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Abstract—Symbolic execution has become an indispensable technique for software testing and program analysis. However, since

several symbolic execution tools are presently available off-the-shelf, there is a need for a practical benchmarking approach. This

paper introduces a fresh approach that can help benchmark symbolic execution tools in a fine-grained and efficient manner. The

approach evaluates the performance of such tools against known challenges faced by general symbolic execution techniques, e.g.,

floating-point numbers and symbolic memories. We first survey related papers and systematize the challenges of symbolic execution.

We extract 12 distinct challenges from the literature and categorize them into two categories: symbolic-reasoning challenges and

path-explosion challenges. Next, we develop a dataset of logic bombs and a framework for benchmarking symbolic execution tools

automatically. For each challenge, our dataset contains several logic bombs, each addressing a specific challenging problem.

Triggering one or more logic bombs confirms that the symbolic execution tool in question is able to handle the corresponding problem.

Real-world experiments with three popular symbolic execution tools, namely, KLEE, angr, and Triton have shown that our approach

can reveal the capabilities and limitations of the tools in handling specific issues accurately and efficiently. The benchmarking process

generally takes only a few dozens of minutes to evaluate a tool. We have released our dataset on GitHub as open source, with an aim

to better facilitate the community to conduct future work on benchmarking symbolic execution tools.

Index Terms—Symbolic execution

Ç

1 INTRODUCTION

SYMBOLIC execution is a popular technique for software
testing and program analysis [1]. It has experienced

rapid development over the last decade. As a result, several
open-source symbolic execution tools such as KLEE [2] and
angr [3] have become available. Current methods for evalu-
ating symbolic execution tools generally rely on the code
coverage achieved or the number of bugs detected in real-
world programs [2], [4]. However, the performances of such
metrics often depend on the particular type of programs
being analyzed. Also the metrics cannot fully capture the
detailed capabilities or limitations of the symbolic execution
tool. This paper proposes a fine-grained benchmarking
approach which is less sensitive to targeting programs.

There are certain challenging problems most symbolic
execution tools are unable to handle well, e.g., floating-point
numbers [5] and loops [6]. Since these point to factors deter-
mining the code coverage that a symbolic execution tool can
achieve, we develop a benchmarking approach based on
known challenges. Specifically, we view each challenge as
an evaluation metric such that we can extract more

meaningful information concerning the capability of the
symbolic execution tool. The benchmarking result is unbi-
ased as it does not depend on particular programs for
analysis.

We first conduct a systematic survey of the challenges
associated with symbolic execution. This step is essential
for ensuring that our benchmarking approach is capable
of addressing as many distinct challenges as possible.
We categorize existing challenges into two categories:
symbolic-reasoning challenges and path-explosion challenges.
Symbolic-reasoning challenges attack the core symbolic
reasoning process, whenever it incurs errors for symbolic
execution tools to generate incorrect test cases for particu-
lar control flows. These challenges include symbolic vari-
able declarations, covert propagations, parallel executions,
symbolic memories, contextual symbolic values, symbolic
jumps, floating-point numbers, buffer overflows, and
arithmetic overflows. Path-explosion challenges introduce
too many possible control flows to analyze, which may
cause a symbolic execution tool starving the computa-
tional resources or spending very long time on exploring
the paths. Not only large-sized programs but also small-
sized programs can lead to path-explosion issues, arising
from complex routines, such as external function calls,
loops, and crypto functions. This ensures that all existing
challenges discussed in the literature can be well
categorized.

Next, we develop an accurate and efficient approach for
benchmarking the capability of symbolic execution tools
with respect to each of the challenges. Interestingly, we can-
not employ real-world programs for testing because they
are too complicated and any challenges could lead to a
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failure. Moreover, symbolic execution itself is not very effi-
cient, and benchmarking using real-world programs gener-
ally takes a long time. We tackle this problem by designing
small programs embedded with logic bombs. A logic bomb
is an artificial code block that can only be executed when
certain conditions are met. We create logic bombs that can
be triggered only when a challenging problem is solved.
The benefits of doing this are two-fold. First, since we keep
each logic bomb as small as possible, our evaluation result
is less likely to be affected by other unexpected issues. Sec-
ond, employing small programs can shorten the required
symbolic execution time and improves efficiency.

Following this method, we designed a dataset of logic
bombs covering all the challenges. This lead to the develop-
ment of a framework for running benchmarking experiments
automatically. For each challenge, our dataset contains sev-
eral logic bombs with different problem settings or different
levels of hardness, e.g., a one-leveled array or a two-leveled
array is designed for the specific symbolicmemory challenge.
Our framework employs the dataset of logic bombs as evalu-
ation metrics. It first parses the logic bombs and compiles
them to object codes or binaries. Next, it directs a symbolic
execution tool to symbolically execute the logic bombs in a
batch mode. Finally, it verifies the test cases generated and
produces reports. We have released our dataset and frame-
work tools on GitHub.

We have conducted real-world experiments to bench-
mark three popular symbolic execution tools: KLEE [2], Tri-
ton [13], and angr [3]. Although these tools adopt different
implementation techniques, our framework can adapt to
them with only a little customization. The benchmarking
process for each tool usually takes dozens of minutes.
Experimental results have shown that our benchmarking
approach can reveal their capabilities and limitations accu-
rately and efficiently. Overall, angr has achieved the best
performance with 22 cases solved, which is roughly one
third of the total logic bombs; KLEE solved nine cases; and
Triton could only solve three cases. We manually checked
the reported solutions and confirmed that they were all non-
trivial and consistent. Moreover, our results lead to certain
interesting findings about these tools. For example, angr
only supports one-leveled arrays but not two-leveled arrays
while Triton does not even support the atoi function. Most
of our findings are new, which further justifies the value of
our benchmarking approach.

The rest of the paper is organized as follows. We first
discuss the related work in Section 2 and introduce the
preliminary knowledge of symbolic execution in Section 3.

Next, in Section 4, we examine the challenges of symbolic
execution. Section 5 introduces our benchmarking meth-
odology while Section 6 presents our experiments and
results. Finally, Section 7 concludes our paper.

2 RELATED WORK

This section compares our work against papers that either
systematize the challenges of symbolic execution or employ
the challenges to evaluate symbolic execution tools. Note
that although symbolic execution has received extensive
attention for decades, only a few papers include a system-
atic discussion about the challenges associated with the
technique being examined. Previous work in this area has
focused mainly on how the technique could be used to carry
out specific software analysis tasks (e.g., [14], [15], [16]), or
proposing new approaches to improve the technology in
relation to specific challenges (e.g., [17], [18], [19]).

Papers that focus on systematizing the challenges of sym-
bolic execution tools include [8], [9], [10], [20]. Kannavara
et al. [10] enumerated several challenges that may hinder
the adoption of symbolic execution in industrial fields. Qu
and Robinson [8] conducted a case study on the limitations
of symbolic testing tools and examined their prevalence
in real-world programs. However, neither paper provided a
method to evaluate symbolic execution tools. Cseppento and
Micskei [9] proposed several metrics to evaluate source-
code-based symbolic execution tools. But their metrics are
based on specific program syntax of object-oriented codes
rather than on language-independent challenges. Further,
these metrics were not general enough to permit symbolic
execution. Banescu et al. [20] designed several small pro-
grams for evaluation. But their purpose was to evaluate the
resilience of code obfuscation transformations against sym-
bolic execution-based attacks. They did not investigate the
capability of symbolic execution tools; they simply trusted
KLEE as a state-of-the-art symbolic executor. Besides, there
have been several survey papers (e.g., [6], [7], [12]) which
also include some discussion about the challenges. Fig. 1 pro-
vides a more complete view of the challenges discussed in
these surveys.

In one of our previous conference papers [11], we have
presented an empirical study examining some of the chal-
lenges. This paper extends our previous paper with a formal
benchmarking methodology and serves as a pilot study sys-
tematically benchmarking symbolic execution tools in han-
dling particular challenges. In this paper, we design a novel
benchmarking framework based on logic bombs, which can
facilitate the automation of the benchmarking process. We

Fig. 1. Major challenges of symbolic execution as discussed in the literature. The detailed paper references are Schwartz’10 [7], Qu’11 [8],
Cadar’13 [6], Cseppento’15 [9], Kannavara’15 [10], Quan’16 [5], Xu’17 [11], and Baldoni’18 [12].
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further provide a benchmarking toolset that can be deplo-
yed easily by ordinary users.

3 PRELIMINARY

This section reviews the underlying techniques of symbolic
execution as a prelude to discussing the challenges and our
new benchmarking approach.

3.1 Theoretical Basis

The core principle of symbolic execution is symbolic reason-
ing. Informally, given a sequence of instructions along a
control path, a symbolic reasoning engine extracts a con-
straint model and generates a test case for the path by solv-
ing the model.

Formally, we can use Hoare Logic [21] to model the sym-
bolic reasoning problem. Hoare Logic is composed of basic
triples fS1gIfS2g, where fS1g and fS2g are the assertions of
variable states and I is an instruction. TheHoare triple tells if
a precondition fS1g is met, when executing I, it will termi-
nate with the postcondition fS2g. Using Hoare Logic, we can
model the semantics of instructions along a control path as:

fS0gI0fS1;D1gI1:::fSn�1;Dn�1gIn�1fSng:

fS0g is the initial symbolic state of the program; fS1g is
the symbolic state before the first conditional branch associ-
ated with symbolic variables; Di is the corresponding con-
straint for executing the following instructions, and fSig
satisfies Di. A symbolic execution engine can compute an
initial state fS00g, i.e., the concrete values for symbolic varia-
bles, which can trigger the same control path. This can be
achieved by computing the weakest precondition (aka wp)
backward using Hoare Logic:

fSn�2g ¼ wpðIn�2fSn�1gÞ; s:t: fSn�1g sat Dn�1
fSn�3g ¼ wpðIn�3fSn�2gÞ; s:t: fSn�2g sat Dn�2

:::

fS1g ¼ wpðI1fS2gÞ; s:t: fS2g sat D2

fS0g ¼ wpðI0fS1gÞ; s:t: fS1g sat D1:

Combining the constraints in each line, we can get a con-
straint model in conjunction normal form: D1 ^ D2 ^ :::^
Dn�1. The solution to the constraint model is a test case fS00g
that can trigger the same control path.

Finally, while sampling fIig, not all instructions may be
found to be useful. We only keep the instructions whose
parameter values depend on the symbolic variables. We can
demonstrate the correctness by expending any irrelevant
instruction Ii to X :¼ E, which manipulates the value of a
variable X with an expression E. If E does not depend on
any symbolic value, X would be a constant, and should not
be included in the weakest preconditions. In practice, it can
be realized by symbolic execution tools (e.g., Mayhem [22]
and FuzzBALL [23]) using taint analysis techniques [7].

3.2 Symbolic Execution Framework

Fig. 2 demonstrates the conceptual framework of a symbolic
execution tool. It involves inputting a program and output-
ting test cases for the program. The framework includes a
core symbolic reasoning engine and a path selection engine.

The symbolic reasoning engine analyzes the instructions
along a path and generates test cases that can trigger the
path. Based on the symbolic reasoning, we can identify four
stages: symbolic variable declaration, instruction tracing,
semantic interpretation, and constraint modeling and solv-
ing. The details are as follows:

� Symbolic variable declaration (Svar): In this stage, we
have to declare symbolic variables which will be
employed in the following symbolic analysis pro-
cess. If some symbolic variables are missing from
declaration, insufficient constraints can be generated
for triggering a control path.

� Instruction tracing (Sinst): This stage collects the
instructions along control paths. If some instructions
are missing, or the syntax is not supported, the sym-
bolic reasoning process would be inconsistent.

� Semantic interpretation (Ssem): This stage translates the
semantics of collected instructions with an intermedi-
ate language (IL). If some instructions are incorrectly
interpreted, or the data propagations are incorrectly
modeled, the symbolic execution engine would con-
sequently generate inconsistent constraint models.

� Constraint modeling and solving (Smodel): This stage
generates constraint models from IL, and then solves
them. If the required satisfiability modulo theory is
unsupported, errors are likely.

The path selection engine determines which path should
be analyzed in the next round of symbolic reasoning. The
favorited strategies include depth-first search, width-first
search, random search, etc. [12].

3.3 Implementation Variations

According to the different ways of instruction tracing, we
can classify symbolic execution tools into static symbolic
execution (e.g., KLEE [2], [24]) and dynamic symbolic exe-
cution (e.g., Triton [13]). Static symbolic execution loads a
whole program first before extracting instructions along
with a path on the program control-flow graph (CFG).
Dynamic symbolic execution is also known as concolic (con-
crete and symbolic) execution. It collects instructions which
have been actually executed. In each round, the concolic
execution engine executes the program with concrete values
to generate instructions [17].

Fig. 2. Conceptual framework for symbolic execution.
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We may also classify symbolic execution tools into
source-code-based symbolic execution and binary-code-
based symbolic execution. In general, we do not perform
symbolic reasoning on source codes or binaries directly. A
prior step is to interpret the semantics of the program with
an intermediate language (IL). Therefore, the main differ-
ence between the two implementation methods lies in the
translation process. Regarding source codes, we can trans-
late the code directly with the compiler’s frontend. As for
binaries, we have to lift the assembly codes into IL, which is
error-prone due to the complicated features of modern
CPUs [25]. The lifting process is challenging and remains as
an active research area.

4 CHALLENGES OF SYMBOLIC EXECUTION

Based on whether a challenge is associated with the sym-
bolic reasoning process, we can categorize the challenges of
symbolic execution into symbolic-reasoning challenges and
path-explosion challenges. A symbolic-reasoning challenge
attacks the symbolic reasoning process and leads to incor-
rect test cases being generated. A path-explosion challenge
happens when there are too many paths to analyze. It does
not attack a single symbolic reasoning process, but may get
starved of computational resources or require a very long
time for symbolic execution.

Table 1 lists the challenges that we have investigated in
this work. We collected the challenges via a careful survey
of existing papers. The survey coverred several survey
papers realated to symbolic execution techniques (e.g., [6],
[7], [12]), several investigations that focus on systemizing
the challenges of symbolic execution (e.g., [9], [10]), and
other important papers related to symbolic execution (e.g.,
[16], [17], [22], [26], [27], [28], [29], [30]).

4.1 Symbolic-Reasoning Challenges

We now discuss nine challenges that may incur errors to
symbolic reasoning.

4.1.1 Symbolic Variable Declarations

Since the test cases are the solutions of symbolic variables
subject to constrain models, symbolic variables should be
declared before a symbolic reasoning process. For example, in

source-code-based symbolic execution tools (e.g., KLEE [2]),
users can manually declare symbolic variables in the source
codes. Binary-code-based concolic execution tools (e.g., Triton
[13]) generally assume a fixed length of program arguments
from stdin as the symbolic variable. If some symbolic varia-
bles are missing from the declaration, the generated test cases
would be insufficient for triggering particular control paths.
Since the root cause occurs before symbolic execution, the
challenge attacks Svar.

Fig. 3a is a sample with a symbolic variable declaration
problem. It returns a BOMB_ENDING only when being exe-
cuted with a particular process id. To explore the path, a
symbolic execution tool should treat pid as a symbolic vari-
able and then solve the constraint with respect to pid. Oth-
erwise, it cannot find test cases that can trigger the path.

To declare symbolic variables precisely, a user should
know target programs well. However, the task is impossible
when analyzing programs on a large scale, e.g., when per-
formingmalware analysis. In an ideal case, a symbolic execu-
tion tool should automatically detect such variables which
can control program behaviors and report the solutions
accordingly. To our best knowledge, very few tools have
implemented this feature, except DART [26]. Instead, pres-
ent papers (e.g., [12], [31]) generally discuss the challenge
together with other problems related to the computing envi-
ronment, such as libraries, kernels, and drivers. In reality,
there are several challenges of this work referring to the
computing environment, such as contextual symbolic varia-
bles, covert propagations, parallel executions, and external
function calls. We demonstrate that these challenges are
different.

4.1.2 Covert Propagations

Some data propagation ways are covert because they cannot
be traced easily by data-flow analysis tools. For example, if
the symbolic values are propagated via other media (e.g.,
files) outside of the process memory, the propagation would
be untraceable. Such propagation methods are undecidable
and can be beyond the capability of pure program analysis.
Symbolic execution tools have to handle such cases using
ad hoc methods. There are also some propagations chal-
lenging only to certain implementations. For example, prop-
agating symbolic values via embedded assembly codes can

TABLE 1
List of Challenges Faced by Symbolic Execution, and the Symbolic Reasoning Stages They Attack

Challenge Idea
Stage of Error

Svar Sinst & Ssem Smodel

Symbolic-reasoning
Challenges

Sym. Var. Declaration Contextual variables besides program arguments @ @ @
Covert Propagations Propagating symbolic values in covert ways - @ @
Buffer Overflows Writing symbolic values without proper boundary check - @ @
Parallel Executions Processing symbolic values with parallel codes - @ @
Symbolic Memories Symbolic values as the offset of memory - @ @

Contextual Symbolic Values Retrieving contextual values with symbolic values - @ @
Symbolic Jumps Sym. values as the addresses of unconditional jump - - @

Floating-point Numbers Symbolic values in float/double type - - @
Arithmetic Overflows Integers outside the scope of an integer type - - @

Path-explosion
Challenges

Loops Change symbolic values within loops - - -
Crypto Functions Processing symbolic values with crypto functions - - -

External Function Calls Processing sym. values with some external functions - - -

1246 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 14:12:50 UTC from IEEE Xplore.  Restrictions apply. 



be a problem for source-code-based symbolic execution
tools only. If a symbolic execution tool fails to detect certain
propagations, the instructions related to the propagated val-
ues would be missed from the following analysis. This
results in the challenge attacking the stages of Sinst and Ssem.

Fig. 3b shows a covert propagation sample. We define an
integer i and initiate it with the value of a symbolic variable
symvar. So i is also a symbolic variable. We then propagate
the value of i to another variable ret through a shell
command echo, and let ret control the return value. To
find a test case which can return the corresponding BOMB_

ENDING, a symbolic execution tool should properly track or
model the propagation incurred by the shell command.

4.1.3 Buffer Overflows

Buffer overflow is a typical software bug that can bring secu-
rity issues. Due to insufficient boundary checking, the input
data may overwrite adjacent memories. Adversaries can
employ such bugs to inject data and intentionally and tamper
with the semantics of the original codes. Buffer overflows can
happen in either stack or heap regions. If a symbolic execu-
tion tool cannot detect the overflow issues arising, it would
fail to track the propagation of symbolic values. Therefore,
buffer overflow involves a particular covert propagation
issue. Source-code-based symbolic execution tools are prone

to buffer overflows because the stack layout of a program
exists only in the assembly codes, depending on the par-
ticular platforms. Therefore, such tools cannot model stack
information using source codes only. In contrast, binary-
code-based symbolic execution tools should be more potent
in handling buffer overflow issues because they can simulate
actual memory layouts. However, even if these tools can
precisely track propagation, they suffer from difficulties in
automatically analyzing the unexpected program behaviors
caused by overflow. Otherwise, they would be powerful
enough to generate exploits for bugs, which is a problem still
requiring solution [32].

Fig. 3c presents an example of buffer overflows. The pro-
gram returns a BOMB_ENDING if the value of flag equals
one, which is unlikely because the value is zero and should
remain unchanged without explicit modification. However,
the program has a buffer overflow bug. It has a buffer buf
of eight bytes and employs no boundary check when copy-
ing symbolic values to the buffer with strcpy. We can
change the value of flag to one leveraging the bug, e.g.,
when symvar is “ANYSTRIN\x01\x00\x00\x00”.

4.1.4 Parallel Executions

Classic symbolic execution is effective for sequential pro-
grams.We can draw an explicit CFG for sequential programs

Fig. 3. Logic bomb samples with challenging symbolic execution issues. In each sample, we employ symvar to denote a symbolic variable, and
BOMB_ENDING to denote a macro value indicating a particular program behavior.
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and let a symbolic execution engine traverse the CFG. How-
ever, if the program processes symbolic variables in parallel,
classic symbolic execution techniques would face problems.
Parallel programs can be undecidable because the execution
order of parallel codes does not only depend on the program
but may also depend on the execution context. A parallel
programmay exhibit different behaviors even with the same
test case. This poses a problem for symbolic execution to gen-
erate test cases for triggering corresponding control flows. If
a symbolic execution tool directly ignores the parallel syntax
or addresses the syntax improperly, errors would happen
during Sinst and Ssem.

Fig. 3d demonstrates an example with parallel codes. The
symbolic variable i is processed by another two additional
threads in parallel, and the result is assigned to j. Then the
value of j determines whether the program should return a
BOMB_ENDING.

To handle parallel codes, the symbolic execution tool has
to interpret the semantics and track parallel executions, e.g.,
by introducing extra symbolic variables [33]. However,
such an approach may not be scalable because the possibil-
ity of parallel execution can be a large number. In practice,
there are several heuristic approaches that can be used to
improve the efficiency. For example, we may restrict the
exploration time of concurrent regions with a threshold [33];
we may conduct symbolic execution with arbitrary contexts
and convert multi-thread programs into equivalent sequen-
tial ones [34]; or we can prune unimportant paths leverag-
ing some program codes, such as assertion [35].

4.1.5 Symbolic Memories

Symbolic memory is a situation whereas symbolic variables
serve as the offsets or pointers to retrieve values from the
memory, such as array indexes. While handling symbolic
memories, the symbolic execution engine should take
advantage of the memory layout for analysis. For example,
we can convert an array selection operation to a switch/

case clause in which the number of possible cases equals
the length of the array. However, the number of possible
combinations would grow exponentially when there are
several such operations along a control flow. In practice, a
symbolic execution tool may directly employ the feature of
array operations implemented by some constraint solvers,
such as STP [36] and Z3 [37]. It may also analyze the align-
ment of some pointers in advance, such as CUTE [38].
However, the power of pointer analysis is limited because
the problem can be NP-hard or even undecidable for static
analysis [39]. If a symbolic execution tool cannot model
symbolic memories properly, errors would occur during
Sinst and Ssem.

Fig. 3e presents a sample of symbolic memories. In this
example, the symbolic variablei serves as an offset to retrieve
an element from the array. The retrieved element then deter-
mines whether the program returns a BOMB_ENDING.

4.1.6 Contextual Symbolic Values

This challenge is similar to symbolic memories but is more
complicated. Other than retrieving values from the memory
like symbolic memories, symbolic values can also serve as
the parameters to retrieve values from the environment,

such as loading the contents of a file pointed by symbolic
values. By default, this contextual information is unavail-
able to the program or process, and the analysis is more
complicated. Moreover, since the contextual information
can be changed any time without informing the program,
the problem is undecidable. A symbolic tool that does not
support such operations would cause errors during Sinst

and Ssem.
Fig. 3f is an example of contextual symbolic values. If

symvar points to an existing file on the local disk, the pro-
gram returns a BOMB_ENDING.

4.1.7 Symbolic Jumps

In general, symbolic execution only extracts constraint mod-
els when encountering conditional jumps, such as var<0 in
source codes, or jle 0x400fda in assembly codes. How-
ever, we may also employ unconditional jumps to achieve
the same effects as conditional jumps. The idea is to jump to
an address controlled by symbolic values. If a symbolic exe-
cution engine is not tailored to handle such unconditional
jumps, it would fail to extract corresponding constraint
models and miss some available control flows. Therefore,
the challenge attacks the constraint modeling stage Smodel.

Fig. 3g presents an example of symbolic jumps. The
program contains an array of function pointers, and each
function returns an integer value. The symbolic variable
serves as an offset to determine which function should be
called during execution. If f5() is called, the program
would return a BOMB_ENDING.

4.1.8 Floating-Point Numbers

A floating-point number (f 2 F) approximates a real num-
ber (r 2 R) with a fixed number of digits in the form of
f ¼ sign� baseexp. For example, the 32-bit float type compli-
ant to IEEE-754 has 1-bit for sign, 23-bit for base, and 8-bit
for exp. This representation is essential for computers, as
the memory spaces are limited in comparison with the infin-
ity of R. As a tradeoff, floating-point numbers have limited
precision, which turns some unsatisfiable constraints over
R into satisfiable ones over F with a rounding mode. In
order to support reasoning over F, a symbolic execution
tool should consider such approximations when extracting
and solving constraint models. However, recent studies
(e.g., [5], [40], [41], [42]) show that there is still no silver bul-
let for the problem. Floating-point numbers continue to
pose a challenge for symbolic execution tools, and the chal-
lenge attacks Smodel.

Fig. 3h demonstrates an example with floating-point
operations. Because we cannot represent 0.1 with float type
precisely, the first predicate a != 1 is always true. If the sec-
ond condition a == b can be satisfied, the program would
return a BOMB_ENDING. Therefore, one test case to return-
ing a BOMB_ENDING is symvar equals ‘7’.

4.1.9 Arithmetic Overflows

Arithmetic overflow happens when the result of an arithme-
tic operation is outside the range of an integer type. For
example, the range of a 64-bit signed integer is ½�264;
264 � 1�. In this case, a constraint model (e.g., the result of a
positive integer plus another positive integer is negative)
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may have no solutions over R; but it can have solutions
when we consider arithmetic overflow. Handling such
arithmetic overflow issues is not as difficult as in the case of
the previous challenges. However, some preliminary sym-
bolic execution tools may fail to consider these cases and
suffer errors when extracting and solving the constraint
models.

Fig. 3i shows a sample with an arithmetic overflow prob-
lem. To meet the first condition 254748364 * i < 0, i
should be a negative value. However, the second condition
requires i to be a positive value. Therefore, it has no solu-
tions in the domain of real numbers. But the conditions can
be satisfied when 254748364 * i exceeds the max value
that the integer type can represent.

4.2 Path-Explosion Challenges

Now we discuss three path-explosion challenges existing in
small-size programs.

4.2.1 External Function Calls

Shared libraries, such as libc and libm (i.e., a maths
library), provide some basic function implementations to
facilitate software development. An efficient way to employ
the functions is via dynamic linkage, which does not pack
the function body to the program but only links with the
functions dynamically during execution. Therefore, such
external functions do not enlarge the size of a program; they
just enlarge code complexity.

When an external function call is related to the propaga-
tion of symbolic values, the control flows within the func-
tion body should be analyzed by default. There are two
situations. A simple situation is that the external function
does not affect the program behaviors after executing it,
such as simply printing symbolic values with printf. In
this case, we may ignore the path alternatives within the
function. However, if the function execution affects the
follow-up program behaviors, we should not ignore them.
Otherwise, the symbolic execution would be based on the
wrong assumption that the new test case generated for an
alternative path can always trigger the same control flow
within the external function. If a small program contains
several such function calls, the complexity of external func-
tions may cause path explosion issues. In practice, there are
different strategies (e.g., abstraction [2], strict consistency,
and local consistency [31]) that symbolic execution tools
may adopt to handle the challenge with a trade-off between
consistency and efficiency.

Fig. 3j demonstrates a sample with an external function
call. It computes the sine of a symbolic variable via an exter-
nal function call (i.e., sin), and the result is used to deter-
mine whether the program should return a BOMB_ENDING.

4.2.2 Loops

Loop statements, such as for and while, are widely
employed in real-world programs. Even a very small pro-
gramwith loops can includemany or even an infinite number
of paths. By default, a symbolic execution tool should explore
all available paths of a program, which can be beyond the
capability of the tool if there are toomany paths. In practice, a
symbolic execution tool may employ a search strategy

favoring unexplored branches on a program CFG [19], [43],
or introduce new symbolic variables as the counters for each
loop [44]. Because loop can incur numerous paths, it is diffi-
cult to derive a perfect solution for this problem.

Fig. 3k shows a sample with a loop. The loop function is
implemented with the Collaz conjecture [45]. No matter
what is the initial value of i, the loop will terminate with j

equals 1.

4.2.3 Crypto Functions

Crypto functions generally involve some computationally
complex problems to ensure security. For a hash function,
the complexity guarantees that adversaries cannot efficiently
compute the plaintext of a hash value. For a symmetric
encryption function, it promises that one cannot efficiently
compute the key when given several pairs of plaintext and
ciphertext. Therefore, such programs should also be resistant
to symbolic execution attacks. From a program analysis
view, the number of possible control paths for the crypto
functions can be substantial. For example, the body of the
SHA1 algorithm [46] is a loop that iterates 80 rounds with
each round containing several bit-level operations.

Fig. 3l demonstrates a code snippet which employs a
SHA1 function [46]. If the hash result of the symbolic value
is equivalent to a predefined value, the program would
return a BOMB_ENDING. However, this is difficult since
SHA1 cannot be reversely calculated.

In general, symbolic execution tools cannot handle
such crypto programs. Malware may employ the technique
to deter symbolic execution-based program analysis [47].
When analyzing programs with crypto functions, a common
way is to avoid exploring the function internals (e.g.,[48],
[49]). For example, TaintScope [48] first discriminates the
symbolic variables corresponding to crypto functions from
other variables, and then employs a fuzzy-based approach to
search solutions for such symbolic variables rather than solv-
ing the problem via symbolic reasoning.

So far, we have discussed 12 different challenges. Note
that we do not intend to propose a complete list of challenges
for symbolic execution. Instead, we collect all the challenging
issues that have beenmentioned in the literature and system-
atically analyze them. This analysis is essential while design-
ing the dataset of logic bombs in Section 5.2.2.

5 BENCHMARKING METHODOLOGY

In this section, we introduce our methodology and a frame-
work to benchmark the capability of real-world symbolic
execution tools.

5.1 Objective and Challenges

Before describing our approach, we first discuss our design
goal and the challenges to overcome.

This work aims to design an approach that can bench-
mark the capabilities of symbolic execution tools. Our pur-
pose is critical and valid in several aspects. As we have
discussed, some challenging issues are only engineering
issues, such as arithmetic overflows. With enough engineer-
ing effort, a symbolic execution tool should be able to han-
dle these issues. On the other hand, some challenges such
as loops are hard from a theoretical viewpoint. However,
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some heuristic approaches can tackle certain easy cases.
Symbolic execution tools may adopt different heuristics and
demonstrate different capabilities in handling them. There-
fore, it is worth benchmarking their performances in han-
dling particular challenging issues. Developers generally do
not provide much information concerning the limitations of
their tools to users.

A useful benchmarking approach should be accurate and
efficient. However, it is challenging to benchmark symbolic
execution tools accurately and efficiently with real-world
programs. First, a real-world program containsmany instruc-
tions or lines of codes. When a symbolic execution failure
occurs, locating the root cause requires much domain knowl-
edge and effort. Since errors may propagate, it is often diffi-
cult to conjecture whether a symbolic execution tool fails in
handling a particular issue. Second, the symbolic execution
itself is inefficient. Benchmarking a symbolic execution tool
generally implies performing several designated symbolic
execution tasks, which would be time-consuming. Note that
existing symbolic execution papers (e.g., [2], [3], [50], [51])
generally evaluate the performance of their tools by conduct-
ing symbolic execution experiments with real programs. This
process usually takes several hours or even days. They dem-
onstrate the effectiveness of their work using the achieved
code coverage and number of bugs detected, while analyzing
the root causes of uncovered codes is not a focus.

5.2 Approach based on Logic Bombs

To tackle the challenges of benchmarking symbolic execu-
tion tools concerning accuracy and efficiency, we propose
an approach based on logic bombs. Below, we discuss our
detailed design.

5.2.1 Evaluation with Logic Bombs

A logic bomb is a code snippet that can only be exec-
uted when certain conditions have been met. To evaluate
whether a symbolic execution tool can handle a challenge,
we can design a logic bomb guarded by a particular issue
with the challenge. Then we can perform symbolic execu-
tion on the program embedded with the logic bomb. If a
symbolic execution tool can generate a test case that can
trigger the logic bomb, it indicates that the tool can handle
the challenging issue, or vice versa.

Algorithm 1.Method to Design Evaluation Samples

// Create a function with a symbolic variable

Function LogicBomb(symvar)
// symvar2 is a value computed from a challenging

problem related to symvar
symvar2 Challenge(symvar);
// If symvar2 satisfies a condition

if Condition(symvar2) than
// Trigger the bomb

Bomb();
end

Algorithm 1 demonstrates a general framework for
designing such logic bombs. It includes four steps: the first
step is to create a function with a parameter symvar as the
symbolic variable; the second step is to design a challenging

problem related to the symbolic variable and save the result
to another variable symvar2; the third step is to design a
condition related to the new variable symvar2; the final step
is to design a bomb (e.g., return a specific value) which indi-
cates that the condition has been satisfied. Note that because
the value of symvar2 is propagated from symvar, symvar2 is
also a symbolic variable and should be considered in the
symbolic analysis process.

The magic of the logic bomb idea enables us to make the
evaluation much precise and efficient. We can create several
such small programs, each containing only a challenging
issue and a logic bomb that tells the evaluation result.
Because the object programs for symbolic execution are usu-
ally small, we can easily avoid unexpected issues that may
also cause failures via a careful design. Also, because the
programs are small, performing symbolic execution on
them generally requires a short time. For the programs that
unavoidably incur path explosion issues, we can restrict the
symbolic execution time either by controlling the problem
complexity or by employing a timeout setting.

5.2.2 Logic Bomb Dataset

Following Algorithm 1, we have designed a dataset of logic
bombs to evaluate the capability of symbolic execution
tools. Some of the logic bombs are already shown in Fig. 3.
Our full dataset is available on GitHub.1 The dataset con-
tains over 60 logic bombs for 64-bit Linux platform, which
covers all the challenges discussed in Section 4. For each
challenge, we implement several logic bombs. Either each
bomb involves a unique challenging issue (e.g., covert prop-
agation via file write/read or via system calls), or introduces
a problem with a different complexity setting (e.g., one-
leveled arrays or two-leveled arrays).

When designing logic bombs, we carefully avoid trivial
test cases (e.g., \x00) that can trigger the bombs. Moreover,
we try to employ straightforward implementations, and we
hope to ensure that the results would not be affected by
other unexpected failures. For example, we avoid using
atoi to convert argv[1] to integers because some tools
cannot support atoi. However, fully avoiding external
function calls is impossible for some logic bombs. For exam-
ple, we should employ external function calls to create
threads when designing parallel codes. Surely the result
might be affected if a symbolic execution tool cannot handle
external functions. To tackle the interference of challenges,
we draw a challenge propagation chart among the logic
bombs as shown in Fig. 4. There are two kinds of challenge
propagation relationships: should in solid lines, and may in
dashed lines. A should relationship means that a logic bomb
contains a similar challenging issue in another logic bomb;
if a tool cannot solve the precedent logic bomb, it should
not be able to solve the later one. For example, the stack-

array_sm_l1 is precedent to stackarray_sm_l2. A
may relationship means a challenge type may be a prece-
dent to other logic bombs, but it is not the determining one.
For example, a parallel program generally involves external
function calls. However, although a tool is unable to solve
the external functions well, it might be able to solve some
logic bombs with parallel issues as sequential programs.

1. https://github.com/hxuhack/logic_bombs

1250 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 6, NOVEMBER/DECEMBER 2020

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on November 30,2020 at 14:12:50 UTC from IEEE Xplore.  Restrictions apply. 



5.3 An Automated Benchmarking Framework

Based on the evaluation idea with logic bombs, we design a
benchmarking framework as shown in Fig. 5. The frame-
work inputs a dataset of carefully designed logic bombs
and outputs the benchmarking result for a particular sym-
bolic execution tool. There are three critical steps in the
framework: dataset preprocessing, batch symbolic execu-
tion, and case verification.

In the preprocessing step, we parse the logic bombs and
compile them into object codes or binaries such that a target
symbolic execution tool can process them. The parsing pro-
cess pads each code snippet of a logic bomb with a main
function and makes it a self-contained program. By default,
we employ argv[1] as the symbolic variables. If a target
symbolic execution tool requires adding extra instructions to
launch tasks, the parser should add such required instruc-
tions automatically. For example, we can add symbolic vari-
able declaration codes when benchmarking KLEE. The
compilation process compiles the processed source codes
into binaries or other formats that a target symbolic execu-
tion tool supports. Symbolic execution is generally per-
formed based on intermediate codes. When benchmarking
source-code-based symbolic execution tools such as KLEE,
we have to compile the source codes into the supported
intermediate codes. When benchmarking binary-code-based
symbolic execution tools, we can directly compile them into

binaries, and the tool will lift binary codes into intermediate
codes automatically.

In the second step, we direct the symbolic execution tool
to analyze the compiled logic bombs in a batch mode. This
step outputs a set of test cases for each program. Some
dynamic symbolic execution tools (e.g., Triton) can directly
tell which test case can trigger a logic bomb during runtime.
However, other static symbolic execution toolsmay only out-
put test cases by default, so we need to replay the generated
test cases to examine the results further. Besides, some tools
may falsely report that a test case can trigger the logic bomb.
Therefore, we need a third step to verify the test cases.

In the third step, we replay the test cases with the corre-
sponding programs of logic bombs. If a logic bomb can be
triggered, it indicates that the challenging case has been
solved by the tool. Finally, we can generate a benchmarking
report based on the case verification results.

6 EXPERIMENTAL STUDY

In this section, we describe an experimental study con-
ducted to demonstrate the effectiveness of our benchmark-
ing approach. Below, we first discuss the experimental
setting and then the results.

6.1 Experimental Setting

We choose three popular symbolic execution tools for
benchmarking: KLEE [2], angr [3], and Triton [13]. Because
our dataset of logic bombs are written in C/C++, we only
choose symbolic execution tools for C/C++ programs or
binaries. The three tools have all been released as open
source and have a high community impact. Moreover, they
adopt different implementation techniques for symbolic
execution. By supporting variant tools, we show that our
approach is compatible with different symbolic execution
implementations.

KLEE [2] is a source-code-based symbolic execution tool
implemented based on LLVM [52]. It supports programs

Fig. 4. The challenge propagation relationship among our dataset of logic bombs. A solid line means a logic bomb contains a similar problem defined
in another logic bomb; a dashed line means a challenge may affect other logic bombs.

Fig. 5. Framework to benchmark symbolic execution tools.
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written in C. By default, our benchmarking script uses a
klee_make_symbolic function to declare the symbolic
variables of logic bombs in the source-code level. Then, it
compiles the source codes into intermediate codes for sym-
bolic execution. The symbolic execution process outputs a

set of test cases. Our script finally examines the test cases by
replaying them with the binaries. The whole process is auto-
mated with our benchmarking script. The version of KLEE
we benchmark is 1.3.0. Note that this paper does not intend
to find the best tool for particular challenges, so we do not

TABLE 2
Experimental Results on Benchmarking three Symbolic Execution Tools (KLEE, Triton, and angr) in Handling our Logic Bombs

Challenge Case ID
KLEE Triton angr

t = 60s t = 300s t = 60s t = 300s t = 60s t = 300s

Covert Propagations

df2cf_cp pass pass fail fail pass pass
echo_cp fail fail timeout timeout timeout timeout

echofile_cp fail fail fail fail timeout timeout
file_cp fail fail timeout timeout fail fail

socket_cp fail fail fail fail fail fail
stack_cp inapplicable inapplicable pass pass pass pass
file_eh_cp inapplicable inapplicable fail fail timeout pass
div0_eh_cp inapplicable inapplicable fail fail timeout pass
file_eh_cp inapplicable inapplicable fail fail timeout fail

Buffer Overflows

stacknocrash_bo_l1 fail fail fail fail pass pass
stack_bo_l1 fail fail fail fail pass pass
heap_bo_l1 fail fail fail fail fail fail
stack_bo_l2 fail fail fail fail fail fail

Symbolic Memories

malloc_sm_l1 pass pass timeout fail pass pass
realloc_sm_l1 pass pass fail fail pass pass

stackarray_sm_l1 pass pass fail fail pass pass
list_sm_l1 inapplicable inapplicable fail fail timeout pass

vector_sm_l1 inapplicable inapplicable fail fail timeout pass
stackarray_sm_l2 pass pass fail fail fail fail

stackoutofbound_sm_l2 pass pass fail fail pass pass
heapoutofbound_sm_l2 fail fail timeout fail pass pass

Symbolic Jumps

funcpointer_sj_l1 pass pass fail fail fail fail
jmp_sj_l1 inapplicable inapplicable fail fail pass pass

arrayjmp_sj_l2 inapplicable inapplicable fail fail fail fail
vectorjmp_sj_l2 inapplicable inapplicable fail fail timeout pass

Floating-point Numbers

float1_fp_l1 fail fail fail fail pass pass
float2_fp_l1 fail fail fail fail pass pass
float3_fp_l2 fail fail fail fail timeout timeout
float4_fp_l2 fail fail fail fail timeout timeout
float5_fp_l2 fail fail fail fail timeout timeout

Arithmetic Overflows
plus_do pass pass pass pass pass pass

multiply_do pass pass fail fail pass pass

External Function Calls

printint_ef_l1 fail fail pass pass pass pass
printfloat_ef_l1 fail fail fail fail fail fail

atoi_ef_l2 fail fail fail fail pass pass
atof_ef_l2 fail fail fail fail timeout timeout
ln_ef_l2 fail fail fail fail timeout fail

pow_ef_l2 fail fail fail fail pass pass
rand_ef_l2 fail fail timeout timeout fail fail
sin_ef_l2 fail fail fail fail timeout timeout

Symbolic Variable Declarations 7 cases, no pass

Parallel Executions 5 cases, no pass

Contextual Symbolic Values 4 cases, no pass

Loops 5 cases, no pass

Crypto Functions 2 cases, no pass

pass # 63 cases 9 9 3 3 17 22

Pass means the tool has successfully triggered the bomb; fail means the tool cannot find test cases to trigger the bomb; timeout means the tool cannot find test cases
to trigger the bomb within a given period of time; inapplicable means the program contains unsupported languages for the tool, e.g., C++ and assembly codes for
KLEE. For each tool, we adopt two timeout settings: 60 seconds and 300 seconds.
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consider the patches or plugins developed by other parties
before they have been merged into the project.

Triton [13] is a dynamic symbolic execution tool based on
binaries. It automatically accepts symbolic variables from
the standard input. During symbolic execution, it first runs
the programs with concrete values and leverages Intel Pin-
Tool [53] to trace related instructions; then it lifts the traced
instructions into the SSA (single static assignment) form
and performs symbolic analysis. If there are alternative
paths found in the trace, Triton generates new test cases via
symbolic reasoning and employs them as the concrete val-
ues in the following rounds of concrete execution. This sym-
bolic execution process continues until no alternative path
can be found. The version of Triton we adopted is the one
released on GitHub on Jul 6, 2017.

Angr [3] is also a tool for binaries but employs different
implementations. Before performing any symbolic analysis,
angr first lifts the binary program into VEX IR [54]. Then it
employs a symbolic analysis engine (SimuVEX) to analyze
the program based on the IR. Angr does not provide ready-
to-use symbolic execution script for users but only some
APIs. Therefore, we have to implement our own symbolic
execution script for angr. Our script collects all the paths to
the CFG leaf nodes and then solves the corresponding path
constraints. Angr provides all the critical features via APIs,
and we only assemble them. Finally, we check whether the
generated test cases can trigger the logic bombs. In our
experiment, we employ angr version 7.7.9.21.

Note that all our benchmarking scripts for these tools fol-
low the framework proposed in Fig. 5. During the experi-
ments, we employ our logic bomb dataset for evaluation. A
tool can pass a test only if the solution generated can cor-
rectly trigger a logic bomb. We finally report which logic
bombs can be triggered by the tools.

We conduct our experiments on an Ubuntu 14.04 X86_64
system with Intel i5 CPU and 8G RAM. Because some sym-
bolic execution tasks may take very long time, our tool
allows users to configure a timeout threshold which ensures
benchmarking efficiency. However, the timeout mechanism
may incur some false results if it is too short. To mitigate the
side effects, we adopt two timeout settings (60 seconds and
300 seconds) for each tool. In this way, we can observe the
influence of the timeout settings and decide whether we
should conduct more experiments with an increased time-
out value.

6.2 Benchmarking Results

6.2.1 Result Overview

Table 2 presents our experimental results. We label the
results with four options: pass, fail, timeout, and inapplica-
ble. While ‘pass’ and ‘fail’ imply the symbolic execution has
finished, ‘timeout’ implies our benchmarking script has ter-
minated the symbolic execution process when a timeout
threshold is triggered. We label several results as inapplica-
ble because the logic bombs contain C++ or assembly codes,
which KLEE does not support.

We can observe that angr has achieved the best per-
formance with 22 cases solved when the timeout was
300 seconds. Comparatively, it only solved 17 cases when
the timeout is 60 seconds. KLEE solved nine cases and
the result remains the same with different timeout settings.

Triton performed much worse with just three cases being
solved. To further verify the correctness of our benchmark-
ing results, we compared our experimental results with the
previously declared challenge propagation relationships in
Fig. 4. The results were all consistent, showing that our
dataset can distinguish the capability of different symbolic-
execution tools accurately.

The efficiency of our benchmarking approach largely
depends on the timeout setting. Note that Table 2 includes
some timeout results; they account for most of our experi-
mental time. Although we try to keep each logic bomb as
succinct as possible, our dataset still contains some complex
but unavoidable problems or path explosion issues. When
the timeout value is 60 seconds, our benchmarking process
for each tool takes only dozens of minutes. When extending
the timeout value to 300 seconds, the benchmark takes a bit
longer time. However, the benefit is not very obvious, and
only angr can solve 5 more cases. Can the result get further
improved by allowing more time? We have tried another
group of experiments with 1,800 seconds timeout. But the
results remain unchanged. Therefore, 300 seconds should
be a marginal timeout setting for our benchmarking experi-
ment. Considering that symbolic execution is computati-
onally expensive, which may take several hours or even
several days to test a program, our benchmarking process
is very efficient. We may further improve the efficiency by
employing a parallel mode, such as assigning several logic
bombs for each process.

6.2.2 Case Study

We now discuss the detailed benchmarking results for each
challenge. First, there are several challenges that none of
these tools can trigger even one logic bomb, including
symbolic variable declarations, parallel executions, contex-
tual symbolic values, loops, and crypto functions. Because
crypto functions involve tough problems, it can be expected
that all the tools fail in handling them. It is a bit surprising
that none of the tools can handle parallel executions and
loops. For the problems of symbolic variable declarations
and contextual symbolic values related to files, KLEE can
generate test cases which may trigger the bombs when
enabling the ––sym-files option. However, in the case ver-
ification step, our script cannot trigger such logic bombs
with the test cases. The reason is that KLEE does not pro-
vide a feature for simulating the environment required to
replay the test cases.

Covert Propagations. Angr passed four test cases: df2cf_
cp, stack_cp, and two exception handling cases. df2cf_
cp propagates the symbolic values indirectly by substitut-
ing a data assignment operation with equivalent control-
flow operations. KLEE also solved the case, but Triton
failed. stack_cp propagates symbolic values via direct
assembly instructions push and pop. Triton also solved the
case. Besides, angr also passed two test cases that propagate
symbolic values via the C++ exception handling mecha-
nism, which Triton failed. We further break down the
details of an exception handling program (see Fig. 6). As
shown in the box region of Fig. 6b, the mechanism relies on
two function calls, which might be the problem that fails
Triton. All the tools failed other covert propagation cases
that propagate values via fread/fwrite, echo, socket, etc.
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Note that KLEE supports modeling file operations in POSIX
standard such as read/write, but it cannot support C

libraries directly.
Buffer Overflows. Only angr could solve two easy buffer

overflow problems: stacknocrash_bo_l1 and stack_

bo_l1. The cases share a simple stack overflow issue. Their
solutions require modifying the value of the stack that
might be illegal. However, angr could not solve the heap
overflow issue heap_bo_l1. It also failed on another
harder stack overflow issue stack_bo_l2, which requ-
ires composing sophisticated payload, such as employing
return-oriented programming methods [55]. We are sur-
prised that Triton failed all the tests because binary-code-
based symbolic execution tools should be resilient to buffer
overflows in nature.

Symbolic Memories. The results show that Triton does not
support symbolic memory, but KLEE and angr provide
very good support. Angr has solved seven cases out of
eight. It only failed in handling the case depicted in
Fig. 7a with a two-leveled array stackarray_sm_l2. This
implies that angr would fail when there are multi-leveled
pointers. In comparison, KLEE is able to solve the two-
leveled array problem because it is based on STP [36], which
is designed for solving such problems related to arrays.
Fig. 7c presents the assembly codes that initialize the arrays,
while Fig. 7b presents the stack layout after initialization.

We note that the information about array size or boundary
does not exist in assembly codes. This explains why binary-
code-based symbolic execution tools do not suffer from
problems when a challenge requires an out-of-boundary
access, e.g., stackoutofbound_sm_l2.

Symbolic Jumps. Since symbolic jump demonstrates no
explicit conditional branches in the CFG, it should be a hard
problem for symbolic execution. However, KLEE and angr
are not likely to be affected much by the trick. KLEE tackled
the problem which has an array of function pointers func-
pointer_sj_l1. Angr successfully handled two cases
with assembly jmp, but it failed funcpointer_sj_l1.

Floating-Point Numbers. The results indicate that KLEE
and Triton do not support floating-point operations, and
angr can support some. During our tests, Triton directly
reported that it could not interpret such floating-point
instructions. Angr has solved two out of the five designated
cases. The two passed cases are easier ones, which only
require integer values as the solution. All the failed cases
require decimal values as the solution, and they employ the
atof function to convert argv[1] to decimals. Since angr
has also failed the test in handling atof in atof_ef_l2,
the failures are likely to be caused by the atof function.

Arithmetic Overflows. Arithmetic overflow is not a very
hard problem since it only requires symbolic execution tools
to handle such cases carefully. In our test, KLEE and angr

Fig. 6. An exemplary program that raises an exception when divided by zero. The assembly codes demonstrates how the try/catch mechanism
works in low level.

Fig. 7. A program that demonstrates how the stack works with arrays. There is no information about the size of each array left in assembly codes.
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have been able to solve all the cases. However, Triton failed
in handling the integer overflow case in Fig. 3i. The result
shows there is still much room for Triton to improve for this
problem.

External Function Calls. In this group of logic bombs, each
case only contains one external function call. However, this
result is very disappointing. Triton only passed a very sim-
ple case that print (with printf) a symbolic value of inte-
ger type. It does not even support printing out floating-
point values. Angr has solved the printf cases and two
more complicated cases, atoi_ef_l2 and pow_ef_l2. It
failed the atof_ef_l2 and other cases. The results show
that we should be cautious when designing logic bombs.
Even when involving straightforward external function
calls, the results could be affected.

7 CONCLUSION

This work has proposed an approach capable of bench-
marking the capabilities of symbolic execution tools while
handling particular challenges. We have studied the taxon-
omy of challenges faced by symbolic execution tools,
including nine symbolic-reasoning challenges and three
path-explosion challenges. Such a study is essential for us to
design the benchmarking dataset. Next, we proposed a
promising benchmarking approach based on logic bombs.
The idea has been to design logic bombs that can only be
triggered if a symbolic execution tool solves specific chal-
lenging issues. By making the programs of logic bombs as
small as possible, we have been able to speed up the bench-
marking process. Also, by making them as straightforward
as possible, we have been able to sidestep unexpected rea-
sons that could affect the benchmarking results. All this has
rendered our benchmarking approach both accurate and
efficient. Following this idea, we have implemented a data-
set of logic bombs and a prototype benchmarking frame-
work which automates the benchmarking process. Then, we
conducted real-world experiments on three symbolic execu-
tion tools. Experimental results have shown that the bench-
marking process for each tool generally takes dozens of
minutes. Angr achieved the best benchmarking results with
22 cases solved, KLEE solved nine, and Triton only solved
three. These results point to the value of a third-party
benchmarking toolset for symbolic execution tools. Finally,
we released our dataset as open source on GitHub for public
usage. We hope it would be seen as an essential tool for the
community to benchmark symbolic execution tools and
could facilitate the development of more comprehensive
symbolic execution techniques.
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