
CybersecurityXu et al. Cybersecurity (2020) 3:9
https://doi.org/10.1186/s42400-020-00049-3

REVIEW Open Access

Layered obfuscation: a taxonomy of
software obfuscation techniques for layered
security
Hui Xu1*, Yangfan Zhou2, Jiang Ming3 and Michael Lyu4

Abstract

Software obfuscation has been developed for over 30 years. A problem always confusing the communities is what
security strength the technique can achieve. Nowadays, this problem becomes even harder as the software economy
becomes more diversified. Inspired by the classic idea of layered security for risk management, we propose layered
obfuscation as a promising way to realize reliable software obfuscation. Our concept is based on the fact that
real-world software is usually complicated. Merely applying one or several obfuscation approaches in an ad-hoc way
cannot achieve good obscurity. Layered obfuscation, on the other hand, aims to mitigate the risks of reverse software
engineering by integrating different obfuscation techniques as a whole solution. In the paper, we conduct a
systematic review of existing obfuscation techniques based on the idea of layered obfuscation and develop a novel
taxonomy of obfuscation techniques. Following our taxonomy hierarchy, the obfuscation strategies under different
branches are orthogonal to each other. In this way, it can assist developers in choosing obfuscation techniques and
designing layered obfuscation solutions based on their specific requirements.

Keywords: Software obfuscation, Layered security, Element-layer obfuscation, Component-layer obfuscation,
Inter-component obfuscation, Application-layer obfuscation

Introduction
Sofware obfuscation transforms computer programs to
new versions which are semantically equivalent with the
original ones but much harder to understand (Collberg
et al. 1997). It is a technique which protects software
intellectual properties against MATE (Man-At-The-End)
attacks (Collberg et al. 2011). The concept was originally
introduced at the International Obfuscated C Code Con-
test in 1984, which awarded creative C source codes with
“smelly styles”. Later in 1997, Collberg et al. (Collberg et
al. 1997) published a milestone paper discussing the tax-
onomy of obfuscation transformations for Java programs.
Since then, the technique has become indispensable for
software protection. There are many practical obfuscation
approaches developed, such as lexical obfuscation with

*Correspondence: xuh@fudan.edu.cn
1School of Computer Science, Fudan University, Shanghai, China
Full list of author information is available at the end of the article

ProGuard (ProGuard 2016) and control-flow obfuscation
with Obfuscator-LLVM (Junod et al. 2015).

Critical challenge of obfuscation
Although obfuscation has been developed for over 30
years, the questions yet unsolved are how much devel-
opers can trust the technique and how to design reli-
able obfuscation solutions. Such issues are very critical
because obfuscation is a security primitive. To tackle these
questions, we have surveyed the literature of both theoret-
ical and practical obfuscation research.
From the theoretical perspective, many discussions

(e.g., (Barak et al. 2001; Garg et al. 2013a; Lewi et al.
2016; Zimmerman 2015) on this problem have arisen in
recent years. The representative ones include the nega-
tive result showed by Barak et al. (2001) that we can-

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-020-00049-3&domain=pdf
mailto: xuh@fudan.edu.cn
http://creativecommons.org/licenses/by/4.0/

Xu et al. Cybersecurity (2020) 3:9 Page 2 of 18

not obfuscate all program with black-box security, and
the positive result presented by Garg et al. (2013a) that
graded encoding is a promising obfuscation algorithm for
achieving a weaker security notion: indistinguishability.
However, we cannot apply these results to practical soft-
ware obfuscation directly because there are obvious gaps
in between. Note that such theoretical research focuses
on obfuscating computation models (e.g., circuits or Tur-
ing Machines) instead of real codes. While computation
models are mathematical and their properties are usually
provable, real codes are more complicated and their prop-
erties are hard to prove. In practice, we generally program
software with high-level programming languages which
cannot be reduced to pure mathematical representations
easily.
From the practical area, we attempt to find some

clues for designing reliable obfuscation solutions. We
find that present obfuscation research generally assumes
a specific code format (e.g., Java bytecodes or assem-
bly codes) for obfuscation. However, real-world software
can be more complicated than that. For instance, an
Android app (Fig. 1) contains several different com-
ponents, such as Java codes, native codes, third-party
libraries, and other resources. Securely obfuscating the
whole app with only one approach is nearly impossi-
ble. Moreover, merely applying some obfuscation tech-
niques in an ad-hoc way can achieve very limited obscu-
rity because it lacks a holistic design. In particular, the
remaining unobfuscated information could jeopardize the
obfuscated software. For instance, the lexical obfusca-
tion approach provided by ProGuard (2016) transforms
identifiers of Android apps to meaningless alphabets
or strings, which seems one-way secure. But a recent
attack (Bichsel et al. 2016) shows that attackers can
recover a significant portion of the original lexical infor-
mation leveraging the residual information within the
obfuscated apps.

We conjecture that achieving reliable obfuscation is
challenging mainly due to the complicated nature of soft-
ware, and we believe a promising way to handle the
challenge is applying the classic idea of layered security to
software obfuscation.

Layered security for obfuscation
Layered security is an effective risk management strat-
egy. It mitigates the risks that a threat becomes a reality
with several protections from different layers or of var-
ious types. The idea has become prevalent for securing
information systems after it has been introduced by the
Department of Defense in Information Assurance Tech-
nical Framework (IATF) (2002). Because information sys-
tems are very complicated, there is no silver bullet for
avoiding all risks, and layered security is the best practice.
In the first level, IATF divides information systems into
four areas or layers, which are local computing environ-
ment, enclave boundaries, network and infrastructures,
and supporting infrastructures. Each of these layers faces
a specific group of threats and should be protected corre-
spondingly. Take the area of network and infrastructure as
an example, administrators can employ firewalls to deter
denial-of-service attacks from the internet, and they can
use the SSL/TLS (Secure Socket Layer/Transport Layer
Security) gateways (Rescorla 2001) to encrypt the traffics
from being eavesdropped. The layered security idea inte-
grates different security mechanisms as a whole to protect
the security of a system.
Although the software is not as complicated as infor-

mation systems, its complexity is beyond the capability of
any single obfuscation technique. Therefore, we believe
employing the idea of layered security for software obfus-
cation should be a promising way, namely layered obfus-
cation. Different from mainstream obfuscation research
which treats software as simple codes, we think prac-
tical obfuscation should be based on risk management

Fig. 1 General components of Android apps

Xu et al. Cybersecurity (2020) 3:9 Page 3 of 18

and should integrate several obfuscation techniques to
mitigate different risks (Gonzalez and Liñan 2019).
In practice, layered security has already been employed

in protecting real-world digital assets and systems, such
as digital watermarking (Barr et al. 2012) and cloud
(Yildiz et al. 2009). Yet, the idea is still very prelim-
inary for software obfuscation. Although some practi-
cal obfuscation tools (e.g., DexGuard (2018) and Dex-
Protector (2018)) already support multiple obfusca-
tion techniques, they do not provide a systematic way
regarding how to integrate them concerning layered
security.

Our contributions
In this paper, we demonstrate the concept of layered
obfuscation, and we aim to help developers to adopt
the idea in practice. Note that when designing layered
obfuscation solutions, developers should know available
obfuscation techniques as well. Such knowledge is essen-
tial for them to choose appropriate techniques and to
integrate them efficiently. To meet this need, we develop
a taxonomy of obfuscation techniques concerning lay-
ered security and systematically analyze the feature of
each technique. In the first level of the taxonomy, we
categorize obfuscation techniques into four layers based
on the obfuscation targets, which are the code-element
layer, software-component layer, inter-component layer,
and application layer. In the second level, each layer forks
into several sub-categories if the obfuscation targets can
be further classified. For example, the code-element layer
contains data and controls, which are two sub-categories
that require different obfuscation techniques to mitigate
corresponding risks. The leaf nodes of the taxonomy hier-
archy are obfuscation approaches for protecting specific
targets.
The rest of the paper is organized as follows. “Motivat-

ing Examples” section first demonstrates our motivation
with real-world examples. “Our study approach” section
introduces our approach to survey obfuscation tech-
niques. “Code-element-layer obfuscation”, “Software–
component-layer obfuscation”, “Inter-component-layer
obfuscation”, and “Application-layer obfuscation” sections
survey the obfuscation techniques of different lay-
ers. “Discussion” section justifies the validity of lay-
ered obfuscation and discusses the challenges. “Related
work” section discusses the related work. Finally, “Conclu-
sion” section concludes this paper.

Motivating Examples
In this section, we discuss the obfuscation requirements
of real-world software. We choose two prevalent types of
software as our motivating examples, i.e., mobile apps in
client-server mode and JavaScript programs in browser-
server mode.

Obfuscating mobile apps
We choose RSA SecureID Software Token as a sample
Android app to discuss the requirements of obfuscation.
Figure 2a demonstrates the components of the app instal-
lation package. Its major component is classes.dex
which contains all Java classes coded by developers. It
implements user interfaces (UI) based on the APIs of
Android framework and JDK. Other UI-related mate-
rials (e.g., layout, images, and texts) are mainly within
the folder of res. Since native codes are advantageous
over Java bytecodes when implementing some features,
the app also employs native codes which are within
the folder of lib. Besides, there is a manifest file and
other folders to store particular data, such as licenses
and fonts.
Because the main feature of the app is to generate

one-time passwords, the corresponding password gener-
ation codes and seeds should be most critical for pro-
tection. However, current mainstream obfuscation tech-
niques (e.g., lexical obfuscation and control-flow obfus-
cation) mainly focuses on general codes, such as Java
codes or native codes. While these approaches can make
the app unreadable in some sense, it is hard to evalu-
ate the resilience of the obfuscated codes to particular
reverse-engineering attacks, such as stealing the seeds.
We think a promising way to tackle the problem should
be based on risk management. If all the risks can be prop-
erly mitigated, developers should be confident about the
obfuscation solution. Because a risk may exist in any com-
ponents of the package, the obfuscation solution should
integrate different techniques to mitigate corresponding
risks.

Obfuscating JavaScripts
Our JavaScript example is Performance RNN, which is a
web application that can play piano automatically based
on recurrent neural networks (RNN) implemented with
tensorflow.js. Figure 2b demonstrates the components of
the web retrieved by a browser to launch the application.
Similar to Android apps, these components are heteroge-
neous. It contains a primary HTML file (index.html)
as the web entry, a CSS file and related pictures defining
the appearance, and a JavaScript file (bundle.js) which
implements the deep learning algorithms. Besides, there
are several binary files that define an RNN model, and
dozens of mp3 files to play each note of a piano.
According to the feature of the application, we infer that

the key assets of the program should be the RNN model
and related algorithms. Therefore, a competent obfusca-
tion solution should at least obfuscate the model files and
bundle.js. It may further randomize the names of the
mp3 files to confuse reverse engineers. However, a better
way to obfuscate the application should be based on risk
analysis and risk mitigation.

Xu et al. Cybersecurity (2020) 3:9 Page 4 of 18

Fig. 2Motivating examples for layered obfuscation

In brief, these two examples demonstrate that practical
obfuscation requirements are usually complicated. They
also explain why obfuscation cannot be as secure as other
security primitives. Furthermore, it indicates that layered
security should be a promising way of obfuscating real-
world software.

Our study approach
When designing layered obfuscation solutions for specific
applications, developers should be knowledgeable about
available obfuscation techniques. To meet this need, we
develop a taxonomy of obfuscation techniques and sur-
vey present obfuscation techniques under the taxonomy
framework. Because we aim to promote the idea of layered
security in software obfuscation, the taxonomy developed
in this paper is different from previous ones.

Survey Scope
This work considers all obfuscation techniques that can
be adopted at the developers’ side, including those obfus-
cation transformations for source codes, bytecodes, and
assembly codes. We do not discuss other obfuscation
techniques that requiremodifying hardware or computing
systems, such as address space randomization (Bhatkar et
al. 2003) and instruction set randomization (Barrantes et
al. 2005).

Taxonomy of Obfuscation
Figure 3 overviews our proposed obfuscation taxon-
omy. In the first level of the hierarchy, we categorize
present obfuscation techniques into four layers accord-
ing to their obfuscation targets. The first layer is code-
element layer which obfuscates particular elements of

Xu et al. Cybersecurity (2020) 3:9 Page 5 of 18

Fig. 3 The taxonomy of software obfuscation techniques for layered security

code snippets, including the layouts, controls, data, func-
tions, and classes. The second layer is software-component
layerwhich targets on an entire software component, such
as a Java library or an ELF (executable file format) file.
The third layer is inter-component layer which focuses on
the interfaces (e.g., JNI) among different components of
a software package. Besides, there are unique obfuscation
techniques proposed for specific applications, denoted as
application layer. A famous example of such obfusca-
tion techniques is white-box encryption for DRM (digital
right management) systems (Chow et al. 2002a). In the
second level of the taxonomy, we fork each layer into
several sub-categories if the obfuscation targets can be
further classified in a fine-grained manner. Finally, the leaf
nodes of the taxonomy hierarchy are various obfuscation
strategies for particular obfuscation targets.
The underlying idea of the taxonomy is defense-in-

depth, which first identifies various software assets to
protect and then enumerates corresponding obfuscation
techniques for protection. For example, our taxonomy can
provide a quick guide to addresses different obfuscation
requirements of mobile apps as discussed in “4” section.
If developers are interested in protecting the lexical infor-
mation, they can choose lexical obfuscation. If they need
to protect the function calls between Java and native
code, they should choose obfuscation techniques under
the inter-component branch.Meanwhile, the design of the
taxonomy hierarchy should apply to the software of dif-
ferent languages or forms. It is obvious that our taxonomy
is also applicable to the javascript obfuscation problem
discussed in “4” section.
Note that the obfuscation strategies under different

branches are orthogonal to each other. Therefore, it can
assist developers in locating appropriate strategies based
on the characteristics of the target software. Then they can
choose a combination of several obfuscation techniques
by further considering their performance, such as cost,
potency, and resilience. The taxonomy is different from

previous work (e.g., (Collberg et al. 1997; Schrittwieser
et al. 2016)) as the taxonomy is target-oriented by con-
sidering software packages composed of heterogeneous
components.

Code-element-layer obfuscation
This section surveys the obfuscation techniques for spe-
cific code elements. This layer covers most of the publi-
cations in software obfuscation area. As shown in Fig. 4,
according to what elements an obfuscation technique
targets, we divide this category into five sub-categories:
obfuscating layouts, obfuscating controls, obfuscating data
obfuscating functions, and obfuscating classes.

Obfuscating layout
Layout obfuscation scrambles the layout of codes or
instructions while keeping the original syntax intact.
This section discusses four layout obfuscation strategies:
meaningless classifiers, stripping redundant symbols, sep-
arating related codes, and junk codes.

Meaningless identifiers
This approach is also known as lexical obfuscation which
transforms meaningful identifiers to meaningless ones.
For most programming languages, adopting meaning-
ful and uniform naming rules (e.g., Hungarian Notation
(Simonyi 1999)) is required as a good programming prac-
tice. Although such names are specified in source codes,
some would remain in the released software by default.
For example, the names of global variables and func-
tions in C/C++ are kept in binaries, and all names of
Java are reserved in bytecodes. Because such meaning-
ful names can facilitate adversarial program analysis, we
should scramble them. To make the obfuscated identifiers
more confusing, Chan and Yang (2004) proposed to delib-
erately employ the same names for objects of different
types or within different domains. Such approaches have
been adopted by ProGuard (2016) as a default obfuscation
scheme for Java programs.

Xu et al. Cybersecurity (2020) 3:9 Page 6 of 18

Fig. 4 The obfuscation techniques of code-element layer

Stripping redundant symbols
This strategy strips redundant symbolic information from
released software, such as the debug information for most
propgrams (Low 1998). Besides, there are other redun-
dant symbols for particular formats of programs. For
example, ELF files contain symbol tables which record
the pairs of identifiers and addresses. When adopting
default compilation options to compile C/C++ programs,
such as using LLVM (Lattner and Adve 2004), the gen-
erated binaries contain such symbol tables. To remove
such redundant information, developers can employ the
strip tool of Linux. Another example with redundant
information is Android smali codes. By default, the gener-
ated smali codes contain information started with .line
and .source, which can be removed for obfuscation
purposes (Dalla Preda and Maggi 2017).

Separating related codes
A program is more easy to read if its logically related
codes are also physically close (Collberg et al. 1997).
Therefore, separating related codes or instructions can
increase the difficulties in reading. It is applicable
to both source codes (e.g., reordering variables (Low
1998)) and assembly codes (e.g., reordering instructions
(Wroblewski 2002)). In practice, employing uncondi-
tional jumps to rewrite a program is a popular approach
to achieve this. For example, developers can shuffle
the assembly codes and then employ goto to recon-
struct the original control flow (You and Yim 2010).
This approach is popular for assembly codes and Java
bytecodes with the availability of goto instructions
(Dalla Preda and Maggi 2017).

Junk codes
This strategy adds junk instructions which are not func-
tional. For binaries, we can add no-operation instructions
(NOP or 0x00) (Dalla Preda and Maggi 2017; Marcelli et

al. 2018). Besides, we can also add junk methods, such
as adding defunct methods in Android smali codes (Dalla
Preda and Maggi 2017). The junk codes can typically
change the signatures of the codes, and therefore escape
static pattern recognition.
Because layout obfuscation does not tamper with the

original code syntax, it is less prone to compatibility issues
or bugs. Therefore, such techniques are the most favorite
ones in practice. Moreover, the techniques of meaningless
identifiers and stripping redundant symbols can reduce
the size of programs, which further makes them attrac-
tive (ProGuard 2016). However, the potency of the lay-
out obfuscation is limited. It has promising resilience to
deobfuscation attacks because some transformations are
one-way, which cannot be reversed. However, some layout
information can hardly be changed, such as the method
identifiers from Java SDK. Such residual information is
essential for adversaries to recover the obfuscated infor-
mation. For example, Bichsel et al. (2016) tried to deob-
fuscated ProGuard-obfuscated apps, and they successfully
recovered around 80% names.

Obfuscating controls
This type of obfuscation techniques transforms the con-
trols of codes to increase the program complexity. It can
be achieved via bogus control flows, probabilistic control
flows, dispatcher-based controls, and implicit controls.

Bogus control flows
Bogus control flows refer to the control flows that are
deliberately added to a program but will never be exe-
cuted. It can increase the complexity of a program, e.g.,
in McCabe complexity (McCabe 1976) or Harrison met-
rics (Harrison and Magel 1981). For example, McCabe
complexity (McCabe 1976) is calculated as the number of
edges on a control-flow graphminus the number of nodes,
and then plus two times of the connected components. To

Xu et al. Cybersecurity (2020) 3:9 Page 7 of 18

increase the McCabe complexity, we can either introduce
new edges or add both new edges and nodes to a con-
nected component.
To guarantee the unreachability of bogus control flows,

Collberg et al. (1997) suggested employing opaque predi-
cates. They defined opaque predict as the predicate whose
outcome is known during obfuscation time but is diffi-
cult to deduce by static program analysis. In general, an
opaque predicate can be constantly true (PT), constantly
false (PF), or context-dependent (P?). There are three
methods to create opaque predicates: numerical schemes,
programming schemes, and contextual schemes.
Numerical Schemes
Numerical schemes compose opaque predicates with

mathematical expressions. For example, 7x2 − 1 �= y2 is
constantly true for all integers x and y. We can directly
employ such opaque predicates to introduce bogus con-
trol flows. Figure 5a demonstrates an example, in which
the opaque predicate guarantees that the bogus control
flow (i.e., the else branch) will not be executed. How-
ever, attackers would have higher chances to detect them
if we employ the same opaque predicates frequently in an
obfuscated program. Arboit (2002), therefore, proposed
to generate a family of such opaque predicates automati-
cally, such that an obfuscator can choose a unique opaque
predicate each time.
Another mathematical approach with higher security

is to employ crypto functions, such as hash function H
(Sharif et al. 2008), and homomorphic encryption (Zhu
and Thomborson 2005). For example, we can substitute a
predicate x == c with H(x) == chash to hide the solu-
tion of x for this equation. Note that such an approach
is generally employed by malware to evade dynamic pro-
gram analysis. We may also employ crypto functions to
encrypt equations which cannot be satisfied. However,
such opaque predicates incur much overhead.
To compose opaque constants resistant to static

analysis, Moser et al. (2007) suggested employing 3-
SAT problems, which are NP-hard. This is possible
because one can have efficient algorithms to com-
pose such hard problems (Selman et al. 1996). For
example, Tiella and Ceccato (2017) demonstrated how

to compose such opaque predicates with k-clique
problems.
To compose opaque constants resistant to dynamic

analysis, Wang et al. (2011) proposed to compose opaque
predicates with a form of unsolved conjectures which
loop for many times. Because loops are challenging
for dynamic analysis, the approach in nature should be
resistant to dynamic analysis. Examples of such con-
jectures include Collatz conjecture, 5x + 1 conjecture,
Matthews conjecture. Figure 5b demonstrates how to
employ Collatz conjecture to introduce bogus control
flows. No matter how we initialize x, the program termi-
nates with x = 1, and originalCodes() can always be
executed.
Programming Schemes
Because adversarial program analysis is a major threat

to opaque predicates, we can employ challenging program
analysis problems to compose opaque predicates. Coll-
berg et al. suggested two classic problems, pointer analysis
and concurrent programs.
In general, pointer analysis refers to determining

whether two pointers can or may point to the same
address. Some pointer analysis problems can be NP-hard
for static analysis or even undecidable (Landi and Ryder
1991). Another advantage is that pointer operations are
very efficient during execution. Therefore, developers can
compose resilient and efficient opaque predicts with well-
designed pointer analysis problems, such as maintaining
pointers to some objects with dynamic data structures
(Collberg et al. 1998a).
Concurrent programs or parallel programs is another

challenging issue. In general, a parallel region of n state-
ments has n! different ways of execution. The execution
is not only determined by the program, but also by the
runtime status of a host computer. Collberg et al. (1998a)
proposed to employ concurrent programs to enhance
the pointer-based approach by concurrently updating the
pointers. Majumdar and Thomborson (2006) proposed to
employ distributed parallel programs to compose opaque
predicates.
Besides, some approaches compose opaque predicates

with programming tricks, such as leveraging exception

Fig. 5 Control-flow obfuscation with opaque predicates

Xu et al. Cybersecurity (2020) 3:9 Page 8 of 18

handling mechanisms. For example, Dolz and Parra (2008)
proposed to use the try-catchmechanism to compose
opaque predicates for .Net and Java. The exception
events include division by zero, null pointer, index out of
range, or even particular hardware exceptions (Chen et al.
2009). The original program semantics can be achieved
via tailored exception handling schemes. However, such
opaque predicates have no security basis, and they are
vulnerable to advanced handmade attacks.
Contextual Schemes
Contextual schemes can be employed to compose vari-

ant opaque predicates(i.e., {P?}). The predicates should
hold some deterministic properties such that they can be
employed to obfuscate programs. For example, Drape and
et al. (2009) proposed to compose such opaque predicates
which are invariant under a contextual constraint, e.g.,
the opaque predicate xmod3 == 1 is constantly true if
xmod3 : 1 ? x++ :x = x+3. Palsberg et al. (2000) proposed
dynamic opaque predicates, which include a sequence
of correlated predicates. The evaluation result of each
predicate may vary in each run. However, as long as the
predicates are correlated, the program behavior is deter-
ministic. Figure 5c demonstrates an example of dynamic
opaque predicates. No matter how we initialize *p and
*q, the program is equivalent to y = x + 3, x = y + 3.
The resistance of bogus control flows mostly depends

on the security of opaque predicates. An ideal secu-
rity property for opaque predicates is that they require
worst-case exponential time to break but only polyno-
mial time to construct. Note that some opaque predicates
are designed with such security concerns but may be
implemented with flaws. For example, the 3-SAT prob-
lems proposed by Ogiso et al. (2003) are based on trivial
problem settings which can be easily simplified. If such
opaque predicates are implemented properly, they would
be promising to be resilient.

Probabilistic control flows
Bogus control flows can make troubles to static pro-
gram analysis. However, they are vulnerable to dynamic

program analysis because the bogus control flows are
inactive. The idea of probabilistic control flows adopts
a different strategy to tackle the threat (Pawlowski et al.
2016). It introduces replications of control flows with the
same semantics but different syntax. When receiving the
same input several times, the program can behave differ-
ently for different execution times. The technique is also
useful for combating side-channel attacks (Crane et al.
2015).
Note that the strategy of probabilistic control flows is

similar to bogus control flows with contextual opaque
predicates. But they are different in nature as contextual
opaque predicates introduce dead paths, although they do
not introduce junk codes.

Dispatcher-based controls
A dispatcher-based control determines the next blocks
of codes to be executed during runtime. Such controls
are essential for control-flow obfuscation because they
can hide the original control flows against static program
analysis.
One major dispatcher-based obfuscation approach is

control-flow flattening, which transforms codes of depth
into shallow ones with more complexity. Wang et al.
(2000) firstly proposed the approach. Figure 6 demon-
strates an example from their paper that transforms a
while loop into another form with switch-case. To
realize such transformation, the first step is to trans-
form the code into an equivalent representation with
if-then-goto statements as shown in Fig. 6; then
they modify the goto statements with switch-case
statements as shown in Fig. 6. In this way, the original
program semantics is realized implicitly by controlling
the data flow of the switch variable. Because the execu-
tion order of code blocks is determined by the variable
dynamically, one cannot know the control flows without
executing the program. Cappaert and Preneel (2010) for-
malized control-flow flattening as employing a dispatcher
node (e.g., switch) that controls the next code block to
be executed; after executing a block, control is transferred

Fig. 6 Control-flow flattening approach proposed by Wang et al. (2000)

Xu et al. Cybersecurity (2020) 3:9 Page 9 of 18

back to the dispatcher node. Besides, there are several
enhancements to code-flow flattening. For example, to
enhance the resistance to static program analysis on the
switch variable, Wang et al. (2001) proposed to introduce
pointer analysis problems. To further complicate the pro-
gram, Chow et al. (2001) proposed to add bogus code
blocks.
László and Kiss (2009) proposed a control-flow flat-

tening mechanism to handle specific C++ syntax, such
as try-catch, while-do, continue. The mecha-
nism is based on abstract syntax tree and employs a
fixed pattern of layout. For each block of code to obfus-
cate, it constructs a while statement in the outer
loop and a switch-case compound inside the loop.
The switch-case compound implements the origi-
nal program semantics, and the switch variable is also
employed to terminate the outer loop. Cappaert and Pre-
neel (2010) found that the mechanisms might be vulnera-
ble to local analysis, i.e., the switch variable is immediately
assigned such that adversaries can infer the next block
to execute by only looking into a current block. They
proposed a strengthened approach with several tricks,
such as employing reference assignment (e.g., swVar =
swVar + 1) instead of direct assignment (e.g., swVar = 3),
replacing the assignment via if-else with a uniform
assignment expression, and employing one-way functions
in calculating the successor of a basic block.
Besides control-flow flattening, there are several other

dispatcher-based obfuscation investigations (e.g., (Linn
and Debray 2003; Ge et al. 2005; Zhang et al. 2010; Schrit-
twieser and Katzenbeisser 2011)). Linn and Debray (2003)
proposed to obfuscate binaries with branch functions that
guide the execution based on the stack information. Sim-
ilarly, Zhang et al. (2010) proposed to employ branch
functions to obfuscate object-oriented programs, which
define a unified method invocation style with an object
pool. To enhance the security of such mechanisms, Ge
et al. (2005) proposed to hide the control information
in another standalone process and employ inter-process
communications. Schrittwieser and Katzenbeisser (2011)
proposed to employ diversified code blocks which imple-
ment the same semantics.
Dispatcher-based obfuscation is resistant against static

analysis because it hides the control-flow graph of a soft-
ware program. However, it is vulnerable to dynamic pro-
gram analysis or hybrid approaches. For example, Udupa
et al. (2005) proposed a hybrid approach to reveal the hid-
den control flows with both static analysis and dynamic
analysis.

Implicit controls
This strategy converts explicit control instructions to
implicit ones. It can hinder reverse engineers from
addressing the correct control flows. For example, we can

replace the control instructions of assembly codes (e.g.,
jmp and jne) with a combination of mov and other
instructions which implement the same control semantics
(Balachandran and Emmanuel 2011).
Note that all existing control-flow obfuscation

approaches focus on syntactic-level transformation, while
the semantic-level protection has rarely been discussed.
Although they may demonstrate some resilience to
attacks, their obfuscation effectiveness concerning
semantic protection remains unclear.

Obfuscating data
Present data obfuscation techniques focus on common
data types, such as integers, strings, and arrays. We can
transform data via splitting, merging, procedurization,
encoding, etc.

Data splitting/merging
Data splitting distributes the information of one variable
into several new variables. For example, a boolean variable
can be split into two boolean variables, and performing
logical operations on them can get the original value.
Data merging, on the other hand, aggregates several

variables into one variable. Collberg et al. (1998b) demon-
strated an example that merges two 32-bit integers into
one 64-bit integer. Ertaul and Venkatesh (2005) proposed
another method that packs several variables into one
space with discrete logarithms.

Data procedurization
Data procedurization substitutes static data with proce-
dure calls. Collberg et al. (1998b) proposed to substitute
strings with a function which can produce all strings
by specifying paticular parameter values. Drape and et
al. (2004) proposed to encode numerical data with two
inverse functions f and g. To assign a value v to a variable
i, we assign it to an injected variable j as j = f (v). To use i,
we invoke g(j) instead.

Data encoding
Data encoding encodes data with mathematical func-
tions or ciphers. Ertaul and Venkatesh (2005) proposed
to encode strings with Affine ciphers (e.g., Caser cipher)
and employ discrete logarithms to pack words. Fukushima
et al. (2008) proposed to encode the clear numbers with
exclusive or operations and then decrypt the com-
putation result before output. Kovacheva (2013) proposed
to encrypt strings with the RC4 cipher and then decrypt
them during runtime.

Array transformation
Array is one most commonly employed data structure.
To obfuscate arrays, Collberg et al. (1998b) discussed
several transformations, such as splitting one array into
several subarrays, merging several arrays into one array,

Xu et al. Cybersecurity (2020) 3:9 Page 10 of 18

folding an array to increase its dimension, or flattening
an array to reduce the dimension. Ertaul and Venkatesh
(2005) suggested transforming the array indices with com-
posite functions. Zhu et al. (2006); Zhu (2007) proposed
to employ homomorphic encryption for array transfor-
mation, including index change, folding, and flattering.
For example, we can shuffle the elements of an array
with i ∗ m mod n, where i is the original index, n is
the size of the original array, and m and n are relatively
prime.

Obfuscating methods
Method inline/outline
A method is an independent procedure that can be called
by other instructions of the program. Method inline
replaces the original procedural call with the function
body itself. Method outline operates in the opposite way
which extracts a sequence of instructions and abstracts
a method. They are good companies which can obfus-
cate the original abstraction of procedures (Collberg et al.
1997).

Method clone
If a method is heavily invoked, we can create replications
of the method and randomly call one of them. To confuse
adversarial interpretation, each version of the replication
should be unique somehow, such as by adopting differ-
ent obfuscation transformations (Collberg et al. 1997) or
different signatures (Ertaul and Venkatesh 2004).

Method aggregation/scattering
The idea is similar to data obfuscation. We can aggre-
gate irrelevant methods into one method or scattering a
method into several methods (Collberg et al. 1997; Low
1998).

Method proxy
This approach creates proxy methods to confuse reverse
engineering. For example, we can create the proxies as
public static methods with randomized identifiers. There
can be several distinct proxies for the same method (Dalla
Preda and Maggi 2017). The approach is extremely useful
when the method signatures cannot be changed (Prot-
senko and Muller 2013).

Obfuscating classes
Obfuscating classes shares some similar ideas with obfus-
cating methods, such as splitting and clone (Collberg et al.

1998b). However, since class only exists in object-oriented
programming languages, such as JAVA and .NET, we
discuss them as a unique category. Below we present the
major strategies for obfuscating classes.

Droppingmodifiers
Object-oriented programs contain modifiers (e.g., public,
private) to restrict the access to classes and members of
classes. Droppingmodifiers removes such restrictions and
make all members public (Protsenko and Muller 2013).
This approach can facilitate the implementation of other
class obfuscation methods.

Splitting/Coalescing class
The idea of coalescing/splitting is to obfuscate the intent
of developers when design the classes (Sosonkin et al.
2003). When coalescing classes, we can transfer local
variables or local instruction groups to another class
(Fukushima et al. 2003).

Class hierarchy flattening
Interface is a powerful tool for object-oriented programs.
Similar to method proxy, we can create proxies for classes
with interfaces (Sosonkin et al. 2003). However, a more
potent way is to break the original inheritance relation-
ship among classes with interfaces. By letting each node
of a subtree in the class hierarchy implementing the same
interface, we can flatten the hierarchy (Foket et al. 2012).

Software-component-layer obfuscation
Now we present the obfuscation techniques which do
not emphasize particular code syntax or elements. As
shown in Fig. 7, such techniques include code translation,
VM(virtual machine)-based obfuscation, decompilation
prevention, and diversification.

Code translation
Wang et al. (2016) proposed translingual obfuscation,
which introduces obscurity by translating the programs
written in C into ProLog before compilation. Because
ProLog adopts a different program paradigm and execu-
tion model from C, the generated binaries should become
harder to understand. In an extreme case, Domas (2015)
considered all high-level instructions should be obfus-
cated. He proposed movobfuscation, which employs only
one instruction (i.e., mov) to compile the program. The
idea is feasible because mov is Turing complete (Dolan
2013).

Fig. 7 The obfuscation techniques of software-component layer

Xu et al. Cybersecurity (2020) 3:9 Page 11 of 18

VM-based Approach
VM-based obfuscation is a popular technique widely
employed in practice. It converts the original machine
instructions into opcode specialized for a particular vir-
tual machine. Meanwhile, a lightweight VM is embed-
ded in the software for runtime opcode interpretation.
The original software entry is therefore replaced as a
small loader that initiates the VM. There are dozens of
such tools available, and the famous ones are Rewolf-
x86-Virtualizer1 (open source), VMProtect2, Code Virtu-
alizer3, and Themida4.
Since VM-based obfuscation is popular, deobfuscat-

ing such obfuscated software becomes an interest to
researchers, such as (Rolles 2009; Xu et al. 2018). Hence,
several methods to strengthen the protection are pro-
posed. For example, Cheng et al. (2019) found that statis-
tical approaches (Norouzi et al. 2016) could be effective
in decoding the mapping between opcode and assem-
bly code, and they proposed a dynamic approach that
employs different mappings for different code blocks.
Kuang et al. (2018) found the execution paths of state-
of-the-art VM-based approaches are deterministic for the
same input, which could be vulnerable. To diversify the
behaviors of the obfuscated software, they propose two
techniques: a randomized scheduling scheme for path
selections and employing multiple VMs with different
instruction sets.

Decompilation Prevention
Preventive obfuscation raises the bar for adversaries to
obtain code snippets in readable formats. It is generally
designed for non-scripting programming languages, such
as C/C++ and Java. For such software, a decompilation or
disassembly phase is required to translate machine codes
(e.g., binaries) into human readable formats. Preventive
obfuscation, therefore, obstructs this decoding phase by
introducing decompilation errors.
Linn and Debray (2003) proposed an anti-disassembly

approach for binaries. Their approach deters disassem-
bling algorithms by inserting uncompleted instructions
after unconditional jumps. In this way, the uncompleted
instructions are unreachable as junk codes. If a disas-
sembler cannot handle such uncompleted instructions,
they will have troubles when separating instructions. This
approach can be further strengthened with some control-
flow obfuscation techniques (Popov et al. 2007). Chan and
Yang (2004) proposed several lexical tricks to impede Java
decompilation. The idea is to modify bytecodes directly by
employing reserved keywords to name variables and func-
tions. This is possible because only the frontend performs

1https://github.com/rwfpl/rewolf-x86-virtualizer
2https://vmpsoft.com/
3https://www.oreans.com/codevirtualizer.php
4https://www.oreans.com/themida.php

the validation check of identifiers. The resulting modified
program can still run correctly, but it would cause troubles
for decompilation tools.
Moreover, there are some encryption-based approaches

which can hide the real instructions from static analy-
sis. A typical application is the class encryption feature
for Android apps (Wermke et al. 2018). By encrypting the
classes.dex, this feature can hide the Java classes from
being decompiled by popular reverse engineering tools,
such as Apktool5 and dex2jar6.

Code Diversification
Previous obfuscation approaches focus on introducing
obscurities to one software component, while code diver-
sification generates multiple obfuscated versions of the
component simultaneously (Larsen et al. 2014). Ideally,
it can pose equivalent barriers for adversaries to reverse
engineer each particular version. Therefore, code diversi-
fication can impede large-scale and reproductive attacks
to homogeneous software (Forrest et al. 1997; Hossein-
zadeh et al. 2018). It is also a technique widely employed
by malware camouflage, which creates different copies of
malware to evade anti-virus detection (You and Yim 2010).
Code diversification generally relies on some random-

izationmechanisms to introduce variance. Lin et al. (2009)
proposed to generate different layout of data structures
during each compilation. In this way, each compiled ver-
sion contains a unique layout of data objects, such as
structures, classes, and stack variables declared in func-
tions. This can be achieved through an algorithm which
automatically discovers the potential data objects that can
be randomized (Xin et al. 2010). By embedding some
security designs, code diversification can be resilient to
specific attacks (Larsen et al. 2014; Xu et al. 2016). For
example, Crane et al. (2015) proposed to randomize the
tables of pointers to deter code-reuse attacks.

Inter-component-layer obfuscation

Figure 8 overviews the techniques for inter-component
obfuscation. Modern software package generally contains
several components, such as the components written by
developers and other libraries. This phenomenon can
facilitate software development and distribution, but it
also raises challenging issues for obfuscation. In particular,
developers cannot modify the function identifiers imple-
mented in other libraries. However, such outsider calls
provide essential information for software analysis and
should be obfuscated. For example, Martín et al. (2017)
showed that the function calls of third-party libraries
are very effective for signature-based malware detection
(Souri and Hosseini 2018).

5https://ibotpeaches.github.io/Apktool/
6https://github.com/pxb1988/dex2jar

https://github.com/rwfpl/rewolf-x86-virtualizer
https://vmpsoft.com/
https://www.oreans.com/codevirtualizer.php
https://www.oreans.com/themida.php
https://ibotpeaches.github.io/Apktool/
https://github.com/pxb1988/dex2jar

Xu et al. Cybersecurity (2020) 3:9 Page 12 of 18

Fig. 8 The obfuscation techniques of inter-component layer

To obfuscate such information, Collberg et al. (1997)
suggested substituting common patterns of function invo-
cation with less obvious ones. However, he did not present
much details. Recently, Kovacheva (2013) investigated the
problem for Android apps. He proposed to obfuscate the
native calls (e.g., to libc libraries) via a proxy, which is
an obfuscated class that wraps the native functions. The
feature is available in some commercial obfuscation tools,
such as DexProtector (2018). Abrath et al. (2015) inves-
tigate the problem for Windows software, and they also
propose to replace the original function calls via a binder.
Bohannon and Holmes (2017) investigated a similar prob-
lem for Windows powershell scripts. To obfuscate an
invocation command to Windows objects, they proposed
to create a nonsense string first and then leverage Win-
dows string operators to transform the string to a valid
command during runtime. Besides, some state-of-the-art
obfuscation tools (e.g., DexProtector (2018)) can encrypt
the resource files of software packages and implement
functions to decrypt them during runtime.

Application-layer obfuscation
Note that our previously discussed techniques are unre-
lated to the functionality of the software. In this
section, we discuss several obfuscation techniques that are
designed for the software with specific features. As shown
in Fig. 9, we will focus on DRM systems and neural net-
works. However, the branch can be further extended as
long as some new application obfuscation techniques are
proposed.

Obfuscating DRM systems
A DRM system controls the access of users to multimedia
files. The favorite solutions of DRM systems are based on
content encryption. For such solutions, one critical chal-
lenge is to hide decryption keys, especially when attack-
ers can have full access to the decryption software and
the computing environment. White-box encryption is an
obfuscation approach which can withstand key extraction
attacks (Chow et al. 2002b).
In high level, a white-box encryption approach pre-

evaluates all the operations related to keys and replaces
corresponding codes. For example, the original DES (FIPS
46 1999) algorithm contains 16 rounds of Feistel func-
tions. Each function XORs the plaintext with a round
key, and then employs a lookup table and a permuta-
tion box to produce the output. Chow et al. (2002b)
proposed to substitute this procedure with a round-key-

specific lookup table. In this way, it can hide both the key
and round keys. To be resistant to cryptanalysis, Chow
et al.proposed to further apply bijections and networked
encodings for each encryption round (Chow et al. 2002b).
The strategy is also applicable for AES (Chow et al. 2002a;
FIPS 19 2001).

Obfuscating neural networks
Deep learning has achieved radical developments in the
last decade. It is a new paradigm of programming, known
as Software 2.07. Previous studies show that the structure
of neural networks is a critical factor to improve the accu-
racy of deep learning models. Therefore, the structural
information of private machine learning models is a key
intellectual property for such software. For example, our
JavaScript software in “4” section contains an RNNmodel
and should be protected.
To obfuscate deep learning models, Xu et al. (2018)

proposed a simulation-based obfuscation method. The
method distills the knowledge of well-trained deep learn-
ing models and reloads such knowledge into shallow net-
works. In this way, the shallow networks retain the same
accuracy as the original models, but they have poor learn-
ing abilities. Attackers can learn very few useful settings
from the simulation networks.

Discussion
Threats to validity
In this section, we justify the validity of layered obfusca-
tion as a promising way to obfuscate real-world software.
A major threat to this idea is whether there are already
approaches which can obfuscate all software with secu-
rity guarantee, i.e., they ensure that the essential program
semantics are well protected and demonstrate adequate
hardness for adversaries to recover the semantics. How-
ever, we cannot find such approaches in the literature.
Below, we justify this claim from both the perspectives
of practical code obfuscation and theoretical program
obfuscation research.

Practical obfuscation techniques
As we have discussed in previous sections, most practi-
cal obfuscation techniques focus on obfuscating particu-
lar information. They cannot provide guarantee that the
obfuscated software is secure against reverse engineering
attacks.

7https://medium.com/@karpathy/software-2-0-a64152b37c35

https://medium.com/@karpathy/software-2-0-a64152b37c35

Xu et al. Cybersecurity (2020) 3:9 Page 13 of 18

Fig. 9 The obfuscation techniques of application layer

Furthermore, real-world obfuscation practice usually
adopts one obfuscation technique or combines several
techniques in an ad-hoc way. For example, ProGuard
(2016) is the most popular obfuscation tool for Android
apps, and it is the default one embedded in Android
Studio for free use. ProGuard can only obfuscate the
identifiers of Java programs. Premium obfuscation tools
(e.g., DexGuard (2018) and DexProtector (2018)) aremore
powerful, but only less than 0.16% of real-world apps
employ such premium obfuscation tools (Wermke et al.
2018). From their official websites, we can find these tools
support many obfuscation features, including encryption
of strings, encryption of classes, hiding method calls,
native code obfuscation, native code encryption, and etc.
While each of these features is powerful for particular
threats, there is little instruction about how to integrate
them effectively. The similar situation also exists for iOS
app obfuscation (Wang et al. 2018). Therefore, the taxon-
omy developed in this paper can provide more reference
to developers regarding how to select and integrate differ-
ent obfuscation techniques.

Theoretical obfuscation research
From the theoretical perspective, scientists have already
found an algorithm (i.e., graded encoding) which can
obfuscate all programs with a compelling security prop-
erty: indistinguishability (Garg et al. 2013a; Zimmerman
2015; Lewi et al. 2016). Since such results may confuse
readers, next, we clarify the gaps between such theoreti-
cal research and real-world obfuscation problems with a
sample graded encoding mechanism.
In general, there are two phases to obfuscate a program

with graded encoding: the first phase converts programs
to matrix branching programs (MBP) which can be eval-
uated after encryption; the second phase encrypts MBPs
with graded encoding mechanisms. In particular, the first
phase determines the limitation of program types that can
be supported by theoretical obfuscation research, and the
second phase incurs large overhead.
Converting to MBP
AnMBP that computes a function f is a tuple

MBPf = (Input,Mhead, (Mi,0,Mi,1)i∈l,Mtail) (1)

Input selects a matrix Mi,0 or Mi,1 for each i according to
the corresponding bit of input; Mhead is a row vector of
size w; (Mi,0,Mi,1)i∈l are matrix pairs of size w × w that
encode program semantics; and Mtail is a column vector
of size w.

Given an input x, the MBP computes an output
MBPf (x) ∈ {0, 1} as follows:

MBPf (x) = Mhead × (

l∏

i=1
Mi,xinput(k)) × Mtail (2)

Suppose the i-th matrix pair corresponds to the k-th bit
of the input. If the k-th bit is 0, thenMi,0 is selected, or vice
versa. The program output is the matrix multiplication
result.
The conversion generally includes two steps: from a cir-

cuit Pf to a branching program BPf , and from BPf to
MBPf .
Pf → BPf : A branching program is a finite state

machine. Barrington’s Theorem states that we can con-
vert any boolean formula (boolean circuit of fan-in-two,
depth d) to a branching program of width 5 and length
≤ 4d (Barrington 1986). For boolean formulas Pf ∈ {0, 1},
the finite state machine has one start state, two stop states
(true and false), and several intermediate states. Figure 10a
demonstrates an example which converts a boolean pro-
gram i == 7 to a branching program. Suppose i is an
integer of eight bits, the boolean formula is b0 ∧ b1 ∧
b2 ∧ ¬b3 ∧ ¬b4 ∧ ¬b5 ∧ ¬b6 ∧ ¬b7. We need 10 states
to model the branching program: eight states (s0-s7) that
accept each bit of input, and two stop states (s8 for false,
and s9 for true).
BPf → MBPf : This step computes each matrix of the

MBPf . In general, Mhead can be an all-zero row vector
except the first position is 1, and Mtail can be an all-zero
column vector except the last position is 1. (Mi,0,Mi,1)i∈len
can be constructed from the adjacency matrices of each
state. Figure 10b demonstrates the matrices correspond-
ing to the first input bit of Fig. 10a.
Following such converting approaches, the elements of

resulting matrices are either 1 or 0. Kilian (1988) pro-
posed that we can randomize these elements while retain
its functionality.
MBPf → RMBPf : We first generate n + 1 random inte-

ger matrices RMi and their inverse RM−1
i of size w × w.

Then we multiply the original matrices with such random
matrices as follows.

RMhead = Mhead × RM0

RM0,0 = RM−1
0 × M0,0 × RM1

RM0,1 = RM−1
0 × M0,1 × RM1

...
RMtail = RM−1

n × Mtail

(3)

Xu et al. Cybersecurity (2020) 3:9 Page 14 of 18

Fig. 10 The procedures to convert a program (i.e., if x of int8 equals to 7) to a randomized matrix branching program

The randomization mechanism ensures that all ran-
domization matrices RMi would be canceled when evalu-
ating RMBPf (x).
This phase reveals that the results of theoretical obfus-

cation research apply to arithmetic programs only. How-
ever, real software is more complicated which usually con-
tains many other operations which cannot be converted to
MBP directly or efficiently.
Graded Encoding
Although the randomized matrix branching program

provides some security, it still suffers three kinds of
attacks: partial evaluation, mixed input, and other attacks
that do not respect the algebraic structure (Garg et al.
2013b). Graded encoding is proposed to defeat such
attacks.
Graded encoding is based on multilinear maps. In gen-

eral, a graded encoding scheme includes four compo-
nents: setup that generates the public and private param-
eters of a system, encoding that defines how to encrypt
a message with the private parameters, operations that

declare the supported calculations with encrypted mes-
sages, and a zero-testing function that evaluates if the plain
text of an encrypted message should be 0. GGH scheme is
the first plausible solution to compose multilinear maps
(Garg et al. 2013). It is based on ideal lattices which
encodes an element e over a quotient ring R/I as e + I ,
where I = 〈g〉 ⊂ R is the principal ideal generated by a
short vector g. The four components of GGH are defined
as follows.
Setup: Suppose the multilinear level is κ . The system

generates an ideal-generator g (g and g−1 should be short),
a large enoughmodulus q, and denominators {zi} from the
ring Rq. Then we publish the zero-testing parameter as
pzt =[h

∏κ
i=1 zi/g]q, where h is a small ring element.

Encoding: The encoding of an element e in set Szi is
computed as : u :=[(e + I)/zi]q.
Operations: If two encodings are in the same set (e.g.,

u1 :=[c1/zi]q and u2 :=[c2/zi]q), then one can add them
up u1+u2. If the two encodings are from disjoint sets, one
can multiply the two encodings u1 · u2.

Xu et al. Cybersecurity (2020) 3:9 Page 15 of 18

Zero-Testing Function: A zero testing function for a
level-κ encoding u is defined as

IsZero(u) =
{
1 if ||[u · pzt]q ||∞ ≤ q3/4
0 otherwise (4)

Note that u·pzt = h·c/g. If u is an encoding of 0, c should
be a short vector in I and the product can be smaller than
a threshold; otherwise, c should be a short vector in some
coset of I and the product should be very large.
In brief, the scheme is based on noisy multilinear maps

as the encoding of a value varies at different times. The
only deterministic function is the zero-testing function.
However, when a program becomes complex, the noise
may overwhelm the signal. The size of q should be as large
as possible to overwhelm the noise. This requirement
largely limit the efficiency of graded encoding. Note that
gradient encoding incurs polynomial overhead. Although
the overhead is promising from the theoretical view, it
is too large for practical usage. It has been shown that
even obfuscating a 16-bit point function would result in a
program of several GigBytes (Apon et al. 2014).

Other supportive work
Besides, there are investigations and obfuscation tools
which coincide with our proposal of layered obfuscation.
For example, Kuzurin et al. (2007) found that the security
properties for obfuscating general programs might be too
strong for practical scenarios. They proposed to design
specific security properties for particular obfuscation sce-
narios, such as hiding constants or generating resilient
opaque predicates. The idea is consistent with our lay-
ered obfuscation approach, i.e., an obfuscation approach
cannot be secure-against-all but should only handle par-
ticular threats. Moreover, real-world obfuscation tools
(e.g., Obfuscator-LLVM (Junod et al. 2015) and DexGuard
(2018)) already support combinations of different obfus-
cation techniques, which is a characteristic of layered
obfuscation solutions. However, they are still very prelim-
inary in offering systematic combination strategies. Our
paper, therefore, develops a novel taxonomy of obfusca-
tion techniques which can assist developers in integrating
them systematically.

Challenges of employing layered obfuscation
We have shown that layered obfuscation is a promis-
ing direction for achieving reliable obfuscation. Currently,
there are so many obfuscation techniques available off-
the-shelf, posing a great challenge to developers for
choosing appropriate combinations of obfuscation tech-
niques. Our taxonomy can provide a quick reference
about available obfuscation techniques and their function-
alities. But it still cannot recommend developers which
techniques are their best choices. In particular, existing
obfuscation papers generally employ different benchmark

settings, making it difficult to compare their performance
fairly. Moreover, how to design a fine-grained benchmark
metric that applies to all obfuscation techniques is a chal-
lenging issue. We leave such investigations as our future
work.

Related work
Our work is a pilot study of layered obfuscation. We
mainly develop a taxonomy of obfuscation and survey
these techniques for layered security. There are already
other obfuscation surveys available, but they do not fol-
low the layered security idea. The surveys of practi-
cal code obfuscation include (Schrittwieser et al. 2016;
Drape and et al. 2009; Balakrishnan and Schulze 2005;
Majumdar et al. 2006; Roundy and Miller 2012). Balakr-
ishnan and Schulze (2005) surveyed several major obfus-
cation approaches for both benign codes and malicious
codes. Majumdar et al. (2006) conducted a short sur-
vey that summarizes the control-flow obfuscation tech-
niques using opaque predicates and dynamic dispatcher.
Drape and et al. (2009) surveyed several obfuscation tech-
niques via layout transformation, control-flow transfor-
mation, data transformation, language dependent trans-
formations, etc. Roundy and Miller (2012) systematically
studied obfuscation techniques for binaries, which have
been frequently used by malware packers. Schrittwieser
et al. (2016) surveyed the resilience of obfuscation mech-
anisms to reverse engineering techniques. There are also
surveys of theoretical obfuscation research, including
(Horváth and Buttyán 2016) and (Barak 2016). Horváth
and Buttyán (2016) studied the history of cryptography
obfuscation, with a focus on graded encoding mecha-
nisms. Barak (2016) reviewed the importance of indistin-
guishability obfuscation. To our best knowledge, none of
them follows a clear layered security approach.

Conclusion
To conclude, this work explores layered obfuscation

which applies the idea of layered security to software
obfuscation. To facilitate the adoption of the idea, we
develop a novel obfuscation taxonomy and survey present
obfuscation techniques based on the taxonomy. Our tax-
onomy categorizes present obfuscation techniques into
four layers based on the difference of their obfuscation tar-
gets. Each layer further contains several sub-categories or
obfuscation strategies. The obfuscation strategies under
different branches of the taxonomy are orthogonal to
each other. In this way, it can provide guidance for users
when choosing obfuscation techniques for designing lay-
ered obfuscation solutions. We hope this work can inspire
more investigations on layered obfuscation and encourage
the development of new obfuscation techniques, which
may not be secure-against-all, but can provide users more
options in designing a layered obfuscation solution.

Xu et al. Cybersecurity (2020) 3:9 Page 16 of 18

Acknowledgments
The work described in this paper was supported by the Research Grants
Council of the Hong Kong Special Administrative Region, China (No. CUHK
14210717 of the General Research Fund).

Authors’ contributions
Dr. Hui Xu has accomplished most of the paper contents during his Ph.D.
study, and Prof. Michael Lyu was his advisor. Dr. Yangfan Zhou and Dr. Jiang
Ming are the collaborators of Dr. Hui Xu’s research in software obfuscation.
They gave much advice on the integrity of the taxonomy hierarchy of the
paper, as well as the technical clarity of each obfuscation category. The
author(s) read and approved the final manuscript.

Availability of data andmaterials
Not applicable.

Competing interests
Reviewers from the following institutions may have competing interests,
including:

• Fudan University
• UT Arlington
• The Chinese University of Hong Kong
• Pennsylvania State University
• Peking University

Author details
1School of Computer Science, Fudan University, Shanghai, China. 2School of
Computer Science, Fudan University, Shanghai, China. 3Department of
Computer Science and Engineering, UT Arlington, Arlington, USA.
4Department of Computer Science and Engineering, The Chinese University of
Hong Kong, Shatin N. T., Hong Kong.

Received: 28 December 2019 Accepted: 25 February 2020

References
Abrath B, Coppens B, Volckaert S, De Sutter B (2015) Obfuscating windows dlls.

In: 2015 IEEE/ACM 1st International Workshop on Software Protection. IEEE.
pp 24–30. https://doi.org/10.1109/spro.2015.13

Apon D, Huang Y, Katz J, Malozemoff AJ (2014) Implementing cryptographic
program obfuscation. IACR Cryptol ePrint Arch

Arboit G (2002) A method for watermarking java programs via opaque
predicates. In: The Fifth International Conference on Electronic Commerce
Research

Balachandran V, Emmanuel S (2011) Software code obfuscation by hiding
control flow information in stack. In: IEEE International Workshop on
Information Forensics and Security. https://doi.org/10.1109/wifs.2011.
6123121

Balakrishnan A, Schulze C (2005) Code obfuscation literature survey. CS701
Constr Compilers

Barak B (2016) Hopes, fears, and software obfuscation. Commun ACM. https://
doi.org/10.1145/2757276

Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang K (2001)
On the (im) possibility of obfuscating programs. In: Annual International
Cryptology Conference. Springer. https://doi.org/10.1007/3-540-44647-
8_1

Barr JK, Bradley BA, Hannigan BT, Alattar AM, Durst R (2012) Layered security in
digital watermarking. Google Patents Patent 8, US:190,901

Barrantes EG, Ackley DH, Forrest S, Stefanović D (2005) Randomized instruction
set emulation. ACM Trans Inf Syst Secur. https://doi.org/10.1145/1053283.
1053286

Barrington DA (1986) Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In: STOC. https://doi.org/10.
1145/12130.12131

Bhatkar S, DuVarney DC, Sekar R (2003) Address obfuscation: An efficient
approach to combat a broad range of memory error exploits. In: USENIX
Security Symposium

Bichsel B, Raychev V, Tsankov P, Vechev M (2016) Statistical deobfuscation of
android applications. In: CCS. https://doi.org/10.1145/2976749.2978422

Bohannon D, Holmes L (2017) Revoke-obfuscation: powerShell obfuscation
detection using science. BlackHat

Cappaert J, Preneel B (2010) A general model for hiding control flow. In: ACM
Workshop on Digital Rights Management. https://doi.org/10.1145/
1866870.1866877

Chan J-T, Yang W (2004) Advanced obfuscation techniques for java bytecode.
J Syst Softw. https://doi.org/10.1016/s0164-1212(02)00066-3

Chen H, Yuan L, Wu X, Zang B, Huang B, Yew P-c (2009) Control flow
obfuscation with information flow tracking. In: The 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. https://doi.org/10.1145/
1669112.1669162

Cheng X, Lin Y, Gao D, Jia C (2019) Dynopvm: Vm-based software obfuscation
with dynamic opcode mapping. In: International Conference on Applied
Cryptography and Network Security. Springer. https://doi.org/10.1007/
978-3-030-21568-2_8

Chow S, Eisen P, Johnson H, Van Oorschot PC (2002) White-box cryptography
and an AES implementation. In: International Workshop on Selected Areas
in Cryptography. Springer. https://doi.org/10.1007/3-540-36492-7_17

Chow S, Eisen P, Johnson H, Van Oorschot PC (2002) A white-box DES
implementation for DRM applications. In: ACM Workshop on Digital Rights
Management. https://doi.org/10.1007/978-3-540-44993-5_1

Chow S, Gu Y, Johnson H, Zakharov VA (2001) An approach to the obfuscation
of control-flow of sequential computer programs. In: Information Security.
Springer. https://doi.org/10.1007/3-540-45439-x_10

Collberg C, Davidson J, Giacobazzi R, Gu YX, Herzberg A, Wang F-Y (2011)
Toward digital asset protection. IEEE Intell. Syst. https://doi.org/10.1109/
mis.2011.106

Collberg C, Thomborson C, Low D (1997) A taxonomy of obfuscating
transformations, Technical report. The University of Auckland

Collberg C, Thomborson C, Low D (1998) Manufacturing cheap, resilient, and
stealthy opaque constructs. In: POPL. https://doi.org/10.1145/268946.
268962

Collberg C, Thomborson C, Low D (1998) Breaking abstractions and
unstructuring data structures. In: IEEE International Conference on
Computer Languages. https://doi.org/10.1109/iccl.1998.674154

Crane S, Homescu A, Brunthaler S, Larsen P, Franz M (2015) Thwarting cache
side-channel attacks through dynamic software diversity. In: NDSS. https://
doi.org/10.14722/ndss.2015.23264

Crane SJ, Volckaert S, Schuster F, Liebchen C, Larsen P, Davi L, Sadeghi A-R,
Holz T, De Sutter B, Franz M (2015) It’s a TRaP: table randomization and
protection against function-reuse attacks. In: CCS. https://doi.org/10.1145/
2810103.2813682

Dalla Preda M, Maggi F (2017) Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology. J
Comput Virol Hacking Tech. https://doi.org/10.1007/s11416-016-0282-2

DexGuard (2018). https://www.guardsquare.com/dexguard. AccessedAug 2018
DexProtector (2018). https://dexprotector.com/. Accessed Aug 2018
Dolan S (2013) mov is Turing-complete
Dolz D, Parra G (2008) Using exception handling to build opaque predicates in

intermediate code obfuscation techniques. J Comput Sci Technol
Domas C (2015) The movfuscator: Turning ’move’ into a soul-crushing RE

nightmare. REcon
Drape S, et al. (2004) Obfuscation of Abstract Data Types. Citeseer
Drape S, et al. (2009) Intellectual property protection using obfuscation. SAS
Ertaul L, Venkatesh S (2004) Jhide-a tool kit for code obfuscation. In: IASTED

Conf. on Software Engineering and Applications
Ertaul L, Venkatesh S (2005) Novel obfuscation algorithms for software security.

In: International Conference on Software Engineering Research and
Practice. Citeseer

FIPS 19 (2001) Advanced Encryption Standard. NIST. https://doi.org/10.6028/
nist.fips.197

FIPS 46 (1999) The Data Encryption Standard. NIST
Foket C, De Sutter B, Coppens B, De Bosschere K (2012) A novel obfuscation:

class hierarchy flattening. In: International Symposium on Foundations and
Practice of Security. Springer. https://doi.org/10.1007/978-3-642-37119-
6_13

Forrest S, Somayaji A, Ackley DH (1997) Building diverse computer systems. In:
The 6th IEEE Workshop on Hot Topics in Operating Systems. https://doi.
org/10.1109/hotos.1997.595185

Fukushima K, Kiyomoto S, Tanaka T, Sakurai K (2008) Analysis of program
obfuscation schemes with variable encoding technique. Trans Fundam
Electron IEICE Commun Comput Sci. https://doi.org/10.1093/ietfec/e91-a.
1.316

https://doi.org/10.1109/spro.2015.13
https://doi.org/10.1109/wifs.2011.6123121
https://doi.org/10.1109/wifs.2011.6123121
https://doi.org/10.1145/2757276
https://doi.org/10.1145/2757276
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1145/1053283.1053286
https://doi.org/10.1145/1053283.1053286
https://doi.org/10.1145/12130.12131
https://doi.org/10.1145/12130.12131
https://doi.org/10.1145/2976749.2978422
https://doi.org/10.1145/1866870.1866877
https://doi.org/10.1145/1866870.1866877
https://doi.org/10.1016/s0164-1212(02)00066-3
https://doi.org/10.1145/1669112.1669162
https://doi.org/10.1145/1669112.1669162
https://doi.org/10.1007/978-3-030-21568-2_8
https://doi.org/10.1007/978-3-030-21568-2_8
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-45439-x_10
https://doi.org/10.1109/mis.2011.106
https://doi.org/10.1109/mis.2011.106
https://doi.org/10.1145/268946.268962
https://doi.org/10.1145/268946.268962
https://doi.org/10.1109/iccl.1998.674154
https://doi.org/10.14722/ndss.2015.23264
https://doi.org/10.14722/ndss.2015.23264
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1007/s11416-016-0282-2
https://www.guardsquare.com/dexguard
https://dexprotector.com/
https://doi.org/10.6028/nist.fips.197
https://doi.org/10.6028/nist.fips.197
https://doi.org/10.1007/978-3-642-37119-6_13
https://doi.org/10.1007/978-3-642-37119-6_13
https://doi.org/10.1109/hotos.1997.595185
https://doi.org/10.1109/hotos.1997.595185
https://doi.org/10.1093/ietfec/e91-a.1.316
https://doi.org/10.1093/ietfec/e91-a.1.316

Xu et al. Cybersecurity (2020) 3:9 Page 17 of 18

Fukushima K, Tabata T, Sakurai K (2003) Evaluation of obfuscation scheme
focusing on calling relationships of fields and methods in methods.
Commun Netw Inf Secur

Garg S, Gentry C, Halevi S (2013) Candidate multilinear maps from ideal
lattices. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. https://doi.org/10.
1007/978-3-642-38348-9_1

Garg S, Gentry C, Halevi S, Raykova M, Sahai A, Waters B (2013) Candidate
indistinguishability obfuscation and functional encryption for all circuits.
In: Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science (FOCS). IEEE. https://doi.org/10.1109/focs.2013.13

Garg S, Gentry C, Halevi S, Raykova M, Sahai A, Waters B (2013) Candidate
indistinguishability obfuscation and functional encryption for all circuits
(full version). In: Cryptology ePrint Archive. https://doi.org/10.1109/focs.
2013.13

Ge J, Chaudhuri S, Tyagi A (2005) Control flow based obfuscation. In: ACM
Workshop on Digital Rights Management. https://doi.org/10.1145/
1102546.1102561

Gonzalez C, Liñan E (2019) A software engineering methodology for
developing secure obfuscated software. In: Future of Information and
Communication Conference. Springer. https://doi.org/10.1007/978-3-030-
12385-7_72

Harrison WA, Magel KI (1981) A complexity measure based on nesting level.
ACM SIGPLAN Not. https://doi.org/10.1145/947825.947829

Horváth M, Buttyán L (2016) The birth of cryptographic obfuscation-a survey
Hosseinzadeh S, Rauti S, Laurén S, Mäkelä J-M, Holvitie J, Hyrynsalmi S,

Leppänen V (2018) Diversification and obfuscation techniques for software
security: a systematic literature review. Inf Softw Technol. https://doi.org/
10.1016/j.infsof.2018.07.007

Information Assurance Technical Framework (IATF) (2002) Release 3.1. http://
www.dtic.mil/docs/citations/ADA606355. Accessed Aug 2018

Junod P, Rinaldini J, Wehrli J, Michielin J (2015) Obfuscator-LLVM: software
protection for the masses. https://doi.org/10.1109/spro.2015.10

Kilian J (1988) Founding crytpography on oblivious transfer. In: STOC. https://
doi.org/10.1145/62212.62215

Kovacheva A (2013) Efficient code obfuscation for android. In: International
Conference on Advances in Information Technology. Springer. https://doi.
org/10.1007/978-3-319-03783-7_10

Kuang K, Tang Z, Gong X, Fang D, Chen X, Wang Z (2018) Enhance virtual-
machine-based code obfuscation security through dynamic bytecode
scheduling. Comput Secur. https://doi.org/10.1016/j.cose.2018.01.008

Kuzurin N, Shokurov A, Varnovsky N, Zakharov V (2007) On the concept of
software obfuscation in computer security. In: Information Security.
Springer. https://doi.org/10.1007/978-3-540-75496-1_19

Landi W, Ryder BG (1991) Pointer-induced aliasing: a problem classification. In:
POPL. https://doi.org/10.1145/99583.99599

Larsen P, Homescu A, Brunthaler S, Franz M (2014) Sok: Automated software
diversity. In: IEEE Symposium on Security and Privacy. https://doi.org/10.
1109/sp.2014.25

László T, Kiss A (2009) Obfuscating c++ programs via control flow flattening.
Annales Universitatis Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica

Lattner C, Adve V (2004) Llvm: A compilation framework for lifelong program
analysis & transformation. In: IEEE International Symposium on Code
Generation and Optimization. https://doi.org/10.1109/cgo.2004.1281665

Lewi K, Malozemoff AJ, Apon D, Carmer B, Foltzer A, Wagner D, Archer DW,
Boneh D, Katz J, Raykova M (2016) 5gen: A framework for prototyping
applications using multilinear maps and matrix branching programs. In:
CCS. https://doi.org/10.1145/2976749.2978314

Lin Z, Riley RD, Xu D (2009) Polymorphing software by randomizing data
structure layout. In: Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer. https://doi.org/10.1007/978-3-642-02918-9_7

Linn C, Debray S (2003) Obfuscation of executable code to improve resistance
to static disassembly. In: CCS. https://doi.org/10.1145/948109.948149

Low D (1998) Protecting java code via code obfuscation. Crossroads. https://
doi.org/10.1145/332084.332092

Majumdar A, Thomborson C (2006) Manufacturing opaque predicates in
distributed systems for code obfuscation. In: The 29th Australasian
Computer Science Conference. Australian Computer Society

Majumdar A, Thomborson C, Drape S (2006) A survey of control-flow
obfuscations. In: Information Systems Security. Springer. https://doi.org/10.
1007/11961635_26

Marcelli A, Sanchez E, Squillerò G, Jamal MU, Imtiaz A, Machetti S, Mangani F,
Monti P, Pola D, Salvato A, et al. (2018) Defeating hardware trojan in
microprocessor cores through software obfuscation. In: the 19th
Latin-American Test Symposium. IEEE. https://doi.org/10.1109/latw.2018.
8349680

Martín A, Menéndez HD, Camacho D (2017) MOCDroid: multi-objective
evolutionary classifier for Android malware detection. Soft Comput.
https://doi.org/10.1007/s00500-016-2283-y

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng
Moser A, Kruegel C, Kirda E (2007) Limits of static analysis for malware

detection. In: ACSAC. IEEE. https://doi.org/10.1109/acsac.2007.21
Norouzi M, Souri A, Samad Zamini M (2016) A data mining classification

approach for behavioral malware detection. J Comput Netw Commun.
https://doi.org/10.1155/2016/8069672

Ogiso T, Sakabe Y, Soshi M, Miyaji A (2003) Software obfuscation on a
theoretical basis and its implementation. Trans Fundam Electron IEICE
Commun Comput Sci

Palsberg J, Krishnaswamy S, Kwon M, Ma D, Shao Q, Zhang Y (2000) Experience
with software watermarking. In: ACSAC. https://doi.org/10.1109/acsac.
2000.898885

Pawlowski A, Contag M, Holz T (2016) Probfuscation: an obfuscation approach
using probabilistic control flows. In: International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer. https://
doi.org/10.1007/978-3-319-40667-1_9

Popov IV, Debray SK, Andrews GR (2007) Binary obfuscation using signals. In:
Usenix Security

ProGuard (2016). http://developer.android.com/tools/help/proguard.html.
Accessed Aug 2018

Protsenko M, Muller T (2013) Pandora applies non-deterministic obfuscation
randomly to android. In: The 8th International Conference onMalicious and
Unwanted Software. IEEE. https://doi.org/10.1109/malware.2013.6703686

Rescorla E (2001) SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley Reading

Rolles R (2009) Unpacking virtualization obfuscators. In: 3rd USENIX Workshop
on Offensive Technologies. WOOT

Roundy KA, Miller BP (2012) Binary-code obfuscations in prevalent packer
tools. ACM Comput Surv. https://doi.org/10.1145/2522968.2522972

Schrittwieser S, Katzenbeisser S (2011) Code obfuscation against static and
dynamic reverse engineering. In: Information Hiding. Springer. https://doi.
org/10.1007/978-3-642-24178-9_19

Schrittwieser S, Katzenbeisser S, Kinder J, Merzdovnik G, Weippl E (2016)
Protecting software through obfuscation: can it keep pace with progress
in code analysis? ACM Comput Surv. https://doi.org/10.1145/2886012

Selman B, Mitchell DG, Levesque HJ (1996) Generating hard satisfiability
problems. Artif Intell. https://doi.org/10.1016/0004-3702(95)00045-3

Sharif MI, Lanzi A, Giffin JT, Lee W (2008) Impeding malware analysis using
conditional code obfuscation. In: NDSS

Simonyi C (1999) Hungarian notation. MSDN Libr
Sosonkin M, Naumovich G, Memon N (2003) Obfuscation of design intent in

object-oriented applications. In: ACM Workshop on Digital Rights
Management. https://doi.org/10.1145/947380.947399

Souri A, Hosseini R (2018) A state-of-the-art survey of malware detection
approaches using data mining techniques. Human-centric Comput Inf Sci.
https://doi.org/10.1186/s13673-018-0125-x

Tiella R, Ceccato M (2017) Automatic generation of opaque constants based
on the k-clique problem for resilient data obfuscation. In: The 24th
International Conference on Software Analysis, Evolution and
Reengineering. IEEE. https://doi.org/10.1109/saner.2017.7884620

Udupa SK, Debray SK, Madou M (2005) Deobfuscation: reverse engineering
obfuscated code. In: The 12th IEEE Working Conference on Reverse
Engineering. https://doi.org/10.1109/wcre.2005.13

Wang P, Bao Q, Wang L, Wang S, Chen Z, Wei T, Wu D (2018) Software
protection on the go: A large-scale empirical study on mobile app
obfuscation. In: ICSE. https://doi.org/10.1145/3180155.3180169

Wang C, Davidson J, Hill J, Knight J (2001) Protection of software-based
survivability mechanisms. In: DSN. https://doi.org/10.21236/ada466288

Wang C, Hill J, Knight J, Davidson J (2000) Software tamper resistance:
Obstructing static analysis of programs, Technical report. University of
Virginia

Wang Z, Ming J, Jia C, Gao D (2011) Linear obfuscation to combat symbolic
execution. In: ESORICS. Springer. https://doi.org/10.1007/978-3-642-
23822-2_12

https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1109/focs.2013.13
https://doi.org/10.1109/focs.2013.13
https://doi.org/10.1109/focs.2013.13
https://doi.org/10.1145/1102546.1102561
https://doi.org/10.1145/1102546.1102561
https://doi.org/10.1007/978-3-030-12385-7_72
https://doi.org/10.1007/978-3-030-12385-7_72
https://doi.org/10.1145/947825.947829
https://doi.org/10.1016/j.infsof.2018.07.007
https://doi.org/10.1016/j.infsof.2018.07.007
http://www.dtic.mil/docs/citations/ADA606355
http://www.dtic.mil/docs/citations/ADA606355
https://doi.org/10.1109/spro.2015.10
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/978-3-319-03783-7_10
https://doi.org/10.1007/978-3-319-03783-7_10
https://doi.org/10.1016/j.cose.2018.01.008
https://doi.org/10.1007/978-3-540-75496-1_19
https://doi.org/10.1145/99583.99599
https://doi.org/10.1109/sp.2014.25
https://doi.org/10.1109/sp.2014.25
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1145/2976749.2978314
https://doi.org/10.1007/978-3-642-02918-9_7
https://doi.org/10.1145/948109.948149
https://doi.org/10.1145/332084.332092
https://doi.org/10.1145/332084.332092
https://doi.org/10.1007/11961635_26
https://doi.org/10.1007/11961635_26
https://doi.org/10.1109/latw.2018.8349680
https://doi.org/10.1109/latw.2018.8349680
https://doi.org/10.1007/s00500-016-2283-y
https://doi.org/10.1109/acsac.2007.21
https://doi.org/10.1155/2016/8069672
https://doi.org/10.1109/acsac.2000.898885
https://doi.org/10.1109/acsac.2000.898885
https://doi.org/10.1007/978-3-319-40667-1_9
https://doi.org/10.1007/978-3-319-40667-1_9
http://developer.android.com/tools/help/proguard.html
https://doi.org/10.1109/malware.2013.6703686
https://doi.org/10.1145/2522968.2522972
https://doi.org/10.1007/978-3-642-24178-9_19
https://doi.org/10.1007/978-3-642-24178-9_19
https://doi.org/10.1145/2886012
https://doi.org/10.1016/0004-3702(95)00045-3
https://doi.org/10.1145/947380.947399
https://doi.org/10.1186/s13673-018-0125-x
https://doi.org/10.1109/saner.2017.7884620
https://doi.org/10.1109/wcre.2005.13
https://doi.org/10.1145/3180155.3180169
https://doi.org/10.21236/ada466288
https://doi.org/10.1007/978-3-642-23822-2_12
https://doi.org/10.1007/978-3-642-23822-2_12

Xu et al. Cybersecurity (2020) 3:9 Page 18 of 18

Wang P, Wang S, Ming J, Jiang Y, Wu D (2016) Translingual obfuscation.
https://doi.org/10.1109/eurosp.2016.21

Wermke D, Huaman N, Acar Y, Reaves B, Traynor P, Fahl S (2018) A large scale
investigation of obfuscation use in google play. arXiv preprint
arXiv:1801.02742. https://doi.org/10.1145/3274694.3274726

Wroblewski G (2002) General method of program code obfuscation, PhD
thesis. Wroclaw University of Technology

Xin Z, Chen H, Han H, Mao B, Xie L (2010) Misleading malware similarities
analysis by automatic data structure obfuscation. In: Information Security.
Springer. https://doi.org/10.1007/978-3-642-18178-8_16

Xu D, Ming J, Fu Y, Wu D (2018) Vmhunt: A verifiable approach to
partially-virtualized binary code simplification. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
https://doi.org/10.1145/3243734.3243827

Xu H, Su Y, Zhao Z, Zhou Y, Lyu MR, King I (2018) Deepobfuscation: Securing
the structure of convolutional neural networks via knowledge distillation.
arXiv preprint arXiv:1806.10313

Xu H, Zhou Y, Lyu MR (2016) N-version obfuscation. In: ACM International
Workshop on Cyber-Physical System Security. https://doi.org/10.1145/
2899015.2899026

Yildiz M, Abawajy J, Ercan T, Bernoth A (2009) A layered security approach for
cloud computing infrastructure. In: International Symposium on Pervasive
Systems, Algorithms, and Networks. IEEE. https://doi.org/10.1109/i-span.
2009.157

You I, Yim K (2010) Malware obfuscation techniques: a brief survey. In:
International Conference on Broadband, Wireless Computing,
Communication and Applications. https://doi.org/10.1109/bwcca.2010.85

Zhang X, He F, Zuo W (2010) Theory and Practice of Program Obfuscation.
INTECH Open Access Publisher. https://doi.org/10.5772/9632

Zhu WF (2007) Concepts and techniques in software watermarking and
obfuscation, PhD thesis. ResearchSpace, Auckland

Zhu W, Thomborson C (2005) A provable scheme for homomorphic
obfuscation in software security. In: The IASTED International Conference
on Communication, Network and Information Security

Zhu W, Thomborson C, Wang F-Y (2006) Applications of homomorphic
functions to software obfuscation. In: Intelligence and Security Informatics.
Springer. https://doi.org/10.1007/11734628_18

Zimmerman J (2015) How to obfuscate programs directly. In: Annual
International Conference on the Theory and Applications of Cryptographic
Techniques. Springer. https://doi.org/10.1007/978-3-662-46803-6_15

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/eurosp.2016.21
https://doi.org/10.1145/3274694.3274726
https://doi.org/10.1007/978-3-642-18178-8_16
https://doi.org/10.1145/3243734.3243827
https://doi.org/10.1145/2899015.2899026
https://doi.org/10.1145/2899015.2899026
https://doi.org/10.1109/i-span.2009.157
https://doi.org/10.1109/i-span.2009.157
https://doi.org/10.1109/bwcca.2010.85
https://doi.org/10.5772/9632
https://doi.org/10.1007/11734628_18
https://doi.org/10.1007/978-3-662-46803-6_15

	Abstract
	Keywords

	Introduction
	Critical challenge of obfuscation
	Layered security for obfuscation
	Our contributions

	Motivating Examples
	Obfuscating mobile apps
	Obfuscating JavaScripts

	Our study approach
	Survey Scope
	Taxonomy of Obfuscation

	Code-element-layer obfuscation
	Obfuscating layout
	Meaningless identifiers
	Stripping redundant symbols
	Separating related codes
	Junk codes

	Obfuscating controls
	Bogus control flows
	Probabilistic control flows
	Dispatcher-based controls
	Implicit controls

	Obfuscating data
	Data splitting/merging
	Data procedurization
	Data encoding
	Array transformation

	Obfuscating methods
	Method inline/outline
	Method clone
	Method aggregation/scattering
	Method proxy

	Obfuscating classes
	Dropping modifiers
	Splitting/Coalescing class
	Class hierarchy flattening

	Software-component-layer obfuscation
	Code translation
	VM-based Approach
	Decompilation Prevention
	Code Diversification

	Inter-component-layer obfuscation
	Application-layer obfuscation
	Obfuscating DRM systems
	Obfuscating neural networks

	Discussion
	Threats to validity
	Practical obfuscation techniques
	Theoretical obfuscation research
	Other supportive work

	Challenges of employing layered obfuscation

	Related work
	Conclusion
	Acknowledgments
	Authors' contributions
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

