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S oftware obfuscation tradition-
ally refers to two kinds of prob-

lems: general software obfuscation 
and cryptographic obfuscation.1

General software obfuscation 
aims to make a software executable 
as unintelligible as possible, such 
that adversaries would have trouble 
understanding the program logic. It 
can be performed with lexical trans-
formation, control transformation, 
data transformation, and so on. An 
example of such a software obfusca-
tion tool is Obfuscator-LLVM.

Cryptographic obfuscation spe-
cifically aims to hide the secret keys 
embedded in software. For example, a 
point function (Ip(x) = 1, if x = p, or 0 
otherwise) can be cryptographically 

obfuscated by transforming p (the 
key) with a hash function, such that 
attackers can’t determine the input 
that would lead Ip(x) to output 1. If 
cryptographic obfuscation is strong 
enough, it can serve as a basis for fan-
cier cryptographic applications, such 
as homomorphic encryption.2

Both obfuscation approaches 
are important in practice. For exam-
ple, licensing is a mechanism that 
controls the right to use software 
features. Usually, a restricted or trial 
software version is developed by 
starting with the full version and 
then controlling certain features 
by licensing, which validates cer-
tain keys for using the features. To 
prevent attackers from bypassing 

these controls, obfuscation can 
hide the license verification code; 
the point function is useful for hid-
ing the keys embedded in the soft-
ware. However, pure cryptographic 
obfuscation isn’t enough because 
attackers might bypass the check-
ing by modifying the executables 
(for example, by disabling the key 
checking code by jumping directly 
to the restricted feature code); 
hence, software obfuscation trans-
formations such as control-flow 
obfuscation, which complicate the 
code itself to deter such modifica-
tions, are needed.

Obfuscation with Valid 
Security Properties
According to Boaz Barak and his col-
leagues’ definition, an obfuscator O 
can be defined as a “compiler” that 
inputs a program P (represented as 
a circuit or a Turing machine) and 
outputs a new program O(P). The 
obfuscated program O(P) should 
possess the same functionality as P, 
have the same efficiency as P, and 
hold some unintelligibility proper-
ties.2 Note that we use efficiency to 
denote a polynomial relationship in 
program size or computation time.

Virtual Black-Box Property
The ideal property of unintelligi-
bility is the virtual black-box prop-
erty, which means that O(P) leaks 
no information about the original 
program, or that attackers can’t take 
advantage of O(P) other than as 
oracle access to the program. One 
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exemplary program that can be 
black-box obfuscated is the point 
function. However, Barak and his 
colleagues showed that at least one 
family of programs (distinguisher 
programs that can discriminate 
some one-way functions) can’t be 
black-box obfuscated.2 This implies 
that we can’t construct a universal 
obfuscator for all programs.

Indistinguishable Property
The black-box property isn’t uni-
versally attainable, yet we still need 
valid security properties. 
A weaker notion is indis-
tinguishable property: 
if two programs P1 and 
P2 are equivalent in both 
functionality and size, 
then O(P1) and O(P2) 
should leak exactly the 
same amount of informa-
tion to attackers. Building 
indistinguishable obfuscated pro-
grams isn’t difficult; for example, if 
a program class P has an efficiently 
computable canonical form (a uni-
form representation for all programs 
in the class), the computation of that 
canonical form already meets the 
indistinguishable property. Never-
theless, determining whether there 
are efficient indistinguishable obfus-
cators for all programs—and, if so, 
how to construct them—is challeng-
ing. Because the indistinguishable 
property provides no a priori guar-
antee of information hiding, another 
open question to explore is its secu-
rity effectiveness when applied in dif-
ferent obfuscation scenarios.

Best-Possible Property
A security property that can 
enhance the indistinguishable prop-
erty is the best-possible property. 
This requires that for any efficient 
learner L, there exists an efficient 
simulator S, such that L(O(P1)) 
and S(P2) are functionally equiva-
lent. Shafi Goldwasser and Guy 
Rothblum showed that the best-
possible property is equivalent to 

the indistinguishable property but 
excludes obfuscators that can’t effi-
ciently obfuscate programs.3

Tools for Obfuscation with 
Valid Security Properties
Now we discuss potential tech-
niques for building resilient obfus-
cators that can achieve valid 
security properties. Generally, an 
obfuscating approach with a valid 
security property should involve 
hard problems that attackers must 
solve, such that the difficulty of the 

problem can be used to measure the 
attacking complexity, or the obfus-
cation’s security strength. There are 
two ways of doing this: mathemati-
cal approaches (such as multilinear 
jigsaw puzzles), which are gener-
ally considered for cryptographic 
obfuscators, and software analysis 
approaches (such as alias analysis), 
which are applicable for general 
software obfuscators.

Mathematical
Multilinear jigsaw puzzles are an 
application of multilinear maps 
on bounded-width branching pro-
grams. Sanjam Garg and his col-
leagues showed that such puzzles 
might be a candidate tool for con-
structing an indistinguishable 
obfuscator for all programs. This 
is because the hardness assump-
tion states that the two output 
distributions of the jigsaw puzzle 
generator should be computation-
ally indistinguishable.4

Software Analysis
Alias analysis attempts to statically 
determine whether two pointer 

expressions refer to the same mem-
ory location. Compiler optimizers 
can apply it to perform constant 
propagation and dead-code elimi-
nation. However, because aliasing 
can occur at any point during pro-
gram execution, aliasing analysis is 
an undecidable problem in nature. 
For example, aliasing can occur 
conditionally (that is, may-alias): 
two pointer expressions might or 
might not refer to the same stor-
age location depending on certain 
conditions. Moreover, the mem-

ory space’s granularity 
might affect the preci-
sion of alias analysis, as 
memory space can be 
dynamically relocated. 
Therefore, alias analysis 
requires flow-sensitive 
analysis that computes 
what the memory loca-
tion’s pointer expressions 

refer to during each program point. 
Flow- sensitive analysis is expensive 
in terms of computation time.

Problems such as performing 
interprocedural may-alias analy-
sis on multiple level pointers can 
be as hard as problems solved 
in poly nomial time using a non-
deterministic Turing machine 
(that is, NP problems). This means 
that although whether or not two 
pointers refer to the same location 
can be verified efficiently, it can’t 
be calculated efficiently. However, 
the hardness can be compromised 
easily if not utilized properly. For 
example, Toshio Ogiso and his 
colleagues proposed an obfusca-
tion approach based on such hard-
ness incurred by pointer analysis.5 
But their obfuscated code example 
could be easily attacked by simpli-
fying the clumsy point to possibili-
ties with symbolic execution.

Deobfuscation Difficulty
Deobfuscation is the reverse 
of obfuscation—it transforms 
the obfuscated software to an 
explicit version that’s easy to read. 

An obfuscating approach with a valid 

security property should involve hard 

problems that attackers must solve.
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Deobfuscation’s computational com-
plexity is thus another important 
factor that can be used to measure 
obfuscation’s security.

The deobfuscation process 
shouldn’t change the obfuscated 
software’s functionality. Hence, a 
precise deobfuscation transforma-
tion requires semantic equivalence 
verification. However, checking 
whether two programs are equiva-
lent is a hard problem because, 
according to Rice’s theorem, it’s 
generally impossible to use static 
analysis to decide whether a pro-
gram exactly computes a function.6 
Further research has concluded 
that deobfuscation is as hard as NP 
under specific models. However, 
such deobfuscation models require 
recovering the obfuscated program 
to its original version as much as 
possible, whereas a real attacker 
might not need to reverse O(P) to 
its original version but rather to any 
version of P that leaks the secret 
information. For this reason, the 
deobfuscation problems discussed 
in the literature are much more dif-
ficult than most reverse-engineering 
tasks. Novel deobfuscation models 
with practical meanings are needed.

Gaps to Be Bridged
Why is achieving valid security 
properties for practical obfuscators 
so difficult?

First, the obfuscation concepts 
discussed in the literature aren’t 

equivalent. As Figure 1 shows, 
crypto graphic obfuscation is a 
subset of general software obfus-
cation; the theoretical obfusca-
tion models with circuits or Turing 
machines can model cryptographic 
obfuscation problems well but not 
general software obfuscation prob-
lems. Circuits or Turing machines 
address simple mathematical gates 
such as ADD, SUB, AND, and OR 
but don’t consider other high-level 
programming language or system-
dependent information, such as 
the standard function calls in libc. 
Although some high-level function 
calls can be replaced by low-level 
instructions, this incurs much over-
head and isn’t recommended in 
modern program paradigms. More-
over, such high-level function calls 
are essential targets for reverse- 
engineering practical programs, 
which might make the security 
property of the obfuscation algo-
rithm useless.

Second, although cryptographic 
obfuscation has achieved positive 
results (such as point function), it 
doesn’t generally apply to software 
obfuscation because these two 
domains might define a successful 
attack differently. Taking the licens-
ing mechanism as an example, a suc-
cessful cracking implies key leakage 
from the view of cryptographic 
obfuscation, while practical adver-
saries might only need to locate 
the code that bypasses the license 

verification. In other words, crypto-
graphic obfuscation assumes less 
powerful adversaries than general 
software obfuscation.

Finally, the best attainable secu-
rity property—the indistinguish-
able property—is too weak to meet 
practical obfuscation requirements. 
An extreme case is that even if the 
secret isn’t well-hidden in the obfus-
cated software, it might still qualify 
as an indistinguishable obfuscation 
property. Moreover, determining 
how to compose a practical obfus-
cator with this weak security guar-
antee is difficult.

M itigating these gaps for 
practical software obfus-

cators is challenging. We propose 
rethinking the meaning of a success-
ful attack on obfuscated software. 
We suggest possibly attainable secu-
rity properties that are meaningful 
for practical software obfuscation 
scenarios, such as some proper-
ties against specific deobfuscation 
techniques, rather than general and 
weak properties, such as the indis-
tinguishable property. In this way, 
considering or even obfuscating the 
language- and system-dependent 
information under such new adver-
sary models would be much easier 
when feasible. 
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