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a b s t r a c t

Feature selection is an important problem inmachine learning and datamining.We consider the problem
of selecting features under the budget constraint on the feature subset size. Traditional feature selection
methods suffer from the ‘‘monotonic ’’ property. That is, if a feature is selected when the number of
specified features is set, it will always be chosen when the number of specified feature is larger than
the previous setting. This sacrifices the effectiveness of the non-monotonic feature selection methods.
Hence, in this paper, we develop an algorithm for non-monotonic feature selection that approximates the
related combinatorial optimization problem by aMultiple Kernel Learning (MKL) problem.We justify the
performance guarantee for the derived solution when compared to the global optimal solution for the
related combinatorial optimization problem. Finally, we conduct a series of empirical evaluation on both
synthetic and real-world benchmark datasets for the classification and regression tasks to demonstrate
the promising performance of the proposed framework compared with the baseline feature selection
approaches.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Feature selection is an important task in machine learning and
data mining since one is often restricted with budgeted compu-
tational resources, such as the memory size, the CPU speed, the
communication rate, etc., in a large number of real-world applica-
tions. The goal of feature selection is to choose from the input data
a subset of informative features (Huang, Yang, King, & Lyu, 2008;
Yang, King, & Lyu, 2011). It is often used to reduce the computa-
tional cost or save storage space for problems with high dimen-
sional data for problemswith either high dimensionality or limited
computational power. This is helpful to prevent overfitting for
high-dimensional data with relatively small training samples (Tib-
shirani, 1996; Yang, Lyu, & King, 2013; Yang, Xu, King, & Lyu, 2010).
Feature selection has found applications in a number of real-world
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problems, such as data visualization, natural language process-
ing, computer vision, speech processing, bioinformatics, sensor
networks, and groupmethods of data handling (Ivakhnenko, 1995;
Reddy & Ravi, 2012; Tan, Tsang, & Wang, 2014; Thi, Vo, & Dinh,
2014; Wang, Bensmail, & Gao, 2014; Wang, Zhao, Hoi, & Jin, 2014;
Wolf & Shashua, 2005). Comprehensive survey papers of feature
selection can be found in Blum and Langley (1997), Guyon and
Elisseeff (2003) and Kohavi and John (1997). The procedure of fea-
ture selection is analogous to pruning approach inneural networks,
which aims to trim a network within the assumed initial architec-
ture Augasta and Kathirvalavakumar (2013). Moreover, it is im-
portant to note that feature selection is different from feature
extraction (He & Niyogi, 2003; Jolliffe, 1986; Kohonen, 2006),
whichmaps the input data into a reduced representation set of fea-
tures. Comparing with feature extraction, feature selection keeps
the same space as the input data and thus has better interpretabil-
ity for some specific applications.

In this paper, we consider the problem of feature selection
under the budget constraint on the feature subset size. This setting
is important for two reasons. On the one hand, budgeted learning
is a new research aspect ofmachine learning since people are often
facing a fixed budget in the presence of non-uniform cost functions
for the acquisition of feature values, labels, or entire instances, and

http://dx.doi.org/10.1016/j.neunet.2015.08.004
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2015.08.004&domain=pdf
mailto:hqyang@ieee.org
mailto:zlxu@uestc.edu.cn
http://dx.doi.org/10.1016/j.neunet.2015.08.004


H. Yang et al. / Neural Networks 71 (2015) 214–224 215
for prediction errors (Dekel & Singer, 2006; Margineantu, Greiner,
Singliar, & Melville, 2010). On the other hand, the number of
required features also depends on the objective of the task, and
there is no single number of features that are optimal for all tasks.
For example, for data visualization, only two or three features are
necessary. In this work, we assume that an external oracle decides
the number of selected features.

Given the budget of the feature subset size, denoted by m, the
goal of feature selection is to choose a subset ofm features, denoted
by S, that maximizes a generalized performance criterion Q. It is
cast into the following combinatorial optimization problem:

S∗
= argmax

S
Q(S) s.t. |S| = m. (1)

A number of performance criteria have been proposed for feature
selection, including mutual information (Koller & Sahami, 1996),
maximum margin (Guyon, Weston, Barnhill, & Vapnik, 2002;
Weston et al., 2000), kernel alignment (Cristianini, Shawe-Taylor,
Elisseeff, & Kandola, 2001; Neumann, Schnörr, & Steidl, 2005),
worst case classification bounds (Bhattacharyya, 2004; Xu, King,
& Lyu, 2007), graph-spectrum based measures (Zhao & Liu, 2007),
Parzen window (Yu, Ding, & Loscalzo, 2008), clustering-based
measures (Boutsidis, Mahoney, & Drineas, 2009; Fisher, 1996),
PCA-based measures (Malhi & Gao, 2004), and the Hilbert Schmidt
independence criterion (Song, Smola, Gretton, Borgwardt, & Bedo,
2007), etc. Among them, due to the effectiveness, the maximum-
margin-based criterion is probably one of the most widely used
criteria for feature selection.

The computational challenge in solving the optimization
problem in Eq. (1) arises from its combinatorial nature, i.e., a binary
selection of features that maximizes the performance criterion
Q given the number of required features. A number of feature
selection algorithms have been proposed to approximately solve
Eq. (1). Most of them first compute a score or weight for each
feature, and then select the features with the largest scores. For
instance, a common approach is to first learn an SVM model, and
select m features with the largest absolute weights. This idea was
justified in Vapnik (1998) by sensitivity analysis and was also
utilized for feature selection. A similar idea was used in SVM-
Recursive Feature Elimination (SVM-RFE) (Guyon et al., 2002),
where features with smallest weights were removed iteratively.
In Fung and Mangasarian (2000) and Ng (2004), regularization
on the L1-norm of weights was suggested to replace the L2-
norm for feature selection when learning an SVM model. Another
feature selection model related to the L1-norm is lasso (Tibshirani,
1996), which selects features by constraining the L1-norm of
weights. By varying the L1-norm of weights, a regularization path
of selected features can be tracked. A similar model is LARS (Efron,
Hastie, Johnstone, & Tibshirani, 2004), which can be regarded as
unconstrained version of lasso. Other models related to the L1-
norm regularization include the direct optimization over the L1-
norm of the feature indicator (Sonnenburg, Rätsch, Schäfer, &
Schölkopf, 2006; Xu, King, Lyu, & Jin, 2010). In addition to the
optimization on the L2-norm and the L1-norm, several studies
(Bradley & Mangasarian, 1998; Chan, Vasconcelos, & Lanckriet,
2007; Huang, King, & Lyu, 2008; Neumann et al., 2005; Weston,
Elisseeff, Schölkopf, & Tipping, 2003) explored the L0-norm when
computing the weights of features. In Bradley and Mangasarian
(1998), the authors proposed Feature Selection Concave method
(FSV) that uses an approximate of the L0-norm of the weights.
It was improved in Neumann et al. (2005) and Weston et al.
(2003) via an additional regularizer or a different approximation
of the L0-norm. In addition to selecting features by weights, in
Rakotomamonjy (2003), Vapnik (1998) and Weston et al. (2000),
the authors proposed to select features based on R2

∥w∥
2, where R

is the radius of the smallest sphere that contains all the data points.
Although the above approximate approaches have been suc-
cessfully applied to a number of applications of feature selection,
they are limited by the monotonic property of feature selection
that is defined below:

Definition 1 (Non-Monotonic Feature Selection). A feature selec-
tion algorithm A is monotonic if and only if it satisfies the follow-
ing property: for any two different numbers of selected features,
i.e., k and m, we always have Sk ⊆ Sm if k ≤ m, where Sm stands
for the subset of m features selected by A. Otherwise, it is called
non-monotonic feature selection.

To see the monotonic property of most existing algorithms for
feature selection, first note that these algorithms rank features ac-
cording to their weights/scores that are computed independently
from the number of selected featuresm. Hence, if a feature f is cho-
sen when the number of selected features is k, it will also be cho-
sen if the number of selected features m is larger than k. In other
words, f ∈ Sk → f ∈ Sm if k < m, and therefore Sk ⊆ Sm. As
argued in Guyon and Elisseeff (2003), since variables that are less
informative by themselves can be informative together, a mono-
tonic feature selection algorithmmay be suboptimal in identifying
the set of most informative features. To further motivate the need
of non-monotonic feature selection, we consider a binary classifi-
cation problem with three features X, Y , Z . Fig. 1(a)–(c) show the
projection of data points on individual features X, Y and Z , respec-
tively. We clearly see that Z is the most informative feature to the
two classes. Fig. 1(d)–(f) show the projection of data distribution
on the plane of two joint features XY , XZ , and YZ , respectively. We
observe that XY are the two most informative features. Note that
although Z is the single most informative feature, its combinations
with any other feature are not as informative as XY , which justifies
the need of non-monotonic feature selection.

In this paper, we propose a non-monotonic feature selection
method that solves the optimization problem in Eq. (1) approxi-
mately. In particular, we alleviate themonotonic property by com-
puting scores for individual features that depend on the number of
selected features m. We first convert the combinatorial optimiza-
tion problem in Eq. (1) into a formulation that is closely related
to multiple kernel learning (MKL) (Lanckriet, Cristianini, Bartlett,
Ghaoui, & Jordan, 2004; Sonnenburg et al., 2006; Xu, Jin, Ye, Lyu,
& King, 2009; Yang, Xu, King, & Lyu, 2014; Yang, Xu, Ye, King, &
Lyu, 2011). The key idea is to first construct a separate kernel ma-
trix for each feature, and then find the binary combination of ker-
nels that minimizes the margin classification error. We relax the
original combinatorial optimization problem into a convex opti-
mization problem that can be solved efficiently by expressing it as
a Quadratically Constrained Quadratic Programming (QCQP) prob-
lem. We present a strategy that selects a subset of features based
on the solution of the relaxed problem,which can still maintain the
non-monotonic property. This is different from the recent work in
Tan et al. (2014). We furthermore show the performance guar-
antee, which bounds the difference in the value of objective func-
tion between using the features selected by the proposed strategy
and using the global optimal subset of features found by exhaus-
tive search. Our empirical study shows that the proposed approach
performs better than the baselinemethods for feature selection. Fi-
nally, we would like to clarify that although our work involves the
employment of MKL, the focus of our work is not to develop a new
algorithm for MKL, but an efficient algorithm for non-monotonic
feature selection.

The rest of this paper is organized as follows. We present the
non-monotonic feature selection for classification and regression
in Sections 2 and 3, respectively. Sections 4 and 5 present
experimental results with a number of benchmark datasets for
classification and regression, respectively. We conclude our work
in Section 6.
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(a) X . (b) Y . (c) Z .

(d) XY . (e) XZ . (f) YZ .

Fig. 1. A failed example for monotonic feature selection. (a)–(c) show the projection of data distribution on individual features X, Y , and Z , respectively. (d)–(f) show the
projection on the plane of two joint features, respectively. The two classes are denoted by symbols ◦ and ∗, respectively.
2. Non-monotonic feature selection via multiple kernel learn-
ing

In this section, we first show that multiple kernel learning
framework can be utilized for non-monotonic feature selection.
We then present an efficient algorithm to approximately solve
the related discrete optimization problem. Finally, we prove
the performance guarantee of the approximate solution for the
discrete optimization problem.

Let N denote the number of training examples. We denote by
xi ∈ RN the vector of the ith attributes for all the training examples.
Let X = (x1, . . . , xd)⊤, where d is the total number of features. We
denote 1d ∈ Rd as a d-dimensional vector with all elements being
one. We also omit the suffix when the dimensionality d of 1d can
be easily inferred from the context. For a linear kernel, the kernel
matrix (Gram matrix) K is written as: K = X⊤X =

d
i=1 xix

⊤

i =d
i=1 Ki, where a kernel Ki = xix⊤

i is defined for each feature. To
select a subset ofm < d features, we modify K as:

K(p) =

d
i=1

pixix⊤

i =

d
i=1

piKi, (2)

where pi ∈ {0, 1} is a binary variable that indicates if the ith feature
is selected, and p = (p1, . . . , pd). As revealed in Eq. (2), to select
m features, we need to find optimal binary weights pi to combine
the kernels derived from individual features. This observation mo-
tivates us to cast the feature selection problem into a multiple ker-
nel learning problem.

Following the maximum margin framework for classification,
given a kernel matrix K(p) =

d
i=1 piKi, the classification model

is found by solving the following optimization problem:

max
α

2α⊤1 − (α ◦ y)⊤ (K(p) + τ I) (α ◦ y) (3)

s.t. α⊤y = 0, 0 ≤ α ≤ C,
where I is the identity matrix; α is the dual variable for the margin
error; both C and τ are manually set constants; ◦ stands for the
element-wise product between two vectors. Notation 0 ≤ α ≤ C
is a shorthand for 0 ≤ αi ≤ C, i = 1, . . . ,N . If p = 1, then Eq. (3)
reduces to a standard SVM.

We denote by ω(p) the value of the objective function in
Eq. (3), which represents the overall margin errors of the
classificationmodel. The subset ofmmost informative features are
chosen by minimizing ω(p), i.e.,

min
p∈{0,1}d

ω(p) s.t. p⊤1 = m. (4)

Evidently, the challenge with solving the above problem is the
constraint p ∈ {0, 1}d. We thus relax pi in Eq. (4) into a continuous
variable, and have the following continuous optimization problem:

min
0≤p≤1

ω(p) s.t. p⊤1 = m. (5)

Remark. It is important to note that although the objective
function in Eq. (3) appears to be a linear function in p, ω(p) is
NOT a linear function of p because of themaximization. As a result,
Eq. (5) may have a non-discrete solution. To see this, consider the
following problem

min
0≤p≤1,p⊤1=1

max
z∈Rd

2p⊤z − ∥z∥2
2. (6)

Since maxz 2p⊤z − ∥z∥2
2 = ∥p∥

2
2, the optimal solution to Eq. (6) is

pi = 1/d, which is definitely not discrete.

Below, we will discuss how to solve the relaxed min–max
problem in Eq. (5) efficiently, followed by the algorithm that
derives a discrete solution for Eq. (4) based on the optimal solution
to Eq. (5).
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It can be shown that Eq. (5) is equivalent to the following
problem according to Lanckriet et al. (2004):

min
p,t,ν,δ,θ

t + 2Cδ⊤1 (7)

s.t.

K(p) ◦ (yy⊤) + τ I 1 + ν − δ + θy
(1 + ν − δ + θy)⊤ t


≽ 0,

ν ≥ 0, δ ≥ 0, p⊤1 = m, 0 ≤ p ≤ 1.
However, the above formulation is a semi-definite programming
(SDP) problem and is therefore expensive to solve. The following
theorem shows that Eq. (7) can be reformulated into a Quadrati-
cally Constrained Quadratic Programming (QCQP) problem, which
is also justified in Bach, Lanckriet, and Jordan (2004).

Theorem 1. The dual problem of Eq. (7) is

max
α,λ,γ

2α⊤1 − τα⊤α − mλ − γ ⊤1 (8)

s.t. α⊤y = 0, 0 ≤ α ≤ C,

(α ◦ y)⊤Ki(α ◦ y) ≤ λ + γi, i = 1, . . . , d,
γi ≥ 0, i = 1, . . . , d.

The KKT conditions are

(K(p) ◦ yy⊤
+ τ I)α = 1 + ν − δ + θy,

t = α⊤(1 + ν − δ + θy),
ν ◦ α = 0, α ◦ δ = Cδ, γ ◦ (1 − p) = 0,
pi(λ + γi − (α ◦ y)⊤Ki(α ◦ y)) = 0, i = 1, . . . , d.

The proof can be found in Appendix A.
We can now derive properties of the primal and dual solutions

using the KKT conditions in Theorem 1. Before we state the results,
we first rank the features in the descending order of

τi = α⊤(Ki ◦ (yy⊤))α. (9)
We denote by i1, . . . , id the ranked features, and by kmin and kmax
the smallest and the largest indices such that τik = τim for 1 ≤ k ≤

d. We divide features into three sets:
A = {ik|1 ≤ k < kmin}, (10)
B = {ik|kmin ≤ k ≤ kmax}, (11)
C = {ik|kmax < k ≤ d}. (12)

Corollary 1. We have the following properties for λ and p.

λ ∈ [τ1+kmax , τm], pi =


1, i ∈ A,
0, i ∈ C.

(13)

The proof can be found in Appendix B.
The following corollary shows the relationship between Eq. (8)

and the dual problem of SVM in Eq. (3).

Corollary 2. When m = d, i.e., when all the features are selected,
Eq. (8) is reduced to the dual problem of a linear SVM in Eq. (3).

Proof. First, we combine these two constraints λ + γi ≥ α⊤(Ki ◦

(yy⊤))α and γi ≥ 0, and express γi as γi = max(0, τi−λ). We then
rewrite Eq. (8) as follows:

max
α,λ,γ

2α⊤1 − τα⊤α + λ(d − m) −

d
i=1

max(λ, τi) (14)

s.t. α⊤y = 0, 0 ≤ α ≤ C, λ ≥ 0, γ ≥ 0.

When m = d, we have λ = 0 since the linear term λ(m − d) = 0,
and max (λ, τi) = τi since τi ≥ 0. Substituting λ = 0 and
max(λ, τi) = τi in Eq. (14), we have the formulation of a linear
SVM in Eq. (3). �
Remark. The desired number of selected features, i.e.,m, controls
the sparseness of features. It is related to the ν-SVM (Hsuen Chen,
Lin, & Schölkopf, 2005), which bounds the ratio of support vectors.

The following theorem shows how to derive p from the solution
of the dual problem in Eq. (7).

Theorem 2. Given the solution to the dual problem in Eq. (8), denoted
by α, γ , and λ, the solution to the primal problem in Eq. (7) can be
found by solving the following linear programming problem:

min
p,ν,δ

α⊤(K(p) ◦ yy⊤
+ τ I)α + 2C1⊤δ (15)

s.t. (K(p) ◦ yy⊤
+ τ I)α = 1 + ν − δ + θy,

ν ◦ α = 0, α ◦ δ = Cδ, δ ≥ 0, ν ≥ 0,
0 ≤ p ≤ 1, 1⊤p = m, γ ◦ (1 − p) = 0,
pi(λ + γi − (α ◦ y)⊤Ki(α ◦ y)) = 0, i = 1, . . . , d.

Proof. The problem in Eq. (15) can be verified directly using the
KKT conditions in Theorem 1. �

Although Eq. (15) is a linear programming problem, the solution
for p may be not completely discrete due to the constraint

(K(p) ◦ yy⊤
+ τ I)α = 1 + ν − δ + θy. (16)

The following theorem shows the optimal solution to Eq. (15) is
discrete if constraint Eq. (16) is dropped.

Theorem 3. Consider the following problem:

min
p,ν,δ

α⊤(K(p) ◦ yy⊤
+ τ I)α + 2C1⊤δ (17)

s.t. ν ◦ α = 0, α ◦ δ = Cδ, δ ≥ 0, ν ≥ 0,
0 ≤ p ≤ 1, 1⊤p = m, γ ◦ (1 − p) = 0,
pi(λ + γi − (α ◦ y)⊤Ki(α ◦ y)) = 0, i = 1, . . . , d,

where λ, γ , and α are the optimal solution to Eq. (8). An optimal
solution p to Eq. (17) can be obtained by selecting the first m features
with the largest τi (defined in Eq. (9)) and assigning pi = 1 for the
selected features.

Proof. First, notice that an optimal solution for δ and ν to Eq. (17)
is δ = ν = 0. Since Eq. (13) gives binary solutions for pi if i ∈ A∪C,
the only remaining undecided variables for Eq. (17) are {pi|i ∈ B}.
Second, notice that the objective function in Eq. (17) remains the
same no matter which subset of s = m + 1 − kmin features are
selected from B. This is because τj = α⊤(Kj ◦ yy⊤)α = λ for any
j ∈ B. This implies the selection of m features with the largest τi
provides an optimal solution to Eq. (17). �

The above theorem suggests a simple algorithm of deriving a
discrete solution for p based on the value ofα⊤(Ki◦(yy⊤))α, which
is summarized in Algorithm 1.

Algorithm 1 Non-monotonic feature selection via MKL
Input:

• X ∈ Rd×N , y ∈ {−1, +1}N : training data
• m: the number of selected features

Algorithm:

• Solve α for (8)
• Compute τi = (

N
j=1 Xi,jαjyj)2

• Select the firstm features with the largest τi.
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Remark. We can rewrite τi as follows τi = α⊤(Ki ◦ yy⊤)α =

(
N

j=1 αjyjXi,j)
2

= w2
i , wherewi is the weight computed for the ith

feature. Hence, the algorithm described in Algorithm 1 essentially
selects the features with the largest absolute weights. Compared
with the simple greedy algorithm that selects features with the
largest absolute weights computed by SVM, the key difference is
that α used in our algorithm is computed by Eq. (8), not by Eq. (3).

The following theorem shows the performance guarantee of the
discrete solution constructed by Algorithm 1 for the combinatorial
optimization problem in Eq. (4).

Theorem 4. The discrete solution constructed by Algorithm 1,
denoted by p, has the following performance guarantee for the
combinatorial optimization problem in Eq. (4):

ω(p)

ω(p̃∗)
≤

1
1 − σmax(M−1/2BM−1/2)

,

where

M = K(p∗) ◦ (yy⊤) + τ I, B =


j∈B

p∗

j Kj.

The operator σmax(·) calculates the largest eigenvalue. p∗ is the
optimal solution to the relaxed optimization problem in Eq. (5), andp∗ is the global optimal solution to the combinatorial optimization
problem in Eq. (4).

The proof can be found in Appendix C.
As indicated by Theorem 4, the bound for the suboptimality

of the approximate solution depends on the number of selected
features through the set B. Thus, by incorporating the required
number of selected features, the resulting approximate solution
could be more accurate than without it. This suggests that
the proposed algorithm produces a better approximation to the
underlying combinatorial optimization problem Eq. (4).

3. Non-monotonic feature selection for regression

In this section, we discuss how to extend our proposed feature
selection method to solve the regression task. Here, we adopt the
performance measurement related to support vector regression
(SVR) with ε-insensitive loss function (Smola & Schölkopf, 2004;
Vapnik, 1999; Yang, Chan, & King, 2002; Yang, Huang, King, & Lyu,
2009) as our objective function for feature selection.

Similar to the optimization problem in Eq. (5) for classification,
we define the optimization related to regression as follows:

min
0≤p≤1

ω̃(p) s.t. p⊤1 = m. (18)

Note that in the above, we also employ continuous indicator to
approximate the original combinatorial problem related to feature
selection.

The optimization problem related to ω̃(p) is defined as:

ω̃(p) =


max

β
2v⊤β − β⊤Q(p)β

s.t. 0 ≤ β ≤ C, u⊤β = 0,
(19)

where the variable β = [α; α∗
] ∈ R2N , and α, α∗

∈ RN are
the corresponding Lagrange multipliers used to push and pull f (x)
towards the outcome of y, respectively. The linear coefficient v is
defined as [v1; v2], where v1 = [−ε1 + y] and v2 = [−ε1 − y].
u in the equality constraint is defined as [1⊤, −1⊤

]. The matrix
Q(p) ∈ R2N×2N is defined as

Q(p) =


K(p) −K(p)

−K(p) K(p)


.

It is easy to observe that, given p, the optimization problem in
Eq. (19) is a quadratic programming problem with box constraints
and an equality constraint, the same structure in Eq. (3). The only
difference between Eqs. (3) and (19) is that the variables in Eq. (19)
are in 2N-dimensional, double length of the variables in Eq. (3).
Therefore, based on Theorem 1, we have the following theorem:

Theorem 5. The optimization problem in Eq. (18) can be reduced to
the following optimization problem:

max
α,α∗,λ,γ

2(v⊤

1 α + v⊤

2 α∗) − mλ − γ ⊤1 (20)

s.t. 1⊤(α − α∗) = 0, 0 ≤ α, α∗
≤ C,

(α − α∗)⊤Ki(α − α∗) ≤ λ + γi,

γi ≥ 0.

Proof. Similar to the derivative from Eqs. (5)–(7), we can obtain an
SDP problem by calculating the dual of Eq. (18) over β as follows

min
p,t,ν,δ,θ

t + 2Cδ⊤1 (21)

s.t.


Q(p) v + ν − δ + θu
(v + ν − δ + θu)⊤ t


≽ 0,

ν ≥ 0, δ ≥ 0, p⊤1 = m, 0 ≤ p ≤ 1.

We can then derive the dual problem of Eq. (21) over p as
follows

max
β,λ,γ

2v⊤β − mλ − γ ⊤1

s.t. u⊤β = 0, 0 ≤ β ≤ C,

β⊤Qiβ ≤ λ + γi,

γi ≥ 0,

where Qi is defined as Qi =


xix⊤

i −xix⊤
i

xix⊤
i xix⊤

i


.

The derivation is similar to that in Appendix A, where only α is
replaced by β . Restoring the expression of β into α and α∗, we can
obtain the programming problem in Eq. (20). �

Remark. The non-monotonic feature selection via MKL for the
regression task is equivalent to solving a linear objective function
with quadratic constraints, which is a special case of the QCQP.
Finally, a discrete solution for p can be approximated by ranking
the values of β⊤Qiβ . The procedure is summarized in Algorithm 2.

Algorithm 2 Non-monotonic feature selection via MKL for
Regression task
Input:
• X ∈ Rd×N , y ∈ RN : training data
• m: the number of selected features
Procedure:
• Solve α, α∗ in (20)
• Compute τi = (

N
j=1 Xi,j(αj − α∗

j ))
2

• Select the first m features with the largest τi.

4. Experiment on feature selection for classification

We denote by NMMKL the proposed algorithm for non-
monotonic feature selection. The greedy algorithm that selects the
features with the largest absolute weights |wi| computed by SVM
is used as our baseline method, and is referred to as SVM-LW. We
also compare our algorithm to the following baseline approaches
for feature selection in classification:
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Table 1
The test accuracy (%) for the toy dataset. #SF stands for the number of selected features.

#SF NMMKL SVM-LW L0-appr Fisher R2W 2 FSV L1-SVM

1 93.9 ± 1.9 86.4 ± 3.2 85.7 ± 2.9 93.9 ± 1.9 90.3 ± 4.4 86.3 ± 2.7 86.3 ± 3.3
2 99.7 ± 0.5 99.7 ± 0.5 99.7 ± 0.5 94.7 ± 1.8 97.5 ± 2.8 99.4 ± 1.4 99.7 ± 0.5
• Fisher (Bishop, 1996): calculating a Fisher/Correlation score for
each feature.

• FSV (Bradley & Mangasarian, 1998): approximating the L0-
norm ofw by a summation of exponential functions.

• R2W 2 (Weston et al., 2000): adjusting weight w by computing
gradient descents on a bound of the leave-one-out error.

• L0-appr (Weston et al., 2003): approximating the L0-norm by
minimizing a logarithm function.

• L1-SVM (Fung & Mangasarian, 2000): replacing the L2-norm of
wwith the L1-norm in SVM.

For all the methods, features with the largest scores are
selected. For L1-SVM, we use the implementation in Fung and
Mangasarian (2000); for other baseline algorithms, we adopt the
implementations in Spider.1

4.1. Experiment on a synthetic dataset

We first run our experiments over the synthetic dataset that is
illustrated in Fig. 1. We randomly select 400 examples from the
synthetic dataset as the training data and the remaining 100 ex-
amples are used as the test data. We repeat the experiment 30
times. To avoid any side effects caused by scales of different di-
mensions, we normalize each feature to be a Gaussian distribution
with zero mean and unit standard deviation, based on the train-
ing data. The regularization parameter C in all SVM-based feature
selection methods is chosen by a 5-fold cross validation. Parame-
ter τ in our formulation is also tuned by a 5-fold cross validation.
The number of required features is varied from 1 to 2. A linear SVM
using the features selected by different algorithms is used as the
classifier to compute the classification accuracy on the test data.
We report the results averaged over 30 runs in Table 1. When se-
lecting one feature,weobserve that both the proposedNMMKLand
Fisher could identify the most informative feature, i.e., S1 = {Z},
for the toy data. In contrast, the other five algorithms rank Z as
the least informative feature, which leads to relatively low classi-
fication accuracy. When selecting two features, NMMKL and most
of the comparison algorithms are able to identify the best feature
subset S2 = {X, Y }. In contrast, Fisher fails to identify {X, Y } as
the subset of two most informative features. This is because ac-
cording to the monotonic property of Fisher, S2 selected by Fisher
must be a superset of S1, and as a result Z ∈ S2 for Fisher. In con-
clusion, NMMKL successfully identifies the best feature subsets in
both cases. This shows the importance of non-monotonic feature
selection, which requires the ranking procedure in feature selec-
tion to be dependent on the number of selected features.

4.2. Experiment on real-world datasets

The datasets well studied from previous literatures of fea-
ture selection (Guyon et al., 2002; Weston et al., 2003) are em-
ployed in our experiments. We select datasets from three different
data repositories for our evaluation: (a) four binary datasets from
the UCI repository,2 namely Ionosphere, Sonar, Wdbc, and Wpbc;

1 www.kyb.tuebingen.mpg.de/bs/people/spider/.
2 http://archive.ics.uci.edu/ml/.
Table 2
Datasets used in the experiments.

Data dim Num Data dim Num

Iono 34 351 Wdbc 30 569
Wpbc 33 198 Sonar 60 208
Bci 117 400 Digit1 241 1500
Usps 241 1500 Coil 241 1500
Colon 2000 62 Lym 4026 96

(b) three datasets from the Semi-supervised Learning book,3
namely Digit1, Usps, and Bci; and (c) two microarray datasets,4
namely Colon and Lymphoma. Table 2 lists the statistics of the
datasets.

Note that the two microarray datasets are rather challenging
compared to the other datasets since they contain a small number
of data points but have very high dimensionality. Therefore, it is
important to study the effect of feature selectionwhen the number
of features is very large while the number of instances is modest.

For all the datasets, 80% of the examples are randomly selected
as the training data and the remainder are used as the test data.
Every experiment is repeated with 30 random trials. The same
procedure, which was applied to the synthetic dataset, is also
applied to the nine real-world datasets to normalize data and
decide parameters C and τ . To speed up the computation for
the two microarray datasets (i.e., Colon and Lymphoma), Fisher
is first used to select the 1000 features with the largest Fisher
scores as the candidates for feature selection. Features selected by
different algorithms are fed into a linear SVM for training, and the
classification accuracy of test data is used as the evaluationmetric.
The number of selected features is set to be 10 and 20 for the four
UCI datasets, and 10, 20, 40, and 60 for the other five datasets.
This is because Bci, Digit1, Usps, and the two micro-array datasets
contain examples with significantly higher dimensionality than
theUCI datasets, and therefore allow for larger numbers of selected
features.

We present the classification results for the four UCI datasets in
Table 3 and the results of the remaining datasets in Fig. 2.5 First,
we compare the proposed feature selection method to SVM-LW.
We observe that for almost all the cases, the proposed approach
outperforms SVM-LW. For several datasets with different number
of selected features (e.g., Colon and Sonar with 10 and 20 features),
the improvement is significant. As revealed in Corollary 2, the
proposed algorithm is similar to SVM-LW except that the weights
α are computed differently. Thus, this result indicates that α
computed by the proposed approach is more effective for feature
selection than those computed by SVM. Second, we compare
the proposed method to the other state-of-the-art approaches
for feature selection. Among all the competitors, we found that
methods L0-appr and L1-SVM overall deliver good performance
across all the datasets. We find that overall the proposed approach
performs slightly better than L0-appr and L1-SVM for most of
the cases. For datasets Sonar and Bci, the improvement made
by the proposed algorithm is statistically significant (Student’s-t)

3 www.kyb.tuebingen.mpg.de/ssl-book/.
4 www.kyb.tuebingen.mpg.de/bs/people/weston/l0/.
5 Since R2W 2 and FSV are time consuming on high dimensional datasets, we do

not include their results.

http://www.kyb.tuebingen.mpg.de/bs/people/spider/
http://archive.ics.uci.edu/ml/
http://www.kyb.tuebingen.mpg.de/ssl-book/
http://www.kyb.tuebingen.mpg.de/bs/people/weston/l0/
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Table 3
The classification accuracy (%) on real-world datasets. The best result and those not significantly worse than it (achieved by t-test with
95% confidence level), are highlighted by the bold font in each case.

Data #SF NMMKL SVM-LW L0-appr Fisher R2W 2 FSV L1-SVM

Sonar 10 75.0 ± 2.3 71.4 ± 4.6 69.8 ± 5.9 69.3 ± 5.9 64.3 ± 7.1 71.4 ± 5.1 70.0 ± 6.0
20 75.0 ± 5.8 72.1 ± 5.8 74.1 ± 4.8 72.4 ± 3.4 70.7 ± 4.6 73.1 ± 4.2 72.1 ± 4.4

Iono 10 86.1 ± 3.7 85.3 ± 5.2 85.6 ± 5.0 84.3 ± 5.0 86.0 ± 4.3 82.4 ± 5.6 86.6 ± 4.0
20 87.3 ± 4.1 86.4 ± 4.7 85.7 ± 4.7 85.1 ± 3.8 85.1 ± 4.8 86.7 ± 3.4 86.6 ± 3.8

Wdbc 10 97.0 ± 1.0 95.1 ± 0.8 96.0 ± 0.8 94.6 ± 1.7 93.5 ± 1.2 94.2 ± 1.0 96.3 ± 0.4
20 97.4 ± 0.6 97.4 ± 0.5 97.2 ± 1.0 97.4 ± 0.6 94.6 ± 1.0 96.5 ± 1.0 97.0 ± 0.5

Wpbc 10 79.5 ± 4.8 78.3 ± 4.7 79.8 ± 6.0 78.2 ± 5.2 78.0 ± 5.1 78.0 ± 5.1 79.0 ± 6.4
20 81.2 ± 5.0 80.7 ± 5.2 80.4 ± 4.7 80.1 ± 4.7 79.3 ± 3.9 78.6 ± 4.6 78.0 ± 6.7
(a) Bci. (b) Digit1. (c) Usps.

(d) Coil. (e) Colon. (f) Lym.

Fig. 2. The classification accuracy of feature selection algorithms.
when compared to L0-appr and L1-SVM. Note that although the
proposed algorithm does not always deliver the best performance,
it consistently performs well across all the datasets for different
numbers of selected features. In contrast, we observe that both L0-
appr and L1-SVMcould have poor performance for certain datasets.
For instance, when the number of selected features is 10, L0-
appr does not perform well on Colon and Bci, and L1-SVM fails
to deliver good performance for Sonar. Finally, we conduct the
pairwise paired t-test to compare the performance of the proposed
algorithms to the five baselines. We found that the proposed non-
monotonic feature selection algorithm is better or not significantly
worse than other methods in almost all cases when p value is 0.05.
We would like to note that the variance in classification accuracy
is significantly larger for the two micro-array datasets than the
others. This may be attributed by the very high dimensions of the
two datasets.

5. Experiments on feature selection for regression

We denote by NMMKLR the proposed algorithm for non-
monotonic feature selection on regression. We conduct empirical
evaluation on both synthetic data and real-world benchmark
datasets and compare NMMKLR with the following baseline
methods:
• Stepwise: the forward stepwise feature selection method
(Bi, Bennett, Embrechts, Breneman, & Song, 2003; Guyon &
Elisseeff, 2003),6

• SVR-LW: features are selectedwith the largest absoluteweights
|wi| computed by SVR (Smola & Schölkopf, 2004),

• LASSO-LW: features are selected with the largest absolute
weights |wi| computed by LASSO (Tibshirani, 1996).

5.1. Experiment on toy data

We first run the experiments on toy dataset. The toy data
consisting of d(= 12) dimensions are generated similarly to the
additive model in Bi et al. (2003):

yi =

4
j=1

jxji + ex5i , (22)

where yi denotes the response for the ith sample and xj denotes the
jth feature, for j = 1, . . . , 12. xji denotes the element of the jth fea-
ture on the ith sample. Here, only the first five features contribute

6 http://www.robots.ox.ac.uk/~parg/software/fsbox_1_0.tar.

http://www.robots.ox.ac.uk/%7Eparg/software/fsbox_1_0.tar
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(a) NMMKLR, #SF = 5. (b) Stepwise, #SF = 5. (c) NMMKLR, #SF = 6. (d) Stepwise, #SF = 6.

Fig. 3. Scatter plots of the pairs (y, ŷ). Fig. (a) and Fig. (c) show the plot of NMMKLR when the number of selected features is equal to 5 and 6, respectively. Fig. (b) and
Fig. (d) show the plot of Stepwise regression when the number of selected features is equal to 5 and 6, respectively. It can be observed that (a) is thinner than (b) and (c) is
thinner than (d).
to the response and each of them is generated from an indepen-
dently and identically distributed normal distribution. The rest 7
features are generated as follows: the 6-th feature is x6 = x1 + 1,
which is correlated to x1; the 7-th feature is x7 = x2 ◦ x3, which is
the element-wise product of x2 and x3; the rest five features, i.e.,
x8, . . . , x12, generated by standard normal distribution, are totally
irrelevant to the response yi. For convenience, we also denote the
irrelevant features by NV 1, . . . ,NV 5, respectively.

We conduct two batches of experiments, where the numbers
of required features are set up 5 and 6, respectively. Then in each
batch of experiment, we randomly generate 200 samples and hold
out 50% of the samples for training while keeping the rest for test.
Each experiment is then repeated 20 times.

In order to examine the property of the selected features, we
list the top 5 and 6 selected features returned for all algorithms in
Table 4. Obviously, our method can stably select those important
features while SVR-LW also selects features relatively stable.
However, the selected features by the forward stepwise feature
selection method and the LASSO-LW method are unstable, and
some irrelevant features are includedwhen the number of selected
features is greater than 5.

To further evaluate the regression performance on the selected
features, we employ Support Vector Regression (SVR) as the
regression model. We tune the hyperparameters C and ε, of SVR
through five-fold cross validation on the training data with the top
5, the top 6, and all the features. The hyperparameter of SVR, C ,
is chosen uniformly from the interval [100, 103

] on a logarithmic
scale and ε is chosen in [0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2].

We adopt the following two performance measures:

(1) the Mean Square Error (MSE), which is defined as MSE =N
i=1(yi − ŷi)2/N , where ŷi is the prediction of yi for the ith

test sample;

(2) the Q 2 statistics, defined as Q 2
=

N
i=1(yi−ŷi)2

(yi−ȳi)2
, which is scaled

by the variance of the response, where ȳ is the mean of the
actual response.

Finally, we show the evaluation results on four compared
algorithms in Table 5. It can be observed that the proposed
NMMKLR outperforms other three methods in both of the MSE
and Q 2 measures in all cases. Moreover, the paired t-test with the
confidence level of 95% indicates that the advantage of NMMKLR is
significant. To better visualize the difference between the response
values predicted by the feature selection algorithms, we plot the
pairs of observed response and predicted response, i.e., ⟨y, ŷ⟩, for
the NMMKLR and the Stepwise selection method. The results are
shown in Fig. 3. Ideally, if the MSE is zero, all the points should
drop on the line y = ŷ. Thus a scatter plot with smaller areas will
be better. We observe from Fig. 3 that the proposed NMMKLR has
a better performance in both cases.
Table 4
Top 5 and 6 selected features (ordered) from NMMKLR, the forward stepwise
feature selection, the greed selection by SVR, the greed selection by LASSO within
20 trials on the synthetic dataset. The stepwise and the LASSO-LWmethods include
some irrelevant features when the number of selected features is greater than six.

Method Times #SF = 5 Times #SF = 6

NMMKLR 19 4, 3, 2, 5, 1 20 4, 3, 2, 5, 1, 61 4, 3, 2, 5, 6

Stepwise

8 4, 3, 2, 5, 1, 6
10 4, 3, 2, 5, 1 3 4, 3, 5, 2, 6, 1

2 4, 3, 2, 5, 6, 8 (NV 1)
6 4, 3, 2, 5, 6 1 3, 4, 2, 5, 6, 1

1 4, 3, 2, 5, 6, 1
2 4, 3, 5, 2, 6 1 4, 3, 2, 5, 1, 9 (NV 2)

1 4, 3, 2, 5, 1, 11 (NV 4)
2 3, 4, 2, 6, 5 1 4, 3, 2, 5, 6, 9 (NV 2)

1 4, 3, 2, 5, 6, 10 (NV 3)
1 4, 3, 2, 5, 6, 12 (NV 5)

SVR-LW 10 4, 3, 2, 5, 1 10 4, 3, 2, 5, 1, 6
10 4, 3, 2, 5, 6 10 4, 3, 2, 5, 6, 1

LASSO-LW

4 4, 3, 2, 5, 1, 8 (NV 1)
3 4, 3, 2, 5, 1, 10 (NV 3)

15 4, 3, 2, 5, 1 3 4, 3, 2, 5, 1, 12 (NV 5)
2 4, 3, 2, 5, 1, 9 (NV 2)
2 4, 3, 2, 5, 1, 11 (NV 4)

4 4, 3, 2, 5, 6 1 4, 3, 2, 5, 1, 7
1 4, 3, 2, 5, 6, 8 (NV 1)
1 4, 3, 2, 5, 6, 9 (NV 2)
1 4, 3, 2, 5, 6, 10 (NV 3)

1 4, 3, 2, 6, 5 1 4, 3, 2, 5, 6, 11 (NV 4)
1 4, 3, 2, 6, 5, 12 (NV 5)

5.2. Experiment on real-world benchmark datasets

We employ two real-world benchmark datasets, the Boston
Housing problem (Harrison&Rubinfeld, 1978), and the Forest Fires
dataset (Cortez & Morais, 2007), to evaluate the above four feature
selection algorithms.

5.2.1. Experiment on the Boston Housing dataset
The Boston Housing problem (Harrison & Rubinfeld, 1978) is

a popular benchmark dataset for evaluating regression models.
It consists of 506 instances with 13 continuous features, such
as crime rate, lower status of the population, etc. The response
variable is the median value of owner-occupied homes in $1000’s,

In the experiment, we normalize the continuous features in the
range of [−1, 1] and hold out half of samples for training while
keeping the rest for test. The parameters of SVRs are tuned on the
training data with the top 5, the top 6, and all features, where C
is chosen uniformly from the interval [100, 103

] on a logarithmic
scale and ε is chosen from [0.01, 0.1, 0.5, 1 : 0.5 : 10], where
the notation of 1 : 0.5 : 10 is the same definition as the Matlab
notation.
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Table 5
The test performance (MSE and Q 2) on the synthetic dataset evaluated by the four compared algorithms. The best results
are highlighted (achieved by the paired t-test with 95% confidence level).

#SF NMMKLR Stepwise
MSE Q 2 MSE Q 2

5 1.1599 ± 0.6977 0.0339 ± 0.0186 1.2156 ± 0.6893 0.0356 ± 0.0183
6 1.1600 ± 0.6977 0.0339 ± 0.0186 1.2352 ± 0.6787 0.0362 ± 0.0180

#SF SVR-LW LASSO-LW
MSE Q 2 MSE Q 2

5 1.2128 ± 0.7421 0.0353 ± 0.0198 1.2156 ± 0.6893 0.0356 ± 0.0183
6 1.2127 ± 0.7422 0.0353 ± 0.0198 1.2553 ± 0.6716 0.0368 ± 0.0178
Table 6
The results of two performance measures (MSE and Q 2) on the Housing dataset
when varying the number of selected features by the NMMKLR and the stepwise
feature selection, the SVR-LW, and the LASSO-LW method. The best results on
feature selection are highlighted (achieved by the paired t-test with 95% confidence
level).

#SF NMMKLR Stepwise
MSE Q 2 MSE Q 2

5 25.65 ± 2.36 0.3208 ± 0.0329 26.24 ± 2.41 0.3281 ± 0.0326
6 25.07 ± 2.50 0.3131 ± 0.0290 25.39 ± 2.69 0.3174± 0.0344

#SF SVR-LW LASSO-LW
MSE Q 2 MSE Q 2

5 26.95 ± 3.12 0.3365 ± 0.0368 26.25 ± 2.57 0.3283 ± 0.0345
6 26.75 ± 2.94 0.3342 ± 0.0360 25.83 ± 2.41 0.3232 ± 0.0344

Since the forward stepwise feature selection method can only
select 5 features sometimes when the significance level is set to
0.05, for a fair comparison, we set the numbers of selected features
to be 5 and 6 for two batch of experiments. We then calculate the
MSE and Q 2 values of the SVRs trained in these selected features
and report the results in Table 6. It can be observed that the
regression results by NMMKLR are significantly better than those
selected by SVR-LW, LASSO-LW, and the forward stepwise feature
selection method in both cases.

5.2.2. Experiment on the forest fires dataset
The Forest Fires dataset (Cortez & Morais, 2007) is a very

difficult regression task, whose objective is to predict the burned
area of forest fires. It consists of 517 instances with 12 features,
such as x/y-axis spatial coordinate within the Montesinho park
map, month/date, etc. The response variable is the burned area
of the forest. Since some attributes may be correlated, performing
features selection is possible to improve the performance of the
regression task.

In the experiment, values in the 12 features are normalized in
the range of [−1, 1]. Since the output response is in the range
[0.0, 1090.84] and is very skewed towards 0.0, we transform it by
a logarithm, i.e., ỹi = log(yi + 1). Similarly, we hold out half of the
data for trainingwhile using the rest data for test. The test is on the
log-scaled output (ỹ). For SVR, the hyper-parameter, C , is chosen
uniformly from the interval [10−5, 101

] on a logarithmic scale and
ε is chosen from [0.1, 0.1, 0.5, 1, 1.5, 2].

As the forward stepwise feature selection method only can
select few features (less than 4) when the significance level is set
to 0.05, for a fair comparison, we test the NMMKLR with m =

1, 3. We then calculate the two performance measures, i.e., MSE
and Q 2, for SVRs trained on the selected features. The results are
shown in Table 7. The better results are highlighted according to
the paired t-test with 95% confidence level. It can be observed that
the regression results by NMMKLR are significantly better than
those selected by the forward stepwise feature selectionmethod in
both cases, and also outperform the results on SVR-LW, and LASSO-
LW.
6. Conclusion

This paper presents a new framework of non-monotonic feature
selection that considers the number of selected features during
searching for the optimal feature subset. We develop an efficient
algorithm via multiple kernel learning to approximately solve the
original combinatorial optimization problem. We further propose
a strategy to derive a discrete solution for the relaxed problem
with performance guarantee. Our empirical evaluation on both
synthetic datasets and a number of benchmark real-world datasets
for the classification and regression tasks shows the promising
performance of the proposed framework.

For future work, we aim to employ more efficient optimization
techniques to solve large scale non-monotonic feature selection
problems. Moreover, it is desirable to extend the current non-
monotonic feature selectionmethod to nonlinear feature selection.
We leave this as an open problem and our long term goal.
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Appendix A. Proof of Theorem 1

Proof. We introduce dual variables Z, α, and s for the LMI
constraint in Eq. (7), ην and ηδ for ν ≥ 0, q for p ≥ 0, and λ for
p⊤1 = m. The Lagrangian function is then calculated as:

L = t + 2Cδ⊤
−

d
i=1

pitr((Ki ◦ yy⊤)Z) − τ tr(Z)

− ts + 2α⊤(1 + ν − δ + θy) − η⊤

ν ν − η⊤

δ δ

− p⊤q − γ ⊤(1 − p) + λ(p⊤1 − m).

By setting the first order derivative to be zero, we have

s = 1, α⊤y = 0, 2α = ην ≥ 0, (23)
α + ηδ = C1, (24)

λ + γi − Z(Ki ◦ yy⊤) = qi ≥ 0. (25)

We then have the following dual problem:

max −τ tr(Z) + 2α⊤1 − γ ⊤1 − mλ (26)
s.t. Z ≽ αα⊤, 0 ≤ α ≤ C, α⊤y = 0,

λ + γi ≥ tr(Z(Ki ◦ yy⊤)), i = 1, . . . , d.
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Table 7
The results of two performance measures (MSE and Q 2) on the Forest Fires dataset when varying the number of selected
features by theNMMKLR and the stepwise feature selection, SVR-LW, and LASSO-LW. The best results on feature selection
are highlighted (achieved by the paired t-test with 95% confidence level).

#SF NMMKLR Stepwise
MSE Q 2 MSE Q 2

1 1.9662 ± 0.1412 1.0077 ± 0.0056 2.0046 ± 0.1476 1.0276 ± 0.0295
3 1.9663 ± 0.1412 1.0077 ± 0.0057 2.0046 ± 0.1476 1.0276 ± 0.0295

#SF SVR-LW LASSO-LW
MSE Q 2 MSE Q 2

1 1.9805 ± 0.1450 1.0149 ± 0.0081 1.9802 ± 0.1416 1.0147 ± 0.0320
3 1.9792 ± 0.1458 1.0142 ± 0.0086 1.9754 ± 0.1655 1.0142 ± 0.0146
Since tr(Z) ≥ tr(αα⊤) and tr(Z(Ki ◦ yy⊤)) ≥ tr(αα⊤(Ki ◦ yy⊤)),
it is clear that setting Z = αα⊤ leads to the maximization of the
objective function. Using Z = αα⊤, it is straightforward to simplify
Eq. (26) into Eq. (8).

Using the equations from Eqs. (23) to (25) and complementary
slackness conditions, we have

2α = ην, ην ◦ ν = 0 ⇒ α ◦ ν = 0,
α + ηδ = C1, ηδ ◦ δ = 0 ⇒ α ◦ δ = Cδ,

γi(1 − pi) = 0, i = 1, . . . , d,
qipi = 0, qi = λ + γi − (α ◦ y)⊤Ki(α ◦ y) ⇒

pi(λ + γi − (α ◦ y)⊤Ki(α ◦ y)) = 0, i = 1, . . . , d.

Using the KKT condition
K(p) ◦ (yy⊤) + τ I 1 + ν − δ + θy
(1 + ν − δ + θy)⊤ t

 
Z −α

−α⊤ s


= 0,

Z = αα⊤, and s = 1, we have
K(p) ◦ (yy⊤) + τ I 1 + ν − δ + θy
(1 + ν − δ + θy)⊤ t

 
−α
1


= 0,

which results in the KKT conditions stated in the theorem. �

Appendix B. Proof of Corollary 1

Proof. First, we show Eq. (8) can also be rewritten as

max 2α⊤1 − τα⊤α − max
p∈D

α⊤(K(p) ◦ yy⊤)α, (27)

where D = {p|1⊤p = m, 0 ≤ p ≤ 1}. This is because for any
p ∈ D , we have

mλ +

d
i=1

γi ≥

d
i=1

pi(λ + γi) ≥ α⊤(K(p) ◦ yy⊤)α.

Since maxp∈D α⊤(K(p) ◦ yy⊤)α =
m

k=1 τik , we have mλ +d
i=1 γi =

m
k=1 τik . Since τik ≤ λ+γik , we have τik = λ+γik , k =

1, . . . ,m, which leads toλ ≤ τim and γik = 0 if k ≥ kmax. Moreover,
due to λ + γik ≥ τik for any k ≥ kmax, we have λ ≥ τi1+kmax

. Since
γik + λ = τik for k ≤ kmin and λ ≤ τim , we have γik > 0 when
k < kmin.

Using the KKT conditions in Theorem 1, i.e.,

0 = γ ◦ (1 − p) = 0,
0 = pi(λ + γi − (α ◦ y)⊤Ki(α ◦ y)), i = 1, . . . , d,

we have pik = 1 if k < kmin and 0 if k > kmax, which is the result
in Eq. (13). �
Appendix C. Proof of Theorem 4

Proof. Let S ⊂ B denote the subset of m + 1 − kmin features that
are selected by Algorithm 1. We denote by pS the corresponding
discrete solution for p. We denote by ν∗, δ∗, and θ∗, the optimal
solution to Eq. (7) in addition to p∗.

We first express ω(pS) as an optimization problem, i.e.,
ω(pS) = minν≥0,δ≥0,θ φ(ν, δ, θ, pS), where

φ(ν, δ, θ, p) = 2Cδ⊤1 + (1 + ν − δ + θy)⊤(K(p) ◦ yy⊤
+ τ I)−1

× (1 + ν − δ + θy).

Weupper boundω(pS) by substituting (ν, δ, θ) = (ν∗, δ∗, θ∗), i.e.,
ω(pS) ≤ φ(ν∗, δ∗, θ∗, pS). Using the KKT conditions in Theorem 1,
we have

1 + ν∗
− δ∗

+ θ∗y = (K(p∗) ◦ yy⊤
+ τ I)α = Mα.

We then focus on bounding

t = (Mα)⊤(K(pS) ◦ yy⊤
+ τ I)−1Mα.

Based on the Schur complement, we have

t = argmin
z

z

s.t.

K(pS) ◦ yy⊤

+ τ I Mα

(Mα)⊤ z


≽ 0. (28)

We rewrite K(pS) ◦ yy⊤
+ τ I as

K(pS) ◦ yy⊤
+ τ I = M + AS − B,

where

AS =


j∈S

Kj ◦ yy⊤, B =


j∈B

p∗

j Kj ◦ yy⊤.

We introduce a parameter ρ, and relax the condition in Eq. (28) as
follows:

(1 − ρ)(M + AS − B) (M + AS − B)α

((M + AS − B)α)⊤ t1


≽ 0,

ρ(M + AS − B) (B − AS)α

((B − AS)α)⊤ t2


≽ 0,

t1 + t2 ≥ t.

We thus have

t ≤
α⊤Mα

1 − ρ
− α⊤


(B − AS)(M + AS − B)−1V


α,

where

V =
1

1 − ρ


M −

B − AS

ρ


.
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By choosing ρ∗
= σmax(M−1/2BM−1/2) ≤ 1 where the operator

σmax(·) calculates the maximal eigenvalue, we have V ≽ 0 and
t(1 − ρ∗) ≤ α⊤Mα. Thus, the performance bound is

ω(pS)

ω(p∗)
≤

ω(pS)

ω(p∗)
≤

t + 2C1⊤δ∗

α⊤Mα + 2C1⊤δ∗
≤

1
1 − ρ∗

. �
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