
IT ALL DEPENDS
Editor: Mohamed Kaâniche, mohamed.kaaniche@laas.fr

80 September/October 2016 Copublished by the IEEE Computer and Reliability Societies 1540-7993/16/$33.00 © 2016 IEEE

Assessing the Security Properties of
Software Obfuscation
Hui Xu and Michael R. Lyu | The Chinese University of Hong Kong

S oftware obfuscation tradition-
ally refers to two kinds of prob-

lems: general software obfuscation
and cryptographic obfuscation.1

General software obfuscation
aims to make a software executable
as unintelligible as possible, such
that adversaries would have trouble
understanding the program logic. It
can be performed with lexical trans-
formation, control transformation,
data transformation, and so on. An
example of such a software obfusca-
tion tool is Obfuscator-LLVM.

Cryptographic obfuscation spe-
cifically aims to hide the secret keys
embedded in software. For example, a
point function (Ip(x) = 1, if x = p, or 0
otherwise) can be cryptographically

obfuscated by transforming p (the
key) with a hash function, such that
attackers can’t determine the input
that would lead Ip(x) to output 1. If
cryptographic obfuscation is strong
enough, it can serve as a basis for fan-
cier cryptographic applications, such
as homomorphic encryption.2

Both obfuscation approaches
are important in practice. For exam-
ple, licensing is a mechanism that
controls the right to use software
features. Usually, a restricted or trial
software version is developed by
starting with the full version and
then controlling certain features
by licensing, which validates cer-
tain keys for using the features. To
prevent attackers from bypassing

these controls, obfuscation can
hide the license verification code;
the point function is useful for hid-
ing the keys embedded in the soft-
ware. However, pure cryptographic
obfuscation isn’t enough because
attackers might bypass the check-
ing by modifying the executables
(for example, by disabling the key
checking code by jumping directly
to the restricted feature code);
hence, software obfuscation trans-
formations such as control-flow
obfuscation, which complicate the
code itself to deter such modifica-
tions, are needed.

Obfuscation with Valid
Security Properties
According to Boaz Barak and his col-
leagues’ definition, an obfuscator O
can be defined as a “compiler” that
inputs a program P (represented as
a circuit or a Turing machine) and
outputs a new program O(P). The
obfuscated program O(P) should
possess the same functionality as P,
have the same efficiency as P, and
hold some unintelligibility proper-
ties.2 Note that we use efficiency to
denote a polynomial relationship in
program size or computation time.

Virtual Black-Box Property
The ideal property of unintelligi-
bility is the virtual black-box prop-
erty, which means that O(P) leaks
no information about the original
program, or that attackers can’t take
advantage of O(P) other than as
oracle access to the program. One

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 08:21:19 UTC from IEEE Xplore. Restrictions apply.

exemplary program that can be
black-box obfuscated is the point
function. However, Barak and his
colleagues showed that at least one
family of programs (distinguisher
programs that can discriminate
some one-way functions) can’t be
black-box obfuscated.2 This implies
that we can’t construct a universal
obfuscator for all programs.

Indistinguishable Property
The black-box property isn’t uni-
versally attainable, yet we still need
valid security properties.
A weaker notion is indis-
tinguishable property:
if two programs P1 and
P2 are equivalent in both
functionality and size,
then O(P1) and O(P2)
should leak exactly the
same amount of informa-
tion to attackers. Building
indistinguishable obfuscated pro-
grams isn’t difficult; for example, if
a program class P has an efficiently
computable canonical form (a uni-
form representation for all programs
in the class), the computation of that
canonical form already meets the
indistinguishable property. Never-
theless, determining whether there
are efficient indistinguishable obfus-
cators for all programs—and, if so,
how to construct them—is challeng-
ing. Because the indistinguishable
property provides no a priori guar-
antee of information hiding, another
open question to explore is its secu-
rity effectiveness when applied in dif-
ferent obfuscation scenarios.

Best-Possible Property
A security property that can
enhance the indistinguishable prop-
erty is the best-possible property.
This requires that for any efficient
learner L, there exists an efficient
simulator S, such that L(O(P1))
and S(P2) are functionally equiva-
lent. Shafi Goldwasser and Guy
Rothblum showed that the best-
possible property is equivalent to

the indistinguishable property but
excludes obfuscators that can’t effi-
ciently obfuscate programs.3

Tools for Obfuscation with
Valid Security Properties
Now we discuss potential tech-
niques for building resilient obfus-
cators that can achieve valid
security properties. Generally, an
obfuscating approach with a valid
security property should involve
hard problems that attackers must
solve, such that the difficulty of the

problem can be used to measure the
attacking complexity, or the obfus-
cation’s security strength. There are
two ways of doing this: mathemati-
cal approaches (such as multilinear
jigsaw puzzles), which are gener-
ally considered for cryptographic
obfuscators, and software analysis
approaches (such as alias analysis),
which are applicable for general
software obfuscators.

Mathematical
Multilinear jigsaw puzzles are an
application of multilinear maps
on bounded-width branching pro-
grams. Sanjam Garg and his col-
leagues showed that such puzzles
might be a candidate tool for con-
structing an indistinguishable
obfuscator for all programs. This
is because the hardness assump-
tion states that the two output
distributions of the jigsaw puzzle
generator should be computation-
ally indistinguishable.4

Software Analysis
Alias analysis attempts to statically
determine whether two pointer

expressions refer to the same mem-
ory location. Compiler optimizers
can apply it to perform constant
propagation and dead-code elimi-
nation. However, because aliasing
can occur at any point during pro-
gram execution, aliasing analysis is
an undecidable problem in nature.
For example, aliasing can occur
conditionally (that is, may-alias):
two pointer expressions might or
might not refer to the same stor-
age location depending on certain
conditions. Moreover, the mem-

ory space’s granularity
might affect the preci-
sion of alias analysis, as
memory space can be
dynamically relocated.
Therefore, alias analysis
requires flow-sensitive
analysis that computes
what the memory loca-
tion’s pointer expressions

refer to during each program point.
Flow- sensitive analysis is expensive
in terms of computation time.

Problems such as performing
interprocedural may-alias analy-
sis on multiple level pointers can
be as hard as problems solved
in poly nomial time using a non-
deterministic Turing machine
(that is, NP problems). This means
that although whether or not two
pointers refer to the same location
can be verified efficiently, it can’t
be calculated efficiently. However,
the hardness can be compromised
easily if not utilized properly. For
example, Toshio Ogiso and his
colleagues proposed an obfusca-
tion approach based on such hard-
ness incurred by pointer analysis.5
But their obfuscated code example
could be easily attacked by simpli-
fying the clumsy point to possibili-
ties with symbolic execution.

Deobfuscation Difficulty
Deobfuscation is the reverse
of obfuscation—it transforms
the obfuscated software to an
explicit version that’s easy to read.

An obfuscating approach with a valid

security property should involve hard

problems that attackers must solve.

www.computer.org/security 81
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 08:21:19 UTC from IEEE Xplore. Restrictions apply.

Deobfuscation’s computational com-
plexity is thus another important
factor that can be used to measure
obfuscation’s security.

The deobfuscation process
shouldn’t change the obfuscated
software’s functionality. Hence, a
precise deobfuscation transforma-
tion requires semantic equivalence
verification. However, checking
whether two programs are equiva-
lent is a hard problem because,
according to Rice’s theorem, it’s
generally impossible to use static
analysis to decide whether a pro-
gram exactly computes a function.6
Further research has concluded
that deobfuscation is as hard as NP
under specific models. However,
such deobfuscation models require
recovering the obfuscated program
to its original version as much as
possible, whereas a real attacker
might not need to reverse O(P) to
its original version but rather to any
version of P that leaks the secret
information. For this reason, the
deobfuscation problems discussed
in the literature are much more dif-
ficult than most reverse-engineering
tasks. Novel deobfuscation models
with practical meanings are needed.

Gaps to Be Bridged
Why is achieving valid security
properties for practical obfuscators
so difficult?

First, the obfuscation concepts
discussed in the literature aren’t

equivalent. As Figure 1 shows,
crypto graphic obfuscation is a
subset of general software obfus-
cation; the theoretical obfusca-
tion models with circuits or Turing
machines can model cryptographic
obfuscation problems well but not
general software obfuscation prob-
lems. Circuits or Turing machines
address simple mathematical gates
such as ADD, SUB, AND, and OR
but don’t consider other high-level
programming language or system-
dependent information, such as
the standard function calls in libc.
Although some high-level function
calls can be replaced by low-level
instructions, this incurs much over-
head and isn’t recommended in
modern program paradigms. More-
over, such high-level function calls
are essential targets for reverse-
engineering practical programs,
which might make the security
property of the obfuscation algo-
rithm useless.

Second, although cryptographic
obfuscation has achieved positive
results (such as point function), it
doesn’t generally apply to software
obfuscation because these two
domains might define a successful
attack differently. Taking the licens-
ing mechanism as an example, a suc-
cessful cracking implies key leakage
from the view of cryptographic
obfuscation, while practical adver-
saries might only need to locate
the code that bypasses the license

verification. In other words, crypto-
graphic obfuscation assumes less
powerful adversaries than general
software obfuscation.

Finally, the best attainable secu-
rity property—the indistinguish-
able property—is too weak to meet
practical obfuscation requirements.
An extreme case is that even if the
secret isn’t well-hidden in the obfus-
cated software, it might still qualify
as an indistinguishable obfuscation
property. Moreover, determining
how to compose a practical obfus-
cator with this weak security guar-
antee is difficult.

M itigating these gaps for
practical software obfus-

cators is challenging. We propose
rethinking the meaning of a success-
ful attack on obfuscated software.
We suggest possibly attainable secu-
rity properties that are meaningful
for practical software obfuscation
scenarios, such as some proper-
ties against specific deobfuscation
techniques, rather than general and
weak properties, such as the indis-
tinguishable property. In this way,
considering or even obfuscating the
language- and system-dependent
information under such new adver-
sary models would be much easier
when feasible.

Acknowledgments
This work was supported by the National
Natural Science Foundation of China
(project 61332010), Research Grants
Council of the Hong Kong Special
Administrative Region, China (CUHK
14205214 of the General Research
Fund), and 2015 Microsoft Research
Asia Collaborative Research Program
(project FY16-RES-THEME-005).

References
1. N. Kuzurin et al., “On the Con-

cept of Software Obfuscation in
Computer Security,” Proc. 10th Int’l
Conf. Information Security (ISC 07),
2007, pp. 281–298.

Figure 1. Relationships among different obfuscation concepts.

Cryptographic
obfuscation

General software obfuscation

• Circuits
• Turing machines
• . . .

�eoretical
obfuscation

models

• Language-dependent information
• System-dependent information
• . . .

82 IEEE Security & Privacy September/October 2016

IT ALL DEPENDS

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 08:21:19 UTC from IEEE Xplore. Restrictions apply.

2. B. Barak et al., “On the (Im)possi-
bility of Obfuscating Programs,” J.
ACM, vol. 59, no. 2, 2012, article 6.

3. S. Goldwasser and G.N. Rothblum,
“On Best-Possible Obfuscation,”
Proc. 4th Theory of Cryptography
Conf. (TCC 07), 2007, LNCS 4392,
Springer, pp. 194–213.

4. S. Garg et al., “Candidate Indistin-
guishability Obfuscation and Func-
tional Encryption for All Circuits,”
Proc. 54th IEEE Ann. Symp. Foun-
dations of Computer Science (FOCS
13), 2013, pp. 40–49.

5. T. Ogiso et al., “Software Obfus-
cation on a Theoretical Basis and
Its Implementation,” IEICE Trans.
Fundamentals of Electronics Commu-
nications and Computer Sciences, vol.
E86, no. A(1), 2003, pp. 176–186.

6. J.E. Hopcroft, R. Motwani, and J.D.
Ullman, Introduction to Automata
Theory, Languages, and Computa-
tion, 3rd ed., Addison-Wesley, 2006,
pp. 397–399.

Hui Xu is a PhD student in the Com-
puter Science and Engineering

Department of The Chinese Uni-
versity of Hong Kong. Contact
him at hxu@cse.cuhk.edu.hk.

Michael R. Lyu is a professor in the
Computer Science and Engineer-
ing Department of The Chinese
University of Hong Kong. Con-
tact him at lyu@cse.cuhk.edu.hk.

Selected CS articles and columns
are also available for free at

http://ComputingNow.computer.org.

IEEE TRANSACTIONS ON

BIG DATA

For more information on paper submission, featured articles, call-for-papers,
and subscription links visit: www.computer.org/tbd

TBD is financially cosponsored by IEEE Computer Society, IEEE Communications Society, IEEE Computational Intelligence
Society, IEEE Sensors Council, IEEE Consumer Electronics Society, IEEE Signal Processing Society, IEEE Systems, Man &
Cybernetics Society, IEEE Systems Council, IEEE Vehicular Technology Society

TBD is technically cosponsored by IEEE Control Systems Society, IEEE Photonics Society, IEEE Engineering in Medicine &
Biology Society, IEEE Power & Energy Society, and IEEE Biometics Council

SUBSCRIBE AND SUBMIT

SUBMIT
TODAY

www.computer.org/security 83
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 03,2020 at 08:21:19 UTC from IEEE Xplore. Restrictions apply.

