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Efficient Online Learning for Multitask Feature Selection

HAIQIN YANG, MICHAEL R. LYU, and IRWIN KING, The Chinese University of Hong Kong

Learning explanatory features across multiple related tasks, or MultiTask Feature Selection (MTFS), is an
important problem in the applications of data mining, machine learning, and bioinformatics. Previous MTFS
methods fulfill this task by batch-mode training. This makes them inefficient when data come sequentially
or when the number of training data is so large that they cannot be loaded into the memory simultaneously.
In order to tackle these problems, we propose a novel online learning framework to solve the MTFS problem.
A main advantage of the online algorithm is its efficiency in both time complexity and memory cost. The
weights of the MTFS models at each iteration can be updated by closed-form solutions based on the average
of previous subgradients. This yields the worst-case bounds of the time complexity and memory cost at each
iteration, both in the order of O(d × Q), where d is the number of feature dimensions and Q is the number
of tasks. Moreover, we provide theoretical analysis for the average regret of the online learning algorithms,
which also guarantees the convergence rate of the algorithms. Finally, we conduct detailed experiments to
show the characteristics and merits of the online learning algorithms in solving several MTFS problems.
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1. INTRODUCTION

Learning multiple related tasks simultaneously by exploiting shared information
across tasks has demonstrated advantages over those models learned within individ-
ual tasks [Argyriou et al. 2006; Ben-David and Borbely 2008; Caruana 1997; Evgeniou
et al. 2005; Ando and Zhang 2005; Han et al. 2010; Pong et al. 2010; Yang et al.
2010a; Zhang 2010]. The multitask learning framework has been successfully applied
in various applications, including Web search [Bai et al. 2009], students’ exam scores
prediction [Evgeniou and Pontil 2004; Evgeniou et al. 2005; Chen et al. 2009a], and
bioinformatics [Obozinski et al. 2009], etc.

A key problem of multitask learning is to find the explanatory features across these
multiple related tasks [Argyriou et al. 2008; Obozinski et al. 2009; Zhou et al. 2010].
Many methods have been proposed to solve this problem by utilizing a variant of the
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L1-norm on the regularization, or more specifically, by imposing the mixed Lp,1-norm
(p is usually set to 2 or ∞) on the regularization [Argyriou et al. 2008; Liu et al. 2009a;
Obozinski et al. 2009; Quattoni et al. 2009]. The main idea of these methods is that they
not only can gain benefit from the L1-norm regularization which can promote sparse
solutions and maintain good performance [Tibshirani 1996], but also can achieve group
sparsity through the Lp-norm [Yang et al. 2010c, 2011a; Xu et al. 2010, 2011b].

Although previous MultiTask Feature Selection (MTFS) methods succeed in sev-
eral aspects, they still contain some drawbacks. First, these methods are conducted
in batch-mode training. The training procedure cannot be started until the data are
prepared. A fatal drawback is that these methods cannot solve the applications when
the training data is obtained sequentially. For example, in the application of instance
news classification, if one needs a timely classifier, previous batch-trained algorithms
are inefficient to update the classifiers quickly. The second drawback is that these al-
gorithms suffer inefficiency when the size of training dataset is huge, especially when
the data cannot be loaded into memory simultaneously. In this case, one may have
to conduct additional procedure, for example, by subsampling, to choose the data for
training. This may degrade the performance of the model since the available data are
not sufficiently utilized. The third drawback is that most previous MTFS methods can
only select features in individual tasks or across all tasks, but cannot find important
tasks further within the selected important features. This reduces the interpretation
power of the learned MTFS models.

To tackle the preceding problems, we first develop a novel MTFS model, named
MultiTask Feature and Task Selection (MTFTS), which selects important features
across all tasks and important tasks dominating the selected features. Furthermore,
we propose a novel online learning framework to convert the batch-trained MTFS
models to their online ones. The key contributions of this article are highlighted as
follows.

—The new proposed MTFTS model can select important features across all tasks
and further reveal the important tasks that dominate the important features. This
strengthens the interpretation ability of the MTFS models. As indicated in our exper-
iments, the MTFTS can achieve more sparse solutions without sacrificing the model
performance.

—A novel online learning framework is proposed to solve the multitask feature selec-
tion problem. By transforming the batch-trained algorithms to their online learning
versions, we can update the models sequentially with new coming data and achieve
high efficiency.

—Three batch-trained MTFS models are converted to their online modes under our
proposed online learning framework. More importantly, they can achieve high effi-
ciency in both time complexity and memory cost. At each iteration, the algorithms
only consume O(d× Q) memory space to store the required information and O(d× Q)
time to update the learning weight, where d is the number of features and Q is
the number of tasks. Hence, the online algorithms can solve the MTFS problem in
large-scale datasets.

—We also provide the convergence rate of the online learning algorithms. The result
theoretically guarantees the convergence of the proposed online learning algorithms.

—Finally, we have conducted detailed experiments on two real-world datasets to
demonstrate the merits of our proposed model and the online learning algorithms.
Empirical results show the efficiency and effectiveness of the proposed online learn-
ing algorithms.

Organization. The rest of the article is organized as follows. In Section 2, we review
the existing batch-trained multitask feature selection methods in the literature. In
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Section 3, we define the problem setup and introduce the multitask feature selection
formulation. In Section 4, we depict the proposed MTFTS method and in Section 5, we
present the online learning framework for solving the MTFS models and provide the
convergence rate of the average regret bound. In Section 6, we report the experimental
comparison and results. Finally, we conclude the article with future work in Section 7.

2. RELATED WORK

In the following, we will review related work on multitask feature selection and online
learning for sparse models. We will focus on elaborating the difference between our
work and previous proposed work.

2.1. Multitask Feature Selection

Multitask feature selection is an important topic in machine learning [Argyriou et al.
2006; Chen et al. 2009a; Liu et al. 2009c; Jebara 2004] as well as a very useful tool for
data mining applications [Argyriou et al. 2008; Chen et al. 2010, 2012 Dhillon et al.
2009]. Various methods have been proposed in the literature.

One typical kind of methods is based on variants of the L1-norm, particularly matrix
norms such as the L2,1-norm and L∞,1-norm. These methods have been widely applied
in solving the multitask feature selection problem [Argyriou et al. 2008; Obozinski
et al. 2009; Liu et al. 2009c; Quattoni et al. 2009; Chen et al. 2009b; Zhang et al. 2010].
Some typical methods include the following.

—In Argyriou et al. [2008], a generalization of the single-task L1-norm regulariza-
tion is formulated to learn a few common features across multiple tasks. Although
the formulated model is a nonconvex problem, it is solved by an iterative alternat-
ing algorithm, where at each step a convex optimization problem is solved. This
method can be easily extended to learn the sparse nonlinear representation using
kernels [Evgeniou et al. 2005], which leads to solving an optimization problem in-
volving the trace norm.

—In Obozinski et al. [2009], a blockwise path-following algorithm is proposed to solve
the MTFS models based on the mixed norms of joint regularization of hybridizing
L1-norm with L2-norm, or L∞-norm. A theoretical result in Obozinski et al. [2009]
shows that the proposed algorithm with random projection can obtain a nonlinear
solution which approximates the solution obtained from the trace norm minimization
in Argyriou et al. [2008].

—In Liu et al. [2009c], Nesterov’s method, an optimal first-order black-box method for
smooth convex optimization, has been adopted to solve the MTFS problem with the
L2,1-norm regularization on the weight matrices. An efficient Euclidean projection is
proposed to solve the nonsmooth problem in the L2,1-norm regularizer. This method
scales well, linearly on the number of training samples, the sample dimensionality,
and the number of tasks.

—In Chen et al. [2009b], the multitask feature selection problem is solved by a L∞,1
regularization optimization problem. An variant of Nesterov’s method is adopted to
solve the nonsmooth optimization problem and attains a faster convergence rate.

—In Zhang et al. [2010], a probabilistic interpretation of the multitask feature se-
lection by the Lq,1-norm (q > 1) is provided via the noninformative Jeffreys prior.
Through the Expectation Maximization (EM) algorithm, the proposed method can
then automatically learn all model parameters, including q.

—In Dhillon et al. [2009, 2011], a multiple inclusion criterion is proposed to seek helpful
features across multiple tasks. The proposed model has to solve a nonconvex problem
by minimizing the L0,0-norm regularization on the weights and suffers from the local
optimal solutions.
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—Other multitask feature selection methods include the Maximum Entropy Discrimi-
nation (MED) framework [Jebara 2011]. This framework can not only learn a shared
sparse feature selection over the input space from multiple support vector machines,
but also can learn a shared conic kernel combination from multiple support vec-
tor machines. It can also be extended to regression and graphical model structure
estimation.

However, the aforesaid proposed methods are solved by the batch-trained algorithms.
These methods are inefficient for those applications where the data appear sequentially
and for the case that the data are so large that they cannot be loaded into memory
simultaneously. To tackle these problems, an online learning algorithm is a promising
solution. We review several key related work in the following.

2.2. Online Sparse Learning

Recently, online machine learning has become a hot research topic due to the efficiency
of the algorithms and effectiveness in real-world applications [Dekel et al. 2006; Hazan
et al. 2007; Shalev-Shwartz et al. 2007; Shalev-Shwartz and Singer 2007; Zhao et al.
2011a, 2011b; Ling et al. 2012]. In particular, online learning for sparse models, es-
pecially for L1 regularization, have been investigated in the literature [Balakrishnan
and Madigan 2008; Langford et al. 2009; Duchi and Singer 2009; Xiao 2010]. Typical
online learning algorithms for the sparse models include the following.

—In Langford et al. [2009], a truncated gradient method is proposed to solve the lasso
problem [Tibshirani 1996]. More specifically, the elements of the learning weight are
truncated to 0 when they cross 0 after the stochastic gradient step. It is reported
that this method is evaluated on data with over 107 samples and 109 features using
about 1011 bytes.

—In Duchi and Singer [2009], a forward-backward splitting method (FOBOS) is in-
vestigated to solve various convex problems, especially the lasso problem, under
the regularized minimization framework. The FOBOS algorithm performs the mini-
mization problem in two phases. At each iteration, it first computes an unconstrained
gradient descent step. Next, it seeks the optimal solution that approaches the result
of the first phase while minimizing the regularization term.

—In Xiao [2010], a regularized dual averaging method is proposed to solve the lasso
problem, where the learning weight is updated based on the average of all calculated
subgradients of the loss functions. The efficiency of the preceding methods motivates
us to propose an online learning algorithm for the group lasso [Yang et al. 2010a]
and multitask feature selection [Yang et al. 2010b].

—In Hu et al. [2009], a stochastic accelerated gradient descent method is proposed for
both stochastic optimization and online learning. However, the empirical study of
the online learning for multitask feature selection has not yet been analyzed.

Online learning algorithms are very promising in real-world applications, especially
for training large-scale datasets and data being incrementally added. However, online
learning algorithms for multitask feature selection are not explicitly proposed and
their empirical properties are not thoroughly studied yet. These encourage us to study
it in this article.

3. MULTITASK FEATURE SELECTION

In this section, we first introduce the problem setup of multitask learning. Following
that, we present the formulation for multitask feature selection in the literature.
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Table I. Key Notations

Notations Description
a Lower case italic letter denotes a scalar
w (K) Bold small (capital) letters denote vectors (matrices)
X , R Letters in calligraphic or blackboard bold fonts denote sets
‖w‖p = (

∑d
i=1 |wp

i |)1/p Lp-norm (p ≥ 1)
‖w‖∗ The dual norm of ‖w‖2

u�v = ∑d
i=1 ui · vi The inner product of vectors, u and v

〈A, B〉 = ∑n
i=1

∑m
j=1 Aji Bij The inner product of matrices, A and B

W�
i•

(
W• j

)
The i-th row ( j-th column) of a matrix W

‖W‖F = √〈W, W〉 The Frobenius norm of a matrix W
[a]+ = max{0, a} If a > 0, [a]+ = a, otherwise it is 0

3.1. Problem Setup

We first list the key notations in Table I to make them consistent in the whole article.
In the problem setup, we assume that there are Q tasks with all data coming from
the same space X × Y, where X ⊂ R

d and Y ⊂ R. For each task, there are Nq data
points. Hence, it consists of a dataset of D = ⋃Q

q=1 Dq, where Dq = {zq
i = (xq

i , yq
i )}Nq

i=1
are sampled from a distribution Pq on X ×Y. Here, Pq is usually assumed different for
each task but all Pq ’s are related, for example, as discussed in Ben-David and Schuller
[2003]. The goal of MultiTask Learning (MTL) is to learn Q functions fq : R

d → R,
q = 1, . . . , Q such that fq(xq

i ) approximates yq
i . When T = 1, it is the standard (single

task) learning problem.

3.2. Formulation

Typically, in multitask learning models, the decision function fq for the q-th task is
assumed as a hyperplane parameterized by the model weight vector wq [Argyriou et al.
2008; Obozinski et al. 2009], that is,

fq(x) = wq�x, q = 1, . . . , Q. (1)

Hence, the total learned weights consist of a matrix in the size of d × Q. To make
the notation uncluttered, in the following, we express the learned weight matrix into
columnwise and rowwise vectors as follows.

W = (w1, w2, . . . , wQ) = (
W•1, . . . , W•Q

) = (
W�

1•, . . . , W�
d•

)�
(2)

The objective of multitask feature selection models is to learn the weight matrix W by
minimizing an empirical risk and a regularization term on the weights

min
W

�(W) :=
Q∑

q=1

1
Nq

Nq∑
i=1

lq(W•q, zq
i

) + �λ(W), (3)

where λ ≥ 0 is a constant to balance the loss and the regularization term. lq(W•q, zq
i )

defines the loss on the sample zq
i for the q-th task. Various loss functions can be adopted

and they are usually assumed convex. Some typical loss functions include the following.

—Squared loss. l(w, z) = 1
2 (y − w�x)2. This loss is a standard loss used in regression

problems [Liu et al. 2009c].
—Logit loss. l(w, z) = log(1 + exp(−y(w�x))). This loss is usually used in binary classi-

fication problems [Liu et al. 2009b].
—Hinge loss. l(w, z) = [1 − yw�x]+. This loss is usually used in solving binary classifi-

cation problems by support vector machines [Vapnik 1999].
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Note that in the aforesaid loss function definitions, we use w to denote the weight of a
task for simplicity.

In Eq. (3), �λ(W) defines the regularization on the weights of tasks. Various mixed
norms on the regularization have been proposed in the literature to impose sparse
solutions so as to select the important features. They include the following.

—L1,1-norm regularization. This model simply sums the L1 regularizations on the
weights of all tasks together to yield sparse solutions [Obozinski et al. 2009]. We
name it as the individually learned MultiTask Feature Selection (iMTFS) method.

�λ(W) = λ

Q∑
q=1

∥∥W•q
∥∥

1 = λ

d∑
j=1

∥∥W�
j•
∥∥

1
(4)

The preceding formulation is equivalent to solving a lasso problem for each task
when the squared loss is used [Obozinski et al. 2009]. The reason that the L1-norm
regularization can yield sparse solutions is that it usually attains optimal solutions
at the corner [Tibshirani 1996]. Hence, imposing the L1,1 regularization in the for-
mulation can yield sparse solutions for each individual task, but it does not find the
information across the tasks.

—L2,1-norm regularization. It is to penalize the L1-norm on the L2-norms of the weight
vectors across tasks [Liu et al. 2009c; Obozinski et al. 2009]. It is to conduct feature
selection across multiple tasks. We name it as the aMTFS method.

�λ(W) = λ

d∑
j=1

∥∥W�
j•
∥∥

2
(5)

It is easy to show that the L2,1-norm regularization reduces to L1-norm regularization
if there is only one task. When there are multiple tasks, the weights corresponding
to the j-th feature are grouped together via the L2-norm of W�

j•. Hence, L2,1-norm
regularization tends to select features based on the strength of the input variables
of the Q tasks jointly, rather than on the strength of individual input variables as in
the case of single-task learning [Argyriou et al. 2008; Obozinski et al. 2009].

—Lp,1-norm regularization. It can be easily extended to include other joint regular-
ization on the weights, for example, the Lp,1-norm for 1 ≤ p ≤ ∞ to yield sparse
solutions [Quattoni et al. 2009]. The choice of p usually depends on how much fea-
ture sharing that one assumes between tasks, from none (p = 1) to full sharing
(p = ∞). Increasing p corresponds to allowing better “group discounts” for sharing
the same feature, from p = 1 where the cost grows linearly with the number of tasks
that use a feature, to p = ∞ where only the most demanding task matters [Obozinski
et al. 2009].

Remark 3.1. Although the earlier introduced MTFS models find the decision func-
tions in linear forms, it is noted that by projecting the data points on a random direction
in the Reproducing Kernel Hilbert Space (RKHS), one can attain nonlinear solutions
on the original space [Obozinski et al. 2009].

4. MULTITASK ON BOTH FEATURE AND TASK SELECTION

The MTFS method imposed by the L2,1-norm regularization can select features across
all tasks, however, it yields nonsparse solutions for the selected features [Obozinski
et al. 2009]. This is because sparse solutions cannot be obtained when p is greater
than one [Zou and Hastie 2005]. Hence, the aMTFS method cannot further find out the
important tasks for the selected important features. This degrades the interpretation
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Fig. 1. Illustration of the difference of three multitask feature selection methods on learning three related
tasks. We use different colors to represent the coefficients of the weights, where white color indicates the
coefficient is zero and darker colors indicate larger absolute coefficient values.

power of the aMTFS model. To resolve this problem, we propose the multitask feature
selection method on both feature and task selection (MTFTS) by introducing a novel
L1/2,1-norm regularization, which is a linear combination of L1-norm and L2-norm, as

�λ,r = λ

d∑
j=1

(
rj

∥∥W�
j•
∥∥

1 + ∥∥W�
j•
∥∥

2

)
, (6)

where rj ≥ 0, for j = 1, . . . , d, is a constant controlling the sparsity of the solutions
on task level: a larger rj value will introduce more sparsity on the task selection.
Usually, we can select a very small rj value to yield additional sparse solutions while
maintaining the model performance [Yang et al. 2010b].

Remark 4.1. Note that this model is similar to the sparse group lasso introduced
in Friedman et al. [2010] and Yang et al. [2010c], where the weight formed in one
row in MTFTS, for example, W j•, can be considered as a grouped weight in the sparse
group lasso. Hence, MTFTS can be deemed as a special case of the sparse group lasso,
where in MTFTS, the lengths of the grouped weights are all the same, that is, Q. But
the length of each group in the sparse group lasso can be varied from 1 to any positive
integer and they are not necessary to be the same.

Remark 4.2. To provide an intuitive explanation of the difference among iMTFS,
aMTFS, and MTFTS, we give a simple illustration in Figure 1 to learn three related
tasks. For iMTFS, since the samples can only be observed individually at each task, the
training procedure corresponds to training three lasso problems individually to select
the important features. Due to the property of nonstrict convexity, the lasso model will
attain nonunique solutions when two features are highly correlated or the same [Zou
and Hastie 2005]. Hence, for the second task, with only partial information, iMTFS
may select the second feature as the important feature; see Figure 1(a). Contrarily,
after exploring the information among all the tasks simultaneously, aMTFS can find
out the first and the last features are important features and overcome the nonconsis-
tent issue in iMTFS. However, aMTFS will yield nonsparse solutions on the selected
features; see Figure 1(b) for an example. Hence, aMTFS cannot determine the impor-
tant tasks dominating the selected features and will decrease its interpretation power.
To resolve this problem, MTFTS is proposed to select the important features while
determining the important tasks dominating the important features. For example, re-
sults in Figure 1(c) show that MTFTS first selects the first and the last features as
important features while determining the first and the second tasks dominating the
first feature and the first and the third tasks dominating the final feature. MTFTS
therefore contains a more succinct property and more interpretation power.
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5. ALGORITHM AND REGRET ANALYSIS

In this section, we first present the online learning framework for multitask feature
selection. After that, we provide the convergence rate for the regret bound.

5.1. Online Learning Framework for MTFS

To tackle the insufficiency of batch-trained algorithms and motivated by the recent
success of online learning algorithms for solving the L1 regularized minimization prob-
lems [Balakrishnan and Madigan 2008; Duchi and Singer 2009; Langford et al. 2009],
we propose an online learning framework to solve the multitask feature selection
problem, namely DA-MTFS, in the following. This framework, based on a recently de-
veloped first-order method for optimizing convex composite functions [Nesterov 2009],
has been successfully developed to solve the lasso model [Xiao 2010] and the group
lasso model [Yang et al. 2010c].

The online learning framework for multitask feature selection is outlined in
Algorithm 1.

ALGORITHM 1: Online learning framework for multitask feature selection
Input:
—W0 ∈ R

d×Q, and a strongly convex function h(W) with modulus 1 such that
W0 = arg minW h(W)

—Given a const λ > 0 for the regularizer, γ > 0 for the function h(W)
Initialization: W1 = W0, Ḡ0 = 0.
for t = 1, 2, 3, . . . do

(1) Given the function lt, compute the subgradient on Wt, Gt ∈ ∂ lt for the coming Q
instances with each for one task, Zt

(2) Update the average subgradient Ḡt: Ḡt = t−1
t Ḡt−1 + 1

t Gt

(3) Calculate the next iteration Wt+1 based on Ḡt:

Wt+1 = arg min
W

ϒ(W) =
{
〈Ḡt, W〉+�(W)+ γ√

t
h(W)

}
. (7)

end for

For the algorithm, we have some remarks.

Remark 5.1. In Algorithm 1, we assume that instances for every task come at each
iteration. That is, it forms a d × Q matrix, Zt = (z1

t , . . . , zQ
t ). This follows the same

online learning scheme for multitask learning in Dekel et al. [2006]. In real-world
applications, if we cannot get one instance for all tasks at one iteration, we an simply
set the instance for that task to zero so as not to update the weights for that task.
However, intuitively, this will make the learned weight matrices unbalance bias to
those tasks with training instances.

Remark 5.2. The iteration in Algorithm 1 mainly consists of three steps: at the first
step, it needs to calculate the subgradient of the loss function on the weights at each
iteration; at the second step, it is to calculate the average of the subgradients; the
third step is to update the weight based on the average subgradient. To calculate the
subgradient, for typical loss function, they can be calculated as

∂ lt(w) = ∂ l(w, zt) =

⎧⎪⎨
⎪⎩

(w�xt − yt)xt square loss
−ytxt

1+exp(yt(w�xt))
logit loss

[−ytxt]+ hinge loss
, (8)
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where w means the weight of a task and (xt, yt) corresponds to the feature vector and
the response in that task at the t-th iteration for simplicity.

Remark 5.3. The earlier proposed online learning framework for the MTFS models
is motivated from the regularized dual averaging method for lasso [Xiao 2010] and
group lasso [Yang et al. 2010c]. We can also consider the FOBOS [Duchi and Singer
2009] to solve online learning for the MTFS models. In this case, at each iteration, the
FOBOS method is to solve the following minimization problem

Wt+1 =arg min
W

{
1
2

∥∥W−(Wt−ηtGt)
∥∥2

F +ηt�(W)
}

, (9)

where �(W) is defined as Eq. (4) for the iMTFS, Eq. (5) for the aMTFS, or Eq. (6) for
the MTFTS. ηt is a constant term which can be set to O(1/

√
t). The difference between

the FOBOS for the MTFS and our DA-MTFS algorithm is clear: The FOBOS method
scales the regularization term by a diminishing stepsize ηt, while our method keeps it
the same, a more balanced setting for online algorithms.

In Algorithm 1, the key to solve the online MTFS algorithms efficiently depends on
the simplicity of updating the weight in Eq. (7). Here, we have the following theorem to
efficiently update the weight matrix Wt+1 in (7) by a closed-form solution for different
MTFS models, respectively.

THEOREM 5.4. Given h(W) = 1
2‖W‖2

F, and the average subgradient Ḡt at each itera-
tion, the optimal solution of the corresponding MTFS models can be updated by

(1) iMTFS: For i = 1, . . . , d and q = 1, . . . , Q,

(Wi,q)t+1 = −
√

t
γ

[|(Ḡi,q)t| − λ
]
+ · sign ((Ḡi,q)t), (10)

(2) aMTFS: For j = 1, . . . , d,

(W j•)t+1 = −
√

t
γ

[
1 − λ

‖(Ḡ j•)t‖2

]
+

· (Ḡ j•)t, (11)

(3) MTFTS: For j = 1, . . . , d,

(W j•)t+1 = −
√

t
γ

[
1 − λ

‖(Ū j•)t‖2

]
+

· (Ū j•)t, (12)

where the q-th element of (Ū j•)t is calculated by

(Ū j,q)t = [|(Ḡ j,q)t| − λrj
]
+ · sign ((Ḡ j,q)t), q = 1, . . . , Q. (13)

The proof of Theorem 5.4 is provided in the Appendix. We first give some remarks on
the results.

Remark 5.5. Eq. (10) implies that the online learning algorithm for the iMTFS can
yield sparse solutions in the element level, but it does not utilize any information across
tasks. Eq. (11) indicates that the online learning algorithm for the aMTFS can select
those important features in a group manner, that is, across all tasks, and it will discard
irrelevant features for all tasks. Eq. (12) implies that the online learning algorithm for
the MTFTS can select important features and important tasks dominating the selected
features. Since ‖(Ū j•)t‖2 ≤ ‖(Ḡ j•)t‖2, the MTFTS tends to select fewer features than
the aMTFS under the same regularization parameter.

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 2, Article 6, Publication date: July 2013.



6:10 H. Yang et al.

Remark 5.6. Theorem 5.4 indicates simplicity in updating the weight in (7). It is
noted that the algorithm only needs O(d × Q) space to store the required information,
the average subgradient and the weight at each iteration. In addition, the worst-case
time complexity for updating the weights is also O(d × Q). However, it is possible to
adopt the lazy update scheme in Duchi and Singer [2009] and Langford et al. [2009] to
update the weight only with nonzero elements. This is especially useful when the data
is sparse but with very large dimension.

5.2. Convergence and Regret Analysis

A main issue to guarantee the online learning algorithm is to analyze its regret bound
and the convergence rate. The regret is defined as the difference of the objective value
up to the T -th step and the smallest objective value from hindsight. Here, we use an
average regret which is defined by

R̄T (W) := 1
Q

Q∑
q=1

(
1
T

T∑
t=1

(
�(W•qt) + lt(Wt)

) − ST (W•q)

)
, (14)

where ST (WT ) defines the objective up to the T -th step, ST (WT ) as follows.

ST (WT ) := �(WT ) +
Q∑

q=1

1
T

T∑
t=1

l
(
WT , zq

t
) = 1

T

T∑
t=1

(�(WT ) + lt(WT )) (15)

In the preceding, we use lt(·) to simplify the expression of the loss induced by the t-th
coming instances for all tasks.

The following theorem provides the bound of the average regret for Algorithm 1.

THEOREM 5.7. Suppose there exists an optimal solution W	 for the problem of (3)
which satisfies h(W	) ≤ D2 for some D > 0, and there exists a constant L such that
‖(Ḡ•q)T ‖∗ ≤ L for all T ≥ 1 and q = 1, . . . , Q. Then we have the following properties for
Algorithm 1: for each T ≥ 1, the average regret is bounded by

R̄T ≤
(

γ
√

T D2 + L2

2γ

T∑
t=1

1√
t

)
/T . (16)

The proof of Theorem 5.7 can follow the scheme developed in Nesterov [2009] and Xiao
[2010] for each task and (16) is summed up for all the tasks. The previous theorem
indicates that Algorithm 1 can achieve the optimal convergence rate O(1/

√
T ). In

addition, the bound in (16) can further be simplified as

γ
√

TD2 + L2

2γ

∑T
t=1

1√
t

T
≤

γ
√

TD2 + L2

2γ
2
√

T

T
≤

(
γ D2 + L2

γ

)
/
√

T .

This indicates that the best γ for the previous bound is attained when γ 	 = L/D and
this leads to the average regret bound as R̄T ≤ 2LD/

√
T . For practical problems, the

best γ is usually tuned by cross-validation.

Remark 5.8. There are still some ways to improve the convergence rate. For exam-
ple, one may change the L2-norm in Eq. (5) to the square of L2-norm, which yields a
strongly convex property. This can guarantee log(T ) regret bound by using gradient
descent methods as those in Hazan et al. [2007] and Shalev-Shwartz et al. [2007].
However, this formulation cannot attain sparse solutions, which is not the goal in this
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article. The other idea is to extend Nesterov’s method as that in Xiao [2010] to at-
tain better regret bound. Unfortunately, we cannot guarantee the performance of the
accelerated algorithms. Hence, we leave this as a future work.

6. EMPIRICAL ANALYSIS

In the following, we conduct detailed experiments to demonstrate the characteristics
and merits of the online learning algorithms to solve the MTFS problems. The compared
algorithms include:

—the batch-trained algorithms for iMTFS and aMTFS, which are implemented in the
SLEP package [Liu et al. 2009];

—the FOBOS online algorithms for multitask feature selection [Duchi and Singer
2009], that is, FOBOS-aMTFS;

—the stochastic accelerated gradient method multitask feature selection [Hu et al.
2009], that is, SAGE-aMTFS;

—the online learning algorithms1 by the dual averaging method for iMTFS (DA-
iMTFS), for aMTFS (DA-aMTFS), and for MTFTS (DA-MTFTS), respectively.

All algorithms are run in Matlab on a PC with 2.13 GHz dual-core CPU and 3GB of
RAM.

The experiments try to answer the following questions.

(1) What is the performance of the compared algorithms on real-world datasets?
(2) What is the trade-off between the performance and the sparsity in the dual aver-

aging online algorithms?
(3) What is the effect of the algorithm parameter γ with respect to the regularization

parameter λ?
(4) What are the important features learned from the batch-trained algorithms versus

the dual averaging online learning algorithms?
(5) What is the efficiency of the compared algorithms and what are their convergence

properties?

6.1. School Data

We first test the algorithms on a benchmark dataset, the school dataset2. In the fol-
lowing, we first provide the description of the school data. We then evaluate the model
performance with sensitivity analysis and analyze the learned features and weight
matrices on both regression and classification tasks.

Data description. This dataset has been previously evaluated on the batch-trained
multitask learning [Bakker and Heskes 2003; Evgeniou and Pontil 2004] and multitask
feature learning [Argyriou et al. 2008; Evgeniou et al. 2005; Liu et al. 2009c]. This
dataset consists of the exam scores of 15,362 students from 139 secondary schools in
London during the years 1985, 1986, and 1987, where the features consist of: year
of the exam (YR), 4 school-specific and 3 student-specific features. Features that are
constant in each school in a certain year are: percentage of students eligible for free
school meals, percentage of students in VR band one (highest band in a verbal reasoning
test), school gender (S. GN.) and school denomination (S. DN.). Student-specific features
are: gender (GEN), VR band (values are 1, 2, or 3), and ethnic group (EG). For the
categorical features, we transform them into binary (dummy) variables and totally
form 27 features as in Argyriou et al. [2008] and Evgeniou et al. [2005]. Here, each
school is taken as “one task”. Hence, we obtain 139 tasks.

1Our source-codes are available in http://appsrv.cse.cuhk.edu.hk/∼hqyang/doku.php?id=OLMTFS.
2http://ttic.uchicago.edu/∼argyriou/code/mtl feat/school splits.tar.
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Experimental setup.

Task 1: Regression. The original task for the school dataset is to predict the exam
scores of the students based on the given 27 features [Argyriou et al. 2008; Evgeniou
et al. 2005]. This is a typical regression problem. To measure the model performance,
we follow the same evaluation criterion in Argyriou et al. [2008], Bakker and Heskes
[2003], and Evgeniou and Pontil [2004] and employ the explained variance, one minus
the mean squared test error over the total variance of the data (computed within each
task), and the percentage of variance explained by the prediction model. Hence, a large
explained variance indicates better performance. Actually, this measurement corre-
sponds to a percentage version of the standard R2 error measurement for regression
on the test data [Bakker and Heskes 2003]. Since the task is a regression problem
to predict the exam scores of the students, we use the squared loss for the compared
algorithms.

Task 2: Classification. To show the learning power of the proposed dual-averaging
online learning algorithms, we also preprocess the school dataset and convert it to a
binary classification task. Here, we separate the data in each task to positive samples
and negative samples based on the mean score of each task, where a sample is assigned
to positive if the exam score is not less than the mean score of the task and to negative
otherwise. To measure the model performance, we use accuracy, F1 score, precision,
and recall, which are standard metrics for classification problems [Han and Kamber
2006]. Since this is a classification task, we adopt the logit loss to measure the empirical
risk in the online learning algorithms.

Settings. In the training, we randomly generate 20 sets of training data and apply
the rest of the data as the test data. The number of training data is set to the same,
half of the minimum number of data among all individual tasks, which meets the
requirement of Algorithm 1 that there is an instance in a task at each iteration.

First, we tune the parameters as follows.

—For the batch-trained algorithms, the best results are obtained by tuning the pa-
rameters λ in a hierarchical scheme, from a large searching step in the space
to a small searching step in a small region. More specifically, we first try
{10−4, 10−3, 10−2, 10−1, 1} × λmax at the large scale, where λmax is the maximal value
that yields all elements of the learned weight matrix being zero. For a reference,
for the regression task, λmax is about 1,000 for aMTFS and is about 100 for iMTFS,
respectively. For the classification task, λmax is 0.34 for iMTFS and 1.14 for aMTFS,
respectively. Next, we fine-tune the regularization parameter in a small scale.

—For the dual-averaging online learning algorithms, the parameters are tuned by the
grid search scheme. For the regression task, λ is searched from {0.1, 1, 10, 20, 30, 40}.
γ is searched from 0.1, 1, and 10 to 100 with each increment being ten times. For the
classification task, based on rough search, λ is searched in {0.001, 0.01, 0.1, 0.5, 1, 2}
and γ is searched in {0.1, 1, 10 : 10 : 100}. Multiple epoches, that is, cycling through
all the training examples multiple times with a different random permutation for
each epoch, are also conducted to attain better performance. The sparse parameter
in DA-MTFTS is set to 0.01 at each task for simplicity in all the experiments. Here,
we do not put much effort on tuning the sparse parameter for DA-MTFTS since by
this simple setting, we can achieve good performance.

—For FOBOS and SAGE online learning algorithms, the parameter λ is first selected
in a large range from 10−2, 10−1, 1, 10, 102. We then further fine-tune it in a small
scale.
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Table II. Model Performance (explained variance) and the Corresponding NNZs
of the Regression Task on the School Data

Method Explained variance NNZs Parameters

aMTFS 21.0±1.7 815.5±100.6 λ = 300
iMTFS 13.5±1.8 583.0±16.6 λ = 40

DA-aMTFS 20.8±1.8 605.8±180.3 λ = 20, γ = 1
DA-MTFTS 20.8±1.9 483.7±130.7 λ = 20, γ = 1
DA-iMTFS 13.5±1.8 1037.1±21.4 λ = 1, γ = 50

FOBOS-aMTFS 19.0±2.3 1369.3±19.7 λ = 36

SAGE-aMTFS 20.8±1.8 1403.6±15.3 λ = 29

Table III. Model Performance (%) and the Corresponding NNZs of the Classification Task on the School Data

Method Accuracy F1 Precision Recall NNZs Parameters

aMTFS 64.3±0.6 56.1±1.2 68.8±1.5 52.6±2.7 253.4±3.7 λ = 1.14 × 10−4

iMTFS 58.5±0.8 53.9±0.9 55.7±1.4 56.5±1.3 1526.7±34.7 λ = 3.4 × 10−3

DA-aMTFS 64.3±0.9 56.0±1.0 69.8±1.5 50.4±1.2 253.4±1.0 λ = 2, γ = 90
DA-MTFTS 64.3±0.9 57.0±1.5 59.3±1.1 59.5±2.4 236.3±4.4 λ = 2, γ = 90
DA-iMTFS 58.2±0.7 56.3±0.9 54.9±0.9 59.6±1.2 1724.0±30.2 λ = 0.01, γ = 10

FOBOS-aMTFS 62.3±1.0 57.4±0.7 61.0±1.7 58.5±1.4 1400±31.2 λ = 1

SAGE-aMTFS 63.2±0.4 59.1±0.5 59.7±1.0 58.1±1.2 1984.0±0.0 λ = 0.9

Model performance. Table II and Table III report the best performance of the com-
pared algorithms on the regression and classification tasks in the school dataset, re-
spectively. From these two tables, we have the following observations.

—The results of aMTFS versus iMTFS and DA-aMTFS/DA-MTFTS versus DA-iMTFS
clearly show that learning multiple tasks simultaneously can gain over 50% improve-
ment than learning the task individually for the regression task, while it improves
about 10% for the classification task. It indicates that the correlation among tasks
can be learned and utilized to improve the overall performance in this dataset.

—DA-aMTFS and DA-MTFTS attain the same performance, which is nearly the same
as that obtained by aMTFS. Both the number of nonzeros (NNZs) in the weights
learned by DA-aMTFS and DA-MTFTS, respectively, are less than that learned by
aMTFS. More specifically, the NNZs of DA-aMTFS are about 25% less than that
of aMTFS on the regression task. This indicates that the learned DA-aMTFS and
DA-MTFTS contain the succinct property, which will consume less cost in the test
procedure.

—For DA-MTFTS, it learns fewer NNZs, about 20% less than DA-aMTFS on the re-
gression task, while about 7% less on the classification task. This demonstrates an
advantage of DA-MTFTS over DA-aMTFS. That is, the model learned by DA-MTFTS
is easier to interpret and consumes less cost than DA-aMTFS in the test procedure.

—Similarly, DA-iMTFS obtains the same performance as iMTFS. But differently, DA-
iMTFS selects more NNZs than iMTFS.

—Comparing DA-aMTFS with FOBOS-aMTFS, on both tasks, DA-aMTFS achieves
slightly better performance, in terms of explained variance and accuracy, than
FOBOS-aMTFS while the NNZs of DA-aMTFS are much smaller than that of
FOBOS-aMTFS. This again shows the succinctness of DA-aMTFS.

—Comparing SAGE-aMTFS with DA-aMTFS, SAGE-aMTFS attains the same perfor-
mance as DA-aMTFS on the regression task, but attains slightly worse accuracy
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Fig. 2. Trade-off results on the school data with varying regularizer parameter λ and the online algorithm
parameter γ .

than DA-aMTFS on the classification task. But for the F1 score, it is interesting to
know that SAGE-aMTFS attains the best performance and several online learning
algorithms can achieve better performance than the batch-trained algorithms. Our
conjecture is that the parameters are tuned by optimizing the accuracy and the best
parameters for accuracy and F1 score lie in different values.

Sensitivity analysis. Figure 2 and Figure 3 further show the trade-off between the
regularizer parameter λ and the algorithm parameter γ in the dual-averaging online
algorithms for the regression task and the classification task, respectively. In the test,
we first fix one parameter to their best ones and vary the other. The best results of the
batch-mode trained models are also shown for reference. From the results, we have the
following observations.

—The number of nonzero elements (NNZs) decreases as λ increases for all three online
algorithms. By examining the details, NNZs decrease dramatically for DA-iMTFS
when λ is greater than a certain value while for DA-aMTFS and DA-MTFTS, NNZs
maintain at a certain level. In terms of performance, for the regression task, the best
results are obtained when λ = 1 for DA-iMTFS and when λ = 20 for DA-aMTFS and
DA-MTFTS, respectively. For the classification task, the best accuracies are obtained
when λ = 0.01 for DA-iMTFS and λ = 2 for DA-aMTFS and DA-MTFTS, respectively.

—Contrarily, NNZs increase as γ increases. The change of NNZs becomes stable at a
certain range for both tasks. In terms of performance, for the regression task, the
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Fig. 3. Trade-off classification results on the school data with varying regularizer parameter λ and the
online algorithm parameter γ .

best results are obtained when γ = 50 for DA-iMTFS and when γ = 1 for DA-aMTFS
and DA-MTFTS. For the classification task, the best accuracies are obtained when
γ = 10 for DA-iMTFS and γ = 90 for DA-aMTFS and DA-MTFTS, respectively.

The sensitivity analysis indicates that usually for a specific dataset, the best λ and γ
are data dependent and have to be tuned correspondingly.

Learned features interpretation. Figure 4 and Figure 5 show the learned features
across all tasks by aMTFS, DA-aMTFS, and DA-MTFTS, respectively. The results in-
dicate that features learned from the online algorithms are consistent to those learned
from the batch-trained algorithm. That is, the predicted exam score or whether a stu-
dent’s score is above average strongly depends on the students’ VR band and it is
slightly influenced by ethnic background. The school gender and school denomination
are irrelevant features for both tasks. Moreover, it is interesting to find that the online
learning algorithms select fewer features than the batch-trained ones, but can attain
similar performance. This indicates that some features are really redundant to the
target tasks.

The third finding is that DA-MTFTS obtains smaller values in the weight matrices,
that is, promoting more sparsity, than DA-aMTFS. This again verifies the results of
DA-aMTFS and DA-MTFTS in Table II in Table III and the learned weight matrices
shown in Figure 6 and Figure 7.
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Fig. 4. The most important features learned commonly across all 139 schools (tasks) for the regression task.
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Fig. 5. The important features learned commonly across all 139 schools (tasks) in the classification task.

(a) aMTFS (b) DA-aMTFS (c) DA-MTFTS

Fig. 6. Weight matrices learned from aMTFS, DA-aMTFS, and DA-MTFTS, respectively, on the school
dataset for the regression task. Here, the values of the coefficients are represented by different level of
colors. Brighter color indicates smaller absolute value while darker color indicates larger absolute value.

Fig. 7. Weight matrices learned from aMTFS, DA-aMTFS, and DA-MTFTS, respectively, on the school
dataset for the classification task. The values of the coefficients are represented by different colors. Brighter
color means smaller absolute value while darker color means larger absolute value.
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6.2. Conjoint Analysis

In the following, we demonstrate the characteristics and merits of the online learning
algorithms by conducting empirical study on a different real-world dataset, a survey
dataset for conjoint analysis. The objective of conjoint analysis is to estimate respon-
dents’ partworths vectors (weight matrices) while revealing the salient attributes dom-
inating respondents’ utilities [Aaker et al. 2006]. Here, we test on a real-world dataset
about MBA students’ rating on personal computers [Lenk et al. 1996].

Data description. The conjoint analysis dataset [Lenk et al. 1996] consists of 180
students’ rates on the likelihood of purchasing one of 20 different personal computers.
This forms the total number of tasks as Q = 180. The output (response) is an integer
rating on an 11-point scale (0 to 10). The input consists of 13 binary attributes and a
bias term. The binary attributes include telephone hot line (TE), amount of memory
(RAM), screen size (SC), CPU speed (CPU), hard disk (HD), CDROM/multimedia (CD),
cache (CA), color (CO), availability (AV), warranty (WA), software (SW), guarantee
(GU), and price (PR).

Experimental setup.

Task 1: Regression. The original task of the conjoint analysis in Argyriou et al. [2008]
is a regression task, where the first 8 examples per respondent are set as the training
data and the last 4 examples per respondent are set as the test data. The Root Mean
Square Errors (RMSEs) of the predicted from the actual ratings for the test data are
averaged across all respondents to measure the model performance. For this task, the
square loss is used to measure the empirical risk in the training procedure.

Task 2: Classification. To show the learning power of online learning algorithms
for other tasks, we also transform the regression task on the conjoint analysis to a
classification, where a respondent likes (dislikes) a PC depending on whether the rating
score is not less than (less) than the average score on each respondent (task). Hence,
totally, we can generate 180 binary classification tasks. The model performance is also
measured by accuracy, F1 score, precision, and recall, which are standard metrics for
classification problems [Han and Kamber 2006]. For this task, the logit loss is used to
measure the empirical risk in the training procedure.

Settings. To run the online learning algorithms, we let the training data come one
example per respondent sequentially. The parameters are tuned to attain good perfor-
mance via cross-validation by the following procedure.

—The regularizer parameters for the batch-trained algorithms are tuned in a hierarchi-
cal search. More specifically, we first tune the parameter in {10−4, 10−3, 10−2, 0.1, 1}×
λmax, where for the regression task, λmax is 29.9 for iMTFS and 147.5 for aMTFS,
respectively while for the classification task, λmax is 7.64 for iMTFS and 4.70 for
aMTFS, respectively.

—The regularization parameters and the algorithm parameters for the proposed
dual-averaging online learning algorithms are tuned by cross-validation in grid
search. More specifically, after rough test, for the regression task, we fine-tune
λ in {0.1, 0.5, 1, 5, 10, 20} and γ in {0.80, 0.85, 0.90, 0.95, 1, 2, 3}. For the classi-
fication, the fine-tuning range of λ is in {0.1, 0.3, 0.5, 0.7, 0.9, 1, 2} and γ is in
{0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1}, respectively. The sparse parameter of DA-MTFTS
is set to 0.01 at each task for simplicity which also attains good performance as
reported.

—For FOBOS and SAGE online learning algorithms, the parameter λ is first selected
in a large range, 10−2, 10−1, 1, 10, 102. We then fine-tune it in a small scale.
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Table IV. RMSEs and the Corresponding NNZs of the
Regression Task on the Conjoint Analysis Dataset

Method RMSEs NNZs Parameters

aMTFS 1.80 2327 λ = 35.4
iMTFS 1.87 2327 λ = 2.99

DA-aMTFS 1.81 2160 λ = 5, γ = 0.85
DA-MTFTS 1.81 1664 λ = 5, γ = 1
DA-iMTFS 1.87 816 λ = 0.5, γ = 1
FOBOS-aMTFS 1.81 2517 λ = 6

SAGE-aMTFS 1.82 2520 λ = 2

Table V. Model Performance (%) and the Corresponding NNZs of the Classification Task on the
Conjoint Analysis Dataset

Method Accuracy F1 Precision Recall NNZs Parameters

aMTFS 82.1 74.7 74.5 80.3 2160 λ = 7.64 × 10−3

iMTFS 78.0 70.4 68.9 77.2 958 λ = 4.70 × 10−4

DA-aMTFS 81.5 74.0 74.4 79.2 2340 λ = 1, γ = 0.7
DA-MTFTS 81.6 74.6 75.7 79.3 2230 λ = 1, γ = 0.5
DA-iMTFS 77.6 69.5 68.0 75.8 880 λ = 0.1, γ = 1

FOBOS-aMTFS 81.4 74.4 74.0 80.3 2340 λ = 1

SAGE-aMTFS 81.9 74.7 75.3 80.0 2340 λ = 1

Model performance. Table IV and Table V report the best performance, the NNZs,
and the corresponding parameters for the compared algorithms. We have the following
observations.

—Learning multiple tasks simultaneously can attain better performance than learning
them individually, about 4% and 5% for the regression task and the classification
task, respectively.

—Similarly, the online learning algorithms attain close performance to the correspond-
ing batch-trained algorithms.

—SAGE-aMTFS achieves the best performance among all the online learning
algorithms, but it selects more features than DA-MTFTS, which increases the test
cost slightly and reduces interpretation ability of the model.

Sensitivity analysis. Again, we test the trade-off between the regularizer parameter
λ and the algorithm parameter γ and show the results in Figure 8 and Figure 9. We
have the following observations.

—In terms of NNZs, again, NNZs decrease as λ increase and increase as γ increases
for both regression and classification tasks. Hence, we can use them to control the
sparsity of the models.

—In terms of model performance, the trend of model performance is not clear. From the
significant drop of DA-iMTFS in Figure 9(a), we can conclude that when the model
is too sparse, the model is underfitting and yields poor performance.

Learned features interpretation. Figure 10 and Figure 11 plot the learned features
across all tasks by aMTFS, DA-aMTFS, and DA-MTFTS for the regression task and the
classification task, respectively. We can conclude that price is the most important fea-
ture which is strongly negatively correlated to the respondent’s ratings and favorites.
That is, if the price of a PC is high, a respondent usually does not give a high score
for that PC or does not want to buy that PC. Other important features which are also
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Fig. 8. Test performance of the regression task on the conjoint analysis dataset versus the regularizer
parameter λ and the online algorithm parameter γ .

strongly positive to the respondent’s ratings and favorites include RAM, CPU speed,
and CDROM. With these key features, we can make corresponding market advertise-
ments or consider these factors when designing new products.

6.3. Memory and Time Cost Analysis

We first analyze the memory cost of the batch-trained algorithms for MTFS [Liu et al.
2009c] and the proposed online learning algorithms for MTFS. Given Qtasks, consisting
of N samples in d dimensions for each task, the memory cost for the batch-trained
algorithm is bounded by

O(dNQ), (17)

while the memory cost of the online learning algorithms is bounded by

O(dQ). (18)

Hence, the memory cost of online learning algorithms is a huge advantage over the
batch-trained algorithms for large-scale applications.

To demonstrate the efficiency of the online learning algorithms, we first analyze
the time cost of the batch-trained algorithm and the online learning algorithms
from numerical analysis. We next show the convergence properties of online learning
algorithms.

The batch-trained multitask feature selection algorithm we choose is the Nesterov’s
method for MTFS which is proposed in Liu et al. [2009c]. This method is efficient,

ACM Transactions on Knowledge Discovery from Data, Vol. 7, No. 2, Article 6, Publication date: July 2013.



6:20 H. Yang et al.

Fig. 9. Test performance of the classification task on the conjoint analysis dataset versus the regularizer
parameter λ and the online algorithm parameter γ .
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Fig. 10. The salient features learned commonly across all 180 persons (tasks) of the regression task on the
conjoint analysis dataset are shown.

scaling well linearly on the number of training samples, the sample dimensionality,
and the number of tasks. Given Q tasks, consisting of k samples in d dimensions for
each task, the floating point operations (flops) for the batch-trained MTFS are bounded
by

O(dkQ+ dQ) = O (dQk) . (19)

Here, the scenario we consider is an online learning paradigm. That is, the training
samples are available one by one. Hence, for the batched-trained algorithm, when a
new sample comes in, it has to retrain from scratch. When the number of samples for
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Fig. 11. The salient features learned commonly across all 180 persons (tasks) of the classification task on
the conjoint analysis dataset are shown.

Fig. 12. Weight matrices learned from aMTFS, DA-aMTFS, and DA-MTFTS, respectively, of the regression
task on the conjoint analysis dataset. Here, the values of the coefficients are represented by different colors.
Brighter color means smaller absolute value while darker color means larger absolute value.

Fig. 13. Weight matrices features learned from aMTFS, DA-aMTFS, and DA-MTFTS, respectively, of the
classification on the conjoint analysis dataset. Here, the values of the coefficients are represented by different
colors. Brighter color means smaller absolute value while darker color means larger absolute value.

each task comes up to T , the total flops are bounded by

O
(

N∑
k=2

dkQ

)
= O(dQN2). (20)

Our proposed online learning algorithms are different. At each iteration, the worst-
case time complexity is O(dQ) and it can update correspondingly as the samples appear
one by one, when the number of samples for each task is N, the total flops are

O (dQN) . (21)

Comparing Eq. (21) with Eq. (20), the cost of flops reduces by an order of magnitude,
although finally, the precision of the optimal solutions of the online learning algo-
rithms is bounded by O(1/

√
N), which is lower than those of the batched-trained ones
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Fig. 14. Convergence analysis of the regression task on the school dataset (one trial of DA-aMTFS and
DA-MTFTS when λ = 20 and γ = 1).
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Fig. 15. Convergence analysis of the regression task on the school dataset (one trial of DA-aMTFS and
DA-MTFTS when λ = 20, γ = 1, and T ≥ 430).
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Fig. 16. Convergence analysis of the regression task on the school dataset (one trial of DA-aMTFS and
DA-MTFTS when λ = 20 and γ = 10).

bounded by O(1/N2). This sacrifice has no impact for the performance of the tasks since
the proposed dual-averaging algorithms can achieve nearly the same performance as
the batched-trained ones as reported in Tables II through V. However, it is still possible
to improve the precision and to propose an accelerated online learning algorithm. We
leave it as a future work.

Now we turn to analyze the convergence properties of the online learning algorithms
on the regression task of the school dataset3. Figure 14 shows the convergence curves
of DA-aMTFS and DA-MTFTS when λ = 20 and γ = 1, which correspond to the best
performance of these two models on the regression task in this dataset (see Table II).
However, the curves show the both algorithms diverge first and converge finally (see
Figure 14 for the whole curves and Figure 15 for the convergence parts when T ≥ 430).
We find that when γ is small, our proposed dual-averaging online learning algorithms
have the risk of divergency. To verify this, we conduct a test when λ = 20 and γ = 10.
It shows clearly in Figure 16 that DA-aMTFS and DA-MTFTS converge nicely. By
recalling Eq. (11) and Eq. (12), we conjecture that when γ is small, it may yield the
values of the learned weights large and leads to divergence. We also find that the

3More results are referred to http://appsrv.cse.cuhk.edu.hk/∼hqyang/doku.php?id=OLMTFS.
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Fig. 17. Convergence analysis of the regression task on the school dataset (one trial of FOBOS-aMTFS
when λ = 36).
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Fig. 18. Convergence analysis of the regression task on the school dataset (one trial of FOBOS-aMTFS
when λ = 36 and T ≥ 485).
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Fig. 19. Convergence analysis of the regression task on the school dataset (one trial of SAGE-aMTFS when
λ = 29).

divergence-convergence phenomena occurs in FOBOS-aMTFS; see Figure 17 for λ = 36,
one-trail result corresponding to the best performance obtained for FOBS-aMTFS in
Table II and Figure 18 when λ = 36 and T ≥ 485 for the convergence part. For SAGE-
aMTFS, it converges properly in this dataset. However, SAGE-aMTFS usually selects
more features and realizes less interpretation ability than other models; see NNZs in
Tables II through V.

7. CONCLUSIONS

In this article, we study the multitask feature selection problem, which has been
previously applied in various applications. We first propose a new MTFS model to
seek both important features and important tasks dominating the selected features.
We then present the novel online learning framework to solve the MTFS models. More
specially, we derive closed-form solutions to update the weights of three MTFS models.
This guarantees that the online learning algorithms work very efficiently in both time
cost and memory cost. Moreover, we provide theoretical results for the online learning
algorithms. Our detailed empirical evaluation demonstrates the characteristics and
merits of the proposed online MTFS algorithms in various aspects.
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There is future work associated with this work. First, how to propose online nonlinear
MTFS via the random projection method to explore the nonlinearity embedded in the
data, how to balance the weight when the instances of some tasks at each iteration
are missed, and how to break the independently and identically distributed (i.i.d.) as-
sumption to capture the concept drift among the new coming data are three worthwhile
directions to extend our proposed online learning framework to improve its performance
and to increase its real-world applicability. Second, the current proposed online learn-
ing framework attains the regret bound by O(1/

√
N). It is worthwhile to improve the

regret bound and propose accelerated algorithms. Third, it is also promising to extend
the framework from the multitask learning paradigm to other learning paradigms, for
example, multilabel learning paradigm.

PROOF OF THEOREM 5.4

PROOF. In the following, we first prove the result of (a) in Theorem 5.4. Since the
objective of (7) is elementwise for the case of L1,1-norm regularization defined in (4),
we can only consider any one element, say, the (i, j)-th element. By denoting (Ḡi, j)t
and (Wi, j)t+1 with ḡt and wt+1, respectively, we obtain the objective of (7) on the (i, j)-th
element as

ϒ(wt+1) = ḡt · wt+1 + λ|wt+1| + γ

2
√

t
w2

t+1. (22)

If ḡt = 0, obviously, the optimal solution for (22) is wt+1 = 0. Now, we consider the
case of ḡt �= 0. To simplify the analysis, we first assume ḡt > 0, then wt+1 should be
nonpositive. Otherwise, if wt+1 > 0, we have ϒ(−wt+1) < ϒ(wt+1). It means that by
setting wt+1 to its negative, we can obtain a lower objective function value.

Next, if ḡt ≤ λ, then the optimal wt+1 should be zero. Otherwise, we have wt+1 < 0
and ϒ(wt+1) = (ḡt − λ)wt+1 + γ

2
√

t
w2

t+1 > 0 = ϒ(0). This implies that by setting wt+1 = 0
we can obtain a lower objective function value.

Third, if ḡt > λ, by setting the derivative of (22) to zero, we obtain the solution of
that in (10).

If ḡt < 0, we can follow the preceding analysis. Hence, we conclude the proof of (a).
Now, we turn to prove (b) in Theorem 5.4. It is noted that the objective of (7) is

componentwise on one row of W for the case of L1,2-norm regularization defined in (5).
Hence, we focus on one row of W, say W�

j•, and use w to denote it for simplicity.
Correspondingly, we use ḡt to denote (Ḡ j•)t. Then, the objective of (7) on (W�

j•)t becomes

ϒ(wt+1) = ḡ�
t wt+1 + λ‖wt+1‖2 + γ

2
√

t
‖wt+1‖2

2. (23)

It is noted that the optimal wt+1 in (23) should be wt+1 = κḡt with κ ≤ 0. Otherwise,
for the sake of contradiction, we can assume that wt+1 = κḡt + v, where κ ∈ R and v is
in the null space of ḡt. It is easy to verify that v should be a zero vector.

Next, κ > 0 is not the optimal solution. If κ > 0, it can be easily verified that by
setting κ = −κ we can obtain a lower objective function value. Hence, the objective of
Eq. (23) becomes

min
κ≤0

κ‖ḡt‖2
2 − λκ‖ḡt‖2 + γ

2
√

t
κ2‖ḡt‖2

2. (24)

By constructing the Lagrangian of the previous optimization problem, we have ν ≥ 0
and

L(κ, ν) = κ‖ḡt‖2
2 − λκ‖ḡt‖2 + γ

2
√

t
κ2‖ḡt‖2

2 + νκ.
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The Karush-Kuhn-Tucker (KKT) condition [Boyd and Vandenberghe 2004] indicates
that the optimal solution must satisfy

∂L
∂κ

= ‖ḡt‖2
2 − λ‖ḡt‖2 + γ√

t
κ‖ḡt‖2

2 + ν = 0,

νκ = 0.

This leads to

κ = −
√

t
γ

(
1 − λ

‖ḡt‖2
+ ν

‖ḡt‖2
2

)
. (25)

The KKT conditions indicate that the value of κ < 0 iff λ < ‖ḡt‖2. If λ > ‖ḡt‖2, then
ν must be positive and κ should be zero. By substituting (W�

j•)t+1 with wt+1 and (Ḡ�
j•)t

with gt back to (25), we obtain the closed-form solution of Wt+1 as that in Eq. (11).
We now sketch the proof of (c) in Theorem 5.4. Similar to the proof of (b), we use ḡt

to denote (Ḡ�
j•)t and wt+1 to denote (W�

j•)t+1, and c to denote c j for simplicity. Then, the
objective of Eq. (7) on (W�

j•)t+1 becomes

ϒ(wt+1) = ḡ�
t wt+1 + λ(c‖wt+1‖1 + ‖wt+1‖2) + γ

2
√

t
‖wt+1‖2

2. (26)

It is noted that the objective in (26) is elementwise. Hence we consider one element,
say k. The objective of Eq. (26) on (wq)t+1 then becomes

ϒ
(
(wq)t+1

) = (ḡq)t · (wq)t+1 + λc|(wq)t+1| + ξ
(
(wq)2

t+1

)
, (27)

where ξ ((wq)2
t+1) is a nonnegative function on (wq)2

t+1 and ξ ((wq)2
t+1) = 0 iff (wq)t+1 = 0

for all k ∈ [1, Q].
It is noted that the objective of (27) follows the same structure of (22) with the only

difference on the coefficient of the first term. Hence, similar to the proof of (a), we
can first assume (ḡq)t ≥ 0 and can easily conclude that the optimal (wq)t+1 = 0 when
(ḡq)t ≤ λc. Hence, when (ḡq)t ≥ λc, for all q = 1, . . . , Q, the objective of Eq. (26) becomes

ϒ(wt+1) = (ḡt − λc)�wt+1 + λ‖wt+1‖2 + γ

2
√

t
‖wt+1‖2

2. (28)

The aforesaid objective function has the same structure as that in Eq. (23) with the
only difference in the coefficient of the first term. Hence, following the result of (b), we
can define (Ū�

j•)t as that in (13) and obtain a closed-form solution as that in Eq. (12)
for (28). The analysis for (ḡq)t < 0 is similar and we conclude the proof of (c).
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