
level set Lt to calculate a new solution θ t+1. That is, we obtain
θ t+1 by solving the following quadratic optimization problem:

min
θ∈�

‖θ − θ t‖2
2 (26)

s.t. D(θ ,αi ) ≤ V t , i = 1, . . . , t .

The intuition of the projection is to make the solution satisfy
the level set conditions in a faster way and to require θ ’s in
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Algorithm 1 Level method for the GMKL
Given: predefined tolerant error δ > 0.
Initialization: Let t = 0 and θ0 = c1Q , where c is the
positive root of the quadratic equation: (1 − v)c2 + vc
− (1/Q) = 0.
repeat
1) Solve the dual problem of the SVM with

∑Q
q=1 θ t

qKq

to get the optimal solution, α.
2) Construct the cutting plane model, ht (θ), in (23).
3) Calculate the lower bound Dt and the upper bound Dt

in (22), and the gap �t in (25).
4) Compute the projection of θ t onto the level set Lt by

solving the optimization problem in (26).
5) Update t = t + 1.
until �t ≤ δ.

two consecutive steps close to each other avoiding oscillation
on the solution.

The following pseudocode presents how to solve the GMKL
by the level method.

Remarks: Two points about Algorithm 1 need to be empha-
sized.

1) Initialization of θ : We set θ0 uniformly at each element,
i.e., θ0 = c1Q , where c > 0. From Theorem 1, we must
have v · Q · c + (1 − v) · Q · c2 = 1. This requires
seeking the positive root of the quadratic equation as
that in Algorithm 1.

2) In terms of computation, the main part of our GMKL
is that we have introduced a quadratic constraint in (9).
This may require a bit more computation when com-
pared with the L1-MKL approach. In Algorithm 1, there
are two steps involving the quadratic constraint. They
are the step 2 in Algorithm 1, which constructs the
cutting plane in (23) by solving a linear program with
a quadratic constraint, and the step 4 in Algorithm 1,
which projects θ to the level set by solving a quadratic
programming with a quadratic constraint in (26). We
believe some warm start methods, e.g., solving the cor-
responding problems with previously obtained optimal
value [48], can be adopted to speed up the seeking of
the next optimal value.

B. Convergence Analysis

Algorithm 1 is terminated when the gap between the two
bounds is small. To analyze the convergence of the level
method on our GMKL model, we first have the following
theorem to state that, in each iteration, the gap is nonincreasing
and the difference between the optimal objective value and the
attained objective value is bounded by the gap.

Theorem 4: We have the following properties on the gap,
�i , i = 1, . . . , t :

1) �i ≥ 0;
2) �1 ≥ �2 ≥ . . . ≥ �t ;
3) |D(θ i ,αi ) − D(θ�,α�)| ≤ �t .
We then have the following theorem, which provides the

convergence rate of Algorithm 1.

TABLE II

SUMMARY OF THE SYNTHETIC AND UCI DATASETS

Type Dataset
Training Test Dim Kernel

(N ) (d) (Q)

Synthetic
Toy 1 150 150 20 273

Toy 2 150 150 20 273

UCI

Breast 341 342 10 143

Heart 135 135 13 182

Ionosphere 175 176 33 442

Liver 172 173 6 91

Pima 384 384 8 117

Sonar 104 104 60 793

Wdbc 284 285 30 403

Wpbc 99 99 33 442

Theorem 5: For any δ > 0, Algorithm 1 converges to the
desired precision after T steps

T ≥ 2c(τ )V 2

δ2 (27)

where c(τ ) = 1/((1 − τ )2τ (2 − τ )), V is a term calculated by
(1/2)NC2√Q max1≤q≤Q �max(Kq), and �max(Kq) defines
the maximum eigenvalue of matrix Kq .

We put the proof of the Theorems 4 and 5 in Appendixes II
and III, respectively. It is noted that the convergence rate of
the level method is O(δ−2). According to [45], empirically, a
better convergence rate O(N log(1/δ)) is observed.

VI. EXPERIMENTS

We conduct a series of experiments on evaluating the
proposed GMKL in contrast with the L1-MKL, the L2-MKL,
and the UW-MKL with three objectives. The first objective is
to show how our GMKL model can select important kernels in
group manners. This is illustrated through two toy examples.
The second objective is to show the efficiency of our GMKL
model solved by the level method. This is verified by eight
datasets from the UCI repository [49]. The third objective is
to show that the GMKL can improve the performance on
predicting the proteins subcellular localization by different
kinds of kernels [28]. A summary of the three types of data,
including 13 datasets, is listed in Tables II and III, respectively.
Detailed descriptions of the data are in Sections VI-B to VI-D,
respectively.

A. Experimental Setup

In the experiment, for all compared four MKL models, the
regularization parameter C is tuned by cross validation on
one run of the training data. The tradeoff parameter v for the
GMKL is set to 0.5 for simplicity.

The L1-MKL is solved by the SimpleMKL toolbox [25].
The L2-MKL is solved by our GMKL.1 with the parameter
v = 0. The optimization on constructing the cutting plane
of (23) and seeking the projection of (26) in the level method

1Our GMKL toolbox can be downloaded at http://appsrv.cse.cuhk.edu.hk/
∼hqyang/doku.php?id=gmkl.
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TABLE III

SUMMARY OF THE PROTEINS SUBCELLULAR LOCALIZATION DATASETS

Dataset Classes Training (N ) Test Kernel (Q)

Plant 4 470 470 69

Psort+ 4 270 271 69

Psort− 5 722 722 69

are solved by a standard toolbox, Mosek.2 The algorithm
parameter τ of the level method is set to 0.9 initially and
increased to 0.99 when the ratio �t/V t is less than 0.01, since
a larger τ accelerates the projection when the solution is close
to the optimal one. All MKL models use the same SVM solver
with default settings. Since the UW-MKL is solved by the
standard SVM solver once, we do not report its time cost in
the experiments. To test the efficiency of our GMKL, we adopt
the multiple stopping criteria similar to that in [25], the number
of iterations exceeds 500, or the difference of θ in consecutive
step is lower than 0.001. For the L1-MKL, additional stopping
criterion, i.e., the duality gap being lower than 0.01, is set as
that in [25].

B. Toy Examples

In designing the synthetic datasets, we have the following
expectations: 1) data containing nonlinearity on the features,
and 2) data being embedded with redundant features while
some features playing the same roles. We then generate
two 20-D toy examples by additive models motivated by an
example in [50].

1) In example 1, the data are generated by

Yi = sign

⎛

⎝
3∑

j=1

f1(xi j ) + εi

⎞

⎠ (28)

where sign (·) is determined by the sign of the value
in the bracket, x is uniformly distributed in [0, 1]N×20,
f1(a) = −2 sin(2a) + 1 − cos(2), and the noise εi ∼
N (0, 1) is a Gaussian noise. Hence, the data contain 17
irrelevant features.

2) In example 2, the data are generated by

Yi = sign

⎛

⎝
3∑

j=1

f1(xi j ) +
6∑

j=4

f2(xi j )

+
9∑

j=7

f3(xi j ) +
12∑

j=10

f4(xi j ) + εi

⎞

⎠ (29)

where there are four kinds of mapping f1, f2, f3, and
f4. f1 is the same as Example 1, f2(a) = a2 − (1/3),
f3(a) = a−(1/2), and f4(a) = e−a +e−1−1. For x and
εi , they are the same as Example 1. The output Yi is de-
termined by the corresponding features, from 1 to 12, of
xi which are mapped by f1, f2, f3, and f4, respectively.
The data therefore contain eight irrelevant features.

2Available at: http://www.mosek.com.

TABLE IV

AVERAGE PERFORMANCE MEASURED BY OUR GMKL, THE L1-MKL,

THE L2-MKL, THE SPICYMKL, AND THE UW-MKL ALGORITHMS ON

TOY EXAMPLES

Dataset Method Accuracy Kernel Times (s)

Toy 1

GMKL 70.4 ± 3.3 36.8 ± 5.0 2.9 ± 0.2

L1-MKL 69.2 ± 4.5 22.1 ± 5.2 4.4 ± 1.2

L2-MKL 68.2 ± 3.0 273 2.9 ± 0.4

UW-MKL 66.3 ± 5.3 273 –

SpicyMKL 70.4 ± 4.0 106.7 ± 4.5 1.5 ± 0.2

Toy 2

GMKL 72.9 ± 3.2 43.4 ± 7.1 2.8 ± 0.1

L1-MKL 72.3 ± 3.1 30.2 ± 8.1 4.9 ± 1.3

L2-MKL 71.9 ± 3.6 273 2.9 ± 0.1

UW-MKL 71.6 ± 4.0 273 –

SpicyMKL 72.7 ± 3.6 119.8 ± 4.7 1.8 ± 0.4

Another main difference between Example 2 and Exam-
ple 1 is that the output in Example 2 is dominated by
more different function mappings, including polynomial
(linear) mapping and exponential function mapping.

It is noted that by the above generation scheme, the data
have the following properties.

1) The outputs (labels) of the data are dominated by only
some features. The corresponding feature is mapped by
a linear function f3, or nonlinear functions f1, f2, and
f4.

2) Each mapping fi , i = 1, 2, 3, 4, acts on three features
equally, which implicitly incorporates grouping effect on
those features.

3) The mean of the output is zero since each mapping is
with zero mean on the corresponding feature.

In the experiment, we randomly sample 300 instances,
where 150 data are used for training and other 150 data are
used for test. Following the settings of [25], we construct the
base kernel matrices as follows.

1) Gaussian kernels with 10 different widths ({2−3,
2−2, . . . , 26}) on all features and on each single feature.

2) Polynomial kernels of degree 1 to 3 on all features and
on each single feature.

Each base kernel matrix is further normalized to unit trace
as [25]. Therefore, we build 273 kernels for the toy examples.

Table IV reports the average accuracy, the number of
selected kernels, and executed time, after repeating the algo-
rithms 20 times. Our GMKL obtains significant improvement
on the accuracy against the L1-MKL and the L2-MKL with
95% confidence level on the paired t-test. The results show
that our GMKL can utilize the grouping structure information
embedded in the data sufficiently. Table IV also shows that
both the L2-MKL and the UW-MKL achieve worse accuracies
than the sparse MKL models. This verifies that the non-sparse
MKL models are prone to the noise. In terms of the number
of selected kernels, our GMKL selects more kernels, about
1.5 times of that selected by the L1-MKL, while the L2-
MKL selects all kernels (see Fig. 1 for more details). The
computation cost of our GMKL and the L2-MKL is nearly
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Fig. 1. Coefficients of kernel weights learned by the L1-MKL, the GMKL, and the L2-MKL on the Toy 1 example and the Toy 2 example, respectively.
The L1-MKL selects few kernels and discards some useful information. The L2-MKL selects all kernels and is prone to the noise. Meanwhile, the GMKL
selects suitable kernels with the grouping effect, see detailed description in the text. (a) L1-MKL on Toy 1. (b) GMKL on Toy 1. (c) L2-MKL on Toy 1.
(d) L1-MKL on Toy 2. (e) GMKL on Toy 2. (f) L2-MKL on Toy 2.
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Fig. 2. Accuracy and the number of selected kernels by the GMKL with
respect to v on the toy datasets. The best accuracy for the Toy 1 dataset is
achieved when v = 0.4 and it is achieved for the Toy 2 dataset when v = 0.6.
The number of selected kernels decreases as v increases (see text for more
descriptions). (a) Accuracy versus v . (b) Number of selected kernels versus v .

the same, and they cost less time than that of the L1-MKL.
This is because the level method consumes less outer iterations
than the SimpleMKL [25] used. In addition, we also report the
results of the SpicyMKL [35]. (Both regularization parameters
are selected in [10−3, 10−2, 10−1, 1, 102, and 103]). The re-
sults show that the SpicyMKL also achieves similar accuracy
to our GMKL, but it usually selects more kernels than our
GMKL.

To show whether the grouping effect is achieved, i.e., similar
kernels attain close kernel coefficient values, we plot the
average coefficients obtained by the L1-MKL, the GMKL,
and the L2-MKL in Fig. 1. The kernel coefficients are shown
in the following order: the Gaussian kernels on all features;
the polynomial kernels on all features; the Gaussian kernels
on each single feature; the polynomial kernels on each single
feature. In Example 1, the output response is dominated by
three features which are mapped by a linear combination
of sine and cosine functions. Hence, Gaussian kernels on
these three features can form similar kernels. Fig. 1 clearly
shows that our GMKL attains close coefficient values on
some Gaussian kernels on all features and on the designed
three features, i.e., forming the grouping effect on the kernels.
Similarly, the kernel coefficients on the toy dataset 2 also
reveal the same property. Hence, Fig. 1 shows the grouping
effect and the sparsity of our GMKL. The results in the figures
refer to the results in the fourth column of the Table IV.

Fig. 1 further shows the average coefficients obtained by
the L1-MKL, the GMKL, and the L2-MKL. The figure again
shows the grouping effect and the sparsity of our GMKL. The

results in the figures refer to the results in the fourth column
of the Table IV.

We further test the effect of v on the accuracy and the
number of selected kernels for the toy datasets. We vary v
from 0 to 1 with an incremental step of 0.1 and show the
results in Fig. 2. Actually, Fig. 2 includes the results reported
in Table IV, the L1-MKL (v = 1), the L2-MKL (v = 0), and
our GMKL with v = 0.5. It is shown that the optimal v is
around 0.5 for both toy datasets. Fig. 2(b) indicates that, as
v increases, the number of selected kernels decreases. This
shows that the optimal v is data-dependent, i.e., a better v
corresponds to the suitable number of kernels selected for that
training data. Hence, usually we can tune the parameter v by
cross validation on the training data.

C. UCI Datasets

In order to verify the performance of our GMKL on datasets
which do not show manifest group structure on the base
kernels, we employ eight UCI datasets in our test from the UCI
repository [49] in our test. These datasets have been frequently
used in evaluating the MKL models [12], [25], and [31].

We repeat all the algorithms 20 times on each dataset. In
each run, 50% of the examples are randomly selected as the
training data and the remaining data are used for testing.
The training data are normalized to have zero mean and unit
variance, and the test data are then normalized using the mean
and variance of the training data. The construction and the
postprocessing of the base kernel matrices are conducted in
the same way as the synthetic data in Section VI-B.

Table V reports the average results, including accuracy, the
number of selected kernels, and the running time, on the UCI
datasets. Our GMKL achieves the highest accuracy for five
datasets: i.e., “Breast,” “Heart,” “Pima,” “Wdbc,” and “Wpbc.”
Especially, for the datasets of “Pima,” our GMKL obtains
significantly better results. The L2-MKL gets the highest
accuracy for the rest three datasets: “Ionosphere,” “Liver,”
and “Sonar,” and attains significantly better results for “Liver”
and “Sonar.” The UW-MKL gets the same highest accuracy
as the GMKL for “Breast” and “Heart.” It is important to
note that better results can be obtained by tuning v through
cross validation on the training data. For example, the cross-
validation procedure on the “Ionosphere” dataset suggests that
a smaller v with the value near zero can recover the result of
the L2-MKL.

In terms of the number of selected kernels, on average,
our GMKL selects a few more kernels than the L1-MKL,
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TABLE V

AVERAGE PERFORMANCE MEASURED BY THE GMKL, THE L1-MKL,

THE L2-MKL, AND THE UW-MKL ALGORITHMS ON UCI DATASETS.

BETTER RESULTS ARE IN BOLD. SIGNIFICANTLY BETTER RESULTS WITH

95% CONFIDENCE LEVEL OVER OTHER METHODS ARE INDICATED BY †

Dataset Method Accuracy Kernel Times(s)

Breast

GMKL 97.2 ± 0.5 61.1 ± 6.5 2.8 ± 0.5
L1-MKL 97.0 ± 0.7 18.6 ± 3.8 23.0 ± 3.9
L2-MKL 96.9 ± 0.4 143 5.1 ± 0.3

UW-MKL 97.2 ± 0.5 143 –

Heart

GMKL 83.9 ± 1.9 38.5 ± 5.4 1.4 ± 0.1
L1-MKL 83.4 ± 2.6 29.7 ± 4.6 3.5 ± 0.7
L2-MKL 82.8 ± 2.5 182 1.7 ± 0.1

UW-MKL 83.9 ± 1.9 182 –

Ionosphere

GMKL 91.8 ± 1.7 66.5 ± 7.2 5.1 ± 0.3
L1-MKL 91.5 ± 2.1 38.4 ± 5.0 19.2 ± 3.3
L2-MKL 92.0 ± 1.8 442 4.0 ± 0.4

UW-MKL 89.9 ± 1.8 442 –

Liver

GMKL 67.6 ± 1.8 19.5 ± 1.7 1.0 ± 0.0
L1-MKL 64.3 ± 2.8 9.2 ± 3.0 1.7 ± 0.4
L2-MKL †69.7 ± 2.2 91 1.4 ± 0.0

UW-MKL 67.2 ± 4.6 91 –

Pima

GMKL †76.9 ± 1.6 27.1 ± 2.4 3.8 ± 0.2
L1-MKL 76.5 ± 1.9 18.7 ± 2.7 24.8 ± 3.4
L2-MKL 76.0 ± 1.8 117 6.2 ± 1.0

UW-MKL 76.2 ± 1.7 117 –

Sonar

GMKL 80.4 ± 4.1 81.1 ± 6.5 12.4 ± 0.6
L1-MKL 80.4 ± 4.2 60.3 ± 7.4 16.7 ± 2.0
L2-MKL †83.8 ± 3.7 793 3.9 ± 0.3

UW-MKL 81.5 ± 4.3 793 –

Wdbc

GMKL 96.0 ± 1.1 79.7 ± 7.6 6.6 ± 0.8
L1-MKL 95.3 ± 1.4 34.9 ± 8.9 37.8 ± 5.8
L2-MKL 95.9 ± 0.7 403 7.8 ± 1.6

UW-MKL 93.9 ± 1.0 403 –

Wpbc

GMKL 76.7 ± 3.3 275.4 ± 96.9 1.3 ± 1.0
L1-MKL 76.6 ± 2.8 40.4 ± 10.2 4.8 ± 1.0
L2-MKL 76.3 ± 3.7 442 1.6 ± 0.2

UW-MKL 76.6 ± 2.9 442 –
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Fig. 3. Accuracy and the number of kernels selected by the L1-MKL, the
GMKL, and the L2-MKL on the protein subcellular localization datasets,
where the L2-MKL, and the UW-MKL select all the 69 kernels. Our GMKL
achieves the best results on all datasets and selects about 3-4 times the number
of kernels compared to that selected by the L1-MKL. It should be noted that
here the accuracy of the plant dataset is measured by the Matthew correlation
coefficient (MCC) [28], while for the Psort+ and the Psort− datasets, it is
measured by the F1 score. (a) Accuracy. (b) Number of selected kernels.

owing to the grouping effect on some features. This is expected
since, among all the datasets, our GMKL achieves no worse
results than the L1-MKL. Especially, our GMKL improves the
accuracy from 64.3% to 67.6% for the Liver dataset, and from
95.3% to 96.0% for the Wdbc dataset.

For the running time, our GMKL is efficient. The time
needed by our GMKL and the L2-MKL is much less than that
used in the L1-MKL for the datasets of Breast, Ionosphere,
Pima, and Wdbc. Especially, for the datasets of Breast, Pima,
and Wdbc, the number of data points is larger than other
datasets, and the SimpleMKL costs more time. This is because
that the simple MKL has to solve more quantum photonics
problems when updating the descent direction. When the
number of training samples is large, more time is required
in the SVM solver.

D. Protein Subcellular Localization Datasets

Three datasets are used to predict the proteins subcellular
localization,3 where the plant dataset of TargetP is a four-class
problem, and the other two datasets of bacterial protein loca-
tions are the Psort+ dataset consisting of four classes and the
Psort− dataset consisting of five classes. The summary of the
datasets is in Table III. MKL methods have succeeded in these
datasets with those well-defined graph kernels [18], [28]. We
hypothesize that the graph kernels may still provide the group-
ing effect and help to improve the prediction performance.

For the proteins subcellular localization datasets, we fol-
low the setup of [28] and construct 69 kernels: 2 kernels
on phylogenetic trees, 3 kernels from BLAST E-values,
and 64 sequence motif kernels. Each kernel for the pro-
teins subcellular localization datasets is normalized such that
the implied variance equals one as [28] by K(x, z) =
K(x, z)/(1/N

∑N
i=1 K(xi , xi ) − 1/N2 ∑N

i, j=1 K(xi , x j )).
Different from [28], we randomly split the protein sub-

cellular localization datasets into two parts equally, where
half the data are used for training and the rest of the data
are used for test. We use the 1-versus-rest scheme on the
multiclass classification problems. As in [28], the MCC is
used to evaluate the plant dataset, and the F1 score is used
to evaluate the Psort+ and the Psort− datasets.

Fig. 3(a) reports the average results on 10 runs. Our
GMKL achieves the best results on all three datasets. The
MCC obtained by our GMKL for the plant dataset is 88.3%
compared to 87.5% obtained by the L1-MKL, 86.6% obtained
by the L2-MKL, and 80.3% obtained by the UW-MKL. For
the two bacterial protein locations datasets, our GMKL and
the L1-MKL get the same 87.7% F1 score compared to the
L2-MKL of 85.9% and the UW-MKL of 83.0% for the Psort+
dataset and obtains 90.3% F1 score compared to the L1-MKL
of 89.6%, the L2-MKL of 89.3%, and the UW-MKL of 82.7%.
Hence, the results verify our hypothesis.

To further verify whether our GMKL model performs statis-
tically better than the other three MKL methods, we report the
p-values of the paired t-test of our GMKL on the L1-MKL,
the L2-MKL, the UW-MKL in Table VI. The results show that
our GMKL improves the classification accuracy significantly
compared to the UW-MKL for all three protein datasets. Our
GMKL performs significantly better than the L2-MKL for
the Psort+ dataset and the Psort− dataset. Compared to the
L1-MKL, our GMKL performs significantly better than the
Psort− dataset.

3Available at: http://www.fml.tuebingen.mpg.de/raetsch/suppl/protsubloc/.
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Fig. 4. Coefficients of kernel weights learned by the L1-MKL, the GMKL, and the L2-MKL on the protein subcellular localization datasets. The horizontal
axis indexes the 69 kernels. The two phylogenetic profile kernels and the three BLAST E-value kernels are on the left. The L1-MKL selects few kernels and
the L2-MKL selects all kernels. Meanwhile, the GMKL selects suitable number of kernels. Most of the grouping kernels are from the sequence motif kernels.
(a) L1-MKL on Plant. (b) GMKL on Plant. (c) L2-MKL on Plant. (d) L1-MKL on Psort+. (e) GMKL on Psort+. (f) L2-MKL on Psort+. (g) L1-MKL on
Psort–. (h) GMKL on Psort–. (i) L2-MKL on Psort–.

TABLE VI

p-VALUES OF THE PAIRED t -TEST OF OUR GMKL VERSUS THE

L1-MKL, THE L2-MKL, AND THE UW-MKL ON THE PROTEINS

SUBCELLULAR LOCALIZATION DATASETS

Dataset GMKL versus GMKL versus GMKL versus

L1-MKL L2-MKL UW-MKL

Plant 0.319 0.054 0.000

Psort+ 0.545 0.047 0.002

Psort− 0.049 0.040 0.000

Fig. 3(b) shows the number of selected kernels by the L1-
MKL, the GMKL, and the L2-MKL. Our GMKL again selects
more kernels than the L1-MKL. Fig. 4 further shows the
obtained kernel weights by the L1-MKL, our GMKL, and the
L2-MKL for the protein subcellular localization datasets. Our
GMKL again can obtain sparse solutions with the grouping
effect. It is noted that most of the groups are embedded in the
sequence motif kernels and captured by our GMKL.

In summary, the experimental results in the above section
indicate the good performance in terms of accuracy, sparsity,
and efficiency. The advantage of our GMKL is more explicit
on data with latent group structure.

VII. CONCLUSION

In this paper, we presented a GMKL model by introducing
a linear combination of the L1-norm and the squared L2-norm
regularization on the kernel weights to seek the optimal kernel
combination. Our GMKL generalizes the previously proposed
L1-MKL and the L2-MKL methods. The theoretical analysis
on the GMKL guarantees to having sparse solutions and also
encourages the grouping effect. Moreover, the optimization
of GMKL is a convex optimization problem, where the global
optimality can be assured. We further adopted the level method
to efficiently solve the optimization problem, followed by the
convergence analysis and optimal condition on the algorithm.

Experimental results on both synthetic and real-world
datasets indicate that the proposed GMKL can take advantage
of the group structure of data, and thus produce sparse
solutions accordingly. In addition, it keeps the balance between
accuracy and sparsity of MKL: it improves the accuracy of the
L1-MKL, and at the same time produces more sparse solu-
tions than the L2-MKL while achieving competitive accuracy.
Moreover, the reported running time on the datasets indicates
the efficiency of the level method on solving our GMKL.

There are several future works associated with our GMKL.
First, it would be interesting to apply our GMKL model in
other applications, e.g., regression, multiclass classification
problems, and so on. Second, it is promising to employ
advanced optimization techniques to speed up our GMKL, e.g.,
employing warm start on the previously obtained solution on
solving the optimization problem with a quadratic constraint,
or solving the optimization problem by second-order methods
or coordinate-wise optimizers. Third, it is attractive to extend
our GMKL to include the UW-MKL as a special case.

APPENDIX I
PROOF OF THEOREM 2

Proof:

1) When v �= 1, we denote the objective in (17) as L(θ) =
D(θ ,α�)+λ

(
v‖θ‖ + (1 − v)‖θ‖2

2

)
. Since the objective

function is continuous on θ , its minimizer should satisfy

∂L
∂θq

= −1

2
(α ◦ y)�Kq(α ◦ y) + λ(v + 2(1 − v)θq) = 0.

As λ > 0, combining with θ ≥ 0, we get θ�
q as (18).

When Ki = K j , we then have θ�
i = θ�

j .
2) When v = 1, the regularizer, v‖θ‖+(1−v)‖θ‖2

2 reduces
to lasso regularizer. It can be easily verified that both
minimizers, i.e., θ� and θ̃ , achieve the same objective
value.

APPENDIX II
PROOF OF THEOREM 4

Proof: To prove Theorem 4, we first need the following
proposition.

Proposition 1: For any θ ∈ �, we have:

1) ht+1(θ) ≥ ht (θ);
2) ht (θ) ≤ maxα∈AD(θ ,α).
The above two propositions can be easily checked by their

definitions. They support the definition of the lower bound and
the upper bound in (22).

Next, we have the following lemma indicating the relation
between bounds:

Lemma 1: Suppose we have a sequence of bounds, {Dt }T
t=1

and {Dt }T
t=1, defined in (22). We can then obtain the following

properties for their relation.

1) Dt ≤ D(θ�,α�) ≤ Dt
.

2) D1 ≥ D2 ≥ . . . ≥ Dt
.

3) D1 ≤ D2 ≤ . . . ≤ Dt .
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We now give a short proof of 1) in Lemma 1. Parts 2) and
3) of Lemma 1 can be easily verified based on the definitions.

First, Proposition 1 indicates that for any θ ∈ �, ht (θ) ≤
maxα∈AD(θ ,α). Hence

Dt = min
θ∈�

ht (θ) ≤ min
θ∈�

max
α∈A

D(θ ,α) = D(θ�,α�).

Second, since D(θ t ,αt ) = maxα∈A D(θ t ,α), then we have

Dt = min
1≤k≤t

D(θ k,αk) = min
θ∈{θ1,...,θ t }

max
α∈A

D(θ ,α)

≥ min
θ∈�

max
α∈A

D(θ ,α) = D(θ�,α�).

The above two results conclude 1) of Lemma 1.
Hence, by applying 1) of Lemma 1, we can obtain 1) and

3) of Theorem 4. Combining 2) and 3) of Lemma 1, we have
2) of Theorem 4.

APPENDIX III
PROOF OF THEOREM 5

Proof: Before starting the proof, we first introduce the
theorem.

Theorem 6 ([45, Th. 8.2.1, Ch. 8]): Let D be a convex and
Lipschitz continuous function defined on the domain � of
diameter D(�) with the Lipschitz constant being L(D) < ∞.
Applying the level method to this convex problem, the gap
�T converges to 0, or for any positive δ, one has

T ≥ c(τ )

(
L(D)D(�)

δ

)2

(30)

where c(τ ) = 1/((1 − τ )2τ (2 − τ )).
We then can derive the result based on the above theorem.
First, let us define θmax be the maximum element value of

θ . We then have θmax ≤ 1. It can be derived by

1 = v‖θ‖1 + (1 − v)‖θ‖2
2, from Theorem 1

≥ vθmax + (1 − v)θ2
max, by θ ≥ 0. (31)

The above inequality derives θmax ≤ 1, so as θ ≤ 1.
Next, by applying θ ≤ 1, we have

θ�θ ≤ 1�θ = ‖θ‖1, ∀θ ∈ �. (32)

Hence, ∀θ , θ ′ ∈ �, we have

‖θ − θ ′‖2
2 ≤ θ�θ + θ ′�θ ′

= v(θ�θ + θ ′�θ ′) + (1 − v)(θ�θ + θ ′�θ ′)
≤ v(‖θ‖1 + ‖θ ′‖1) + (1 − v)(‖θ‖2

2 + ‖θ ′‖2
2)

= 1 + 1 = 2 .

We then obtain the diameter D(�) as

D(�) = max
θ,θ ′∈�

‖θ − θ ′‖2 = √
2. (33)

Further, the Lipschitz constant for the GMKL is

Lθ (D) = max
θ∈�,α∈A

‖∇Dθ (θ ,α)‖2 = max
α∈A

‖[V1, . . . , VQ ]�‖2

≤ 1

2
NC2

√
Q max

1≤q≤Q
�max(Kq) (34)

where Vq = (1/2)(α ◦ y)�Kq(α ◦ y), and �max(Kq) defines
the maximum eigenvalue of the matrix Kq .

Substituting (33) and (34) into (30) of Theorem 6, we can
obtain the result and conclude the proof.
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