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Due to their potential commercial value and the associated great research challenges, recommender systems
have been extensively studied by both academia and industry recently. However, the data sparsity problem
of the involved user-item matrix seriously affects the recommendation quality. Many existing approaches
to recommender systems cannot easily deal with users who have made very few ratings. In view of the
exponential growth of information generated by online users, social contextual information analysis is be-
coming important for many Web applications. In this article, we propose a factor analysis approach based
on probabilistic matrix factorization to alleviate the data sparsity and poor prediction accuracy problems by
incorporating social contextual information, such as social networks and social tags. The complexity analy-
sis indicates that our approach can be applied to very large datasets since it scales linearly with the number
of observations. Moreover, the experimental results show that our method performs much better than the
state-of-the-art approaches, especially in the circumstance that users have made few ratings.
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1. INTRODUCTION

Recommender systems are becoming increasingly indispensable nowadays since they
focus on solving the information overload problem, by providing users with more proac-
tive and personalized information services. Typically, recommender systems are based
on collaborative filtering, which is a technique that automatically predicts the in-
terest of an active user by collecting rating information from other similar users or
items. The underlying assumption of collaborative filtering is that the active user
will prefer those items which other similar users prefer [Ma et al. 2007]. Based on
this simple but effective intuition, collaborative filtering has been widely employed
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in some large, well-known commercial systems, including product recommendation at
Amazon1, movie recommendation at Netflix2, etc. Due to the potential commercial
value and the great research challenges, recommendation techniques have drawn
much attention in data mining [Bell et al. 2007; Koren 2008], information re-
trieval [Banerjee and Ramanathan 2008; Das et al. 2007; Herlocker et al. 2004; Huang
et al. 2004; Koren et al. 2008; Zhou et al. 2008], and machine learning [Marlin 2004;
Rennie and Srebro 2005; Salakhutdinov and Mnih 2008a,b; Salakhutdinov et al. 2007;
Zhu et al. 2008] communities. Recommendation algorithms suggesting personalized
recommendations greatly increase the likelihood of customers making their purchases
online.

A number of algorithms have been proposed to improve both the recommenda-
tion quality and the scalability problems. These collaborative filtering algorithms
can be divided into two main categories: neighborhood-based and model-based ap-
proaches [Breese et al. 1998a; Sarwar et al. 2001]. Different methods make different
assumptions. The neighborhood-based recommendation algorithms assume that those
who agreed in the past tend to agree again in the future. They usually fall into two
classes: user-based approaches [Breese et al. 1998a; Herlocker et al. 1999] and item-
based approaches [Deshpande and Karypis 2004; Sarwar et al. 2001]. To predict a
rating for an item from a user, user-based methods find other similar users and lever-
age their ratings to the item for prediction, while item-based methods use the rat-
ings to other similar items from the user instead [Cao et al. 2008]. In addition to the
neighborhood-based approach, the model-based approaches employ the observed user-
item ratings to train a predefined model. Algorithms in this category include clustering
methods [Kohrs and Merialdo 1999], Bayesian model [Zhang and Koren 2007], aspect
model [Hofmann 2004], etc.

However, despite their success in the industry, neighborhood-based methods and
model-based methods all suffer the data sparsity problem. The density of available
ratings in commercial recommender systems is often less than 1% [Sarwar et al. 2001]
or even much less. In such circumstances, neighborhood-based [Jin et al. 2004; Linden
et al. 2003; Ma et al. 2007] collaborative filtering algorithms fail to find similar users,
since the methods of computing similarities, such as the Pearson Correlation Coeffi-
cient (PCC) or the cosine method, assume that two users have rated at least some items
in common. Moreover, almost all of model-based [Hofmann 2003, 2004; Salakhutdinov
and Mnih 2008b; Si and Jin 2003] collaborative filtering algorithms cannot handle
users who rated only a few items.

Based on the preceding analysis, in order to improve recommendation quality, we
need to solve the data sparsity problem. Actually, thanks to the popularity of Web
2.0 applications, recommender systems are now associated with various kinds of so-
cial context information, including users’ social trust network, tags issued by users or
associated with items, etc. These contextual information contain abundant additional
information about the interests of users or properties of items, hence providing a huge
opportunity to improve the recommendation quality. For example, in users’ social trust
network, users tend to share their interests with the friends they trust. In reality, we
always turn to friends we trust for movie, music, or book recommendations, and our
tastes and characters can be easily affected by the company we keep.

However, traditional recommender systems assume that users are independent and
identically distributed. This assumption ignores the social trust relationships among
the users. But the fact is, offline, social recommendation is an everyday occurrence.

1http://www.amazon.com
2http://www.netflix.com
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For example, when you ask a trusted friend for a recommendation of a movie to watch
or a good restaurant to dine, you are essentially soliciting a verbal social recommen-
dation. In Sinha and Swearingen [2001], the authors have demonstrated that, given
a choice between recommendations from trusted friends and those from recommender
systems, in terms of quality and usefulness, trusted friends’ recommendations are pre-
ferred, even though the recommendations given by the recommender systems have a
high novelty factor. Trusted friends are seen as more qualified to make good and use-
ful recommendations compared to traditional recommender systems [Bedi et al. 2007].
From this point of view, traditional recommender systems that ignore the social net-
work structure of users may no longer be suitable.

In order to alleviate the data sparsity problem and improve the recommendation
quality, in this article, we design a general framework to make recommendations by
incorporating social contextual information, such as users’ social trust network [Ma
et al. 2008], tags issued by users, tags associated with items, etc.

To achieve this goal, our framework integrates social contextual information and
the user-item rating matrix, based on a probabilistic factor analysis. We connect these
different data resources through the shared user latent feature space (or item latent
feature space), that is, the user latent feature space in the social contextual infor-
mation is the same as in the user-item rating matrix. By performing factor analysis
based on probabilistic matrix factorization, the low-rank user latent feature space and
item latent feature space are learned in order to make recommendations. The ex-
perimental results on the Epinions3 and Movielens4 datasets show that our method
outperforms the state-of-the-art collaborative filtering algorithms, especially when ac-
tive users have very few ratings. Moreover, the complexity analysis indicates that our
approach can be applied to very large datasets since it scales linearly with the number
of observations.

2. RELATED WORK

Our work is related to two research fields, recommender systems and social tag
analysis.

2.1. Recommender Systems

In this section, we review several major approaches for recommender systems, espe-
cially for collaborative filtering. Two types of collaborative filtering approaches are
widely studied: neighborhood-based and model-based.

The neighborhood-based approaches are the most popular prediction methods and
are widely adopted in commercial collaborative filtering systems [Linden et al. 2003;
Resnick et al. 1994]. The most analyzed examples of neighborhood-based collaborative
filtering include user-based approaches [Breese et al. 1998b; Herlocker et al. 1999; Jin
et al. 2004] and item-based approaches [Deshpande and Karypis 2004; Linden et al.
2003; Sarwar et al. 2001]. User-based approaches predict the ratings of active users
based on the ratings of their similar users, and item-based approaches predict the
ratings of active users based on the computed information of items similar to those
chosen by the active user. User-based and item-based approaches often use the PCC
(Pearson Correlation Coefficient) algorithm [Resnick et al. 1994] and the VSS (Vec-
tor Space Similarity) algorithm [Breese et al. 1998b] as the similarity computation

3http://www.epinions.com
4http://www.grouplens.org/node/73
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methods. PCC-based collaborative filtering generally can achieve higher performance
than the other popular algorithm VSS, since it considers the differences of user rating
style.

In the model-based approaches, training datasets are used to train a predefined
model. Examples of model-based approaches include the clustering model [Kohrs and
Merialdo 1999], aspect models [Hofmann 2003, 2004; Si and Jin 2003], and the latent
factor model [Canny 2002]. Kohrs and Merialdo [1999] presented an algorithm for
collaborative filtering based on hierarchical clustering, which tried to balance robust-
ness and accuracy of predictions, especially when few data were available. Hofmann
[2003] proposed an algorithm based on a generalization of probabilistic latent semantic
analysis to continuous-valued response variables. Recently, several matrix factoriza-
tion methods [Rennie and Srebro 2005; Salakhutdinov and Mnih 2008a, 2008b; Srebro
and Jaakkola 2003] have been proposed for collaborative filtering. These methods all
focus on fitting the user-item rating matrix using low-rank approximations, and use
it to make further predictions. The premise behind a low-dimensional factor model is
that there is only a small number of factors influencing preferences, and that a user’s
preference vector is determined by how each factor applies to that user.

All the preceding methods for recommender systems, however, are based on the as-
sumption that users are independent and identically distributed, and ignore the social
activities between users, which is not consistent with the reality that we normally ask
friends for recommendations.

In the most recent research conducted in Singla and Richardson [2008], by analyz-
ing the who talks to whom social network on the MSN instant messenger5 over 10
million people with their related search records on the Live Search Engine6, Singla
and Richardson [2008] revealed that people who chat with each other (using instant
messaging) are more likely to share interests (their Web searches are the same or
topically similar). Therefore, to improve recommendation accuracy, in modern recom-
mender systems, both the social network structure and user-item rating matrix should
be taken into consideration.

Based on this intuition, many researchers have recently started to analyze
trust-based recommender systems. In Massa and Avesani [2004], a trust-aware col-
laborative filtering method for recommender systems is proposed. In this work, the
collaborative filtering process is informed by the reputation of users, which is computed
by propagating trust. Trust values are computed in addition to similarity measures
between users. The experiments on a large real dataset show that this work increases
the coverage (number of ratings that are predictable) while not reducing accuracy (the
error of predictions). Bedi et al. [2007] proposed a trust-based recommender system for
the semantic Web. This system runs on a server with the knowledge distributed over
the network in the form of ontologies, and uses the web of trust to generate the recom-
mendations. These methods are all neighborhood-based methods which employ only
heuristic algorithms to generate recommendations. There are several problems with
this approach, however. The relationship between the trust network and the user-item
matrix has not been studied systematically. Moreover, these methods are not scalable
to very large datasets since they may need to calculate the pairwise user similarities
and pairwise user trust scores.

2.2. Social Tag Analysis

Recently, there has been plenty of research investigations on social tagging systems.
Heymann et al. [2008], Li et al. [2008], and Sen et al. [2006] have shown that tags

5http://www.msn.com
6http://www.live.com
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can represent users’ judgments about Web content quite accurately, and also are good
candidates to describe the resources. Heymann et al. [2008] studied social tag pre-
diction, and found that tag-based association rules can produce very high-precision
tag predictions. Song et al. [2008] advocated a two-stage framework to do real-time
tag recommendation. Ramage et al. [2009] employed tags as a complementary data
source to page text and anchor text for improving automatic clustering of Web pages.
Schenkel et al. [2008] used tags as semantic expansions to help social search. However,
in particular, little is known about whether we can utilize tagging information to help
improve recommendation quality. Our method differs from the previous work because
we leverage tagging information to improve recommendation quality by engaging a
factor analysis approach based on probabilistic matrix factorization, and inherently
keeps the flexibility of tagging.

2.3. Heterogeneous Data Mining

Our work is also related to heterogeneous data mining. In Long et al. [2006], the au-
thors proposed a general model, the collective factorization on related matrices, for
multitype relational data clustering. The proposed algorithm iteratively embeds each
type of data objects into low-dimensional spaces and benefits from the interactions
among the hidden structures of different types of data objects. Gao et al. [2005] pro-
posed a coclustering method based on semidefinite programming on high-order hetero-
geneous data sources. However, different from previous work in heterogeneous data
mining, our method is focusing on utilizing other data sources to improve recommender
systems.

3. RECOMMENDATION FRAMEWORK

In this section, we first design a recommendation framework by consolidating a user-
item rating matrix and users’ social trust network in Section 3.1. Then in Section 3.2,
we apply this framework to incorporating social tag information, which is another
important source of social contextual information.

3.1. Recommendation with Social Trust Network

We first demonstrate our recommendation framework using a simple but illustrative
toy example. Then we introduce the recommendation framework by factor analysis
using probabilistic matrix factorization.

3.1.1. A Toy Example. Let us first consider the typical social trust network graph in
Figure 1(a). There are 6 users in total (nodes, from u1 to u6) with 8 relations (edges)
between users in this graph, and each relation is associated with a weight wij in the
range [0, 1] to specify how much user ui knows or trusts user uj. In an online social
network Web site, the weight wij is often explicitly stated by user ui. As illustrated in
Figure 1(b), each user also rates some items (from i1 to i8) on a 5-point integer scale
to express the extent of favor of each item. The problem we study in this article is
how to predict the missing values of the user-item matrix effectively and efficiently
by employing two different data sources. As mentioned in Section 1, motivated by
the intuition that a user’s social trust connections will affect this user’s behaviors on
the Web, we therefore factorize the social trust graph and user-item matrix simul-
taneously and seamlessly using UT Z and UTV, where the shared low-dimensional
matrix U denotes the user latent feature space, Z is the factor matrix in the social
network graph, and V represents the low-dimensional item latent feature space. If we

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 9, Publication date: April 2011.
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Fig. 1. Example for toy data.

use 5 dimensions to perform the matrix factorization for social recommendation, we
obtain

U =

⎡⎢⎢⎢⎢⎢⎢⎣
1.55 1.22 0.37 0.81 0.62 −0.01
0.36 0.91 1.21 0.39 1.10 0.25
0.59 0.20 0.14 0.83 0.27 1.51
0.39 1.33 −0.43 0.70 −0.90 0.68
1.05 0.11 0.17 1.18 1.81 0.40

⎤⎥⎥⎥⎥⎥⎥⎦ ,

V =

⎡⎢⎢⎢⎢⎢⎢⎣
1.00 −0.05 −0.24 0.26 1.28 0.54 −0.31 0.52
0.19 −0.86 −0.72 0.05 0.68 0.02 −0.61 0.70
0.49 0.09 −0.05 −0.62 0.12 0.08 0.02 1.60

−0.40 0.70 0.27 −0.27 0.99 0.44 0.39 0.74
1.49 −1.00 0.06 0.05 0.23 0.01 −0.36 0.80

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Ui and V j are the column vectors and denote the latent feature vectors of user ui
and item v j, respectively. Note that the solutions of U and V are not unique. Then we
can predict the missing value wij in Figure 1(b) using UT

i V j (before prediction, we need
to first transfer the value of UT

i V j using logistic function g(x) and another mapping
function f (x), which will be introduced in Section 3.1.2 and Section 3.1.3, respectively).
Therefore, all the missing values can be predicted using five-dimensional matrices U
and V, as shown in Figure 1(c). Note that even though user u4 does not rate any items,
our approach still can predict reasonable ratings.

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 9, Publication date: April 2011.
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Since this example is a toy example, we cannot evaluate the accuracy of the predic-
tion. However, the experimental analysis in Section 4 based on the Epinions dataset
tests the effectiveness of our approach. In the following sections, we will present the
details of how we conduct factor analysis for social recommendation using probabilistic
matrix factorization.

3.1.2. Social Network Matrix Factorization. Suppose we have a directed social network
graph G = (V, E), where the vertex set V = {vi}n

i=1 represents all the users in a social
network and the edge set E represents the relations between users. Let C = {cik} denote
the m × m matrix of G, which is also called the social network matrix in this article.
For a pair of vertices, vi and vk, let cik ∈ (0, 1] denote the weight associated with an
edge from vi to vk, and cik = 0, otherwise. The physical meaning of the weight cik can
be interpreted as how much a user i trusts or knows user k in a social network. Note
that C is an asymmetric matrix, since in a social network, especially in a trust-based
social network, user i trusting k does not necessary indicate user k trusts i.

The idea of social network matrix factorization is to derive a high-quality l-
dimensional feature representation U of users based on analyzing the social network
graph G. Let U ∈ Rl×m and Z ∈ Rl×m be the latent user and factor feature matri-
ces, with column vectors Ui and Z k representing user-specific and factor-specific latent
feature vectors, respectively. We define the conditional distribution over the observed
social network relationships as

p(C|U, Z, σ 2
C) =

m∏
i=1

m∏
k=1

N [(
cik|g(UT

i Z k), σ 2
C

)]IC
ik , (1)

where N (x|μ, σ 2) is the probability density function of the Gaussian distribution with
mean μ and variance σ 2

C, and IC
ik is the indicator function that is equal to 1 if user

i trusts or knows user k and equal to 0 otherwise. The function g(x) is the logistic
function g(x) = 1/(1 + exp(−x)), which makes it possible to bound the range of UT

i Z k
within the range [0, 1]. We also place zero-mean spherical Gaussian priors [Dueck and
Frey 2004; Salakhutdinov and Mnih 2008b] on user and factor feature vectors.

p(U|σ 2
U) =

m∏
i=1

N (Ui|0, σ 2
UI)

p(Z |σ 2
Z ) =

m∏
k=1

N (Zk|0, σ 2
Z I) (2)

Hence, through a simple Bayesian inference, we have

p(U, Z|C, σ 2
C, σ 2

U , σ 2
Z )

∝ p(C|U, Z, σ 2
C)p(U|σ 2

U)p(Z |σ 2
Z )

=
m∏

i=1

m∏
k=1

N [(
cik|g(UT

i Zk), σ 2
C

)]IC
ik

×
m∏

i=1

N (Ui|0, σ 2
UI) ×

m∏
k=1

N (Zk|0, σ 2
Z I). (3)

In online social networks, the value of cik is mostly explicitly stated by user i with
respect to user k, which cannot accurately describe the relations between users since
it contains noise and it ignores the graph structure information of the social network.

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 9, Publication date: April 2011.
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For instance, similar to the Web link adjacency graph in Zhou et al. [2005], in a trust-
based social network, the confidence of trust value cik should be decreased if user i
trusts a large number of users; however, the confidence of trust value cik should be
increased if user k is trusted by lots of users. Hence, we employ the term c∗

ik which
incorporates local authority and local hub values as a substitute for cik in Eq. (1),

p(C|U, Z, σ 2
C) =

m∏
i=1

n∏
j=1

N [(
c∗

ik|g(UT
i Zk), σ 2

C

)]IC
ik ,

c∗
ik =

√
d−(vk)

d+(vi) + d−(vk)
× cik, (4)

where d+(vi) represents the outdegree of node vi, while d−(vk) indicates the indegree of
node vk.

3.1.3. User-Item Matrix Factorization. Now considering the user-item matrix, suppose
we have m users, n movies, and rating values within the range [0, 1]. Actually, most
recommender systems use integer rating values from 1 to Rmax to represent the users’
judgements on the items. In this article, without loss of generality, we map the ratings
1, ..., Rmax to the interval [0, 1] using the function f (x) = (x − 1)/(Rmax − 1). Let Rij

represent the rating of user i for movie j, and U ∈ Rl×m and V ∈ Rl×n be latent user
and movie feature matrices, with column vectors Ui and Vj representing user-specific
and movie-specific latent feature vectors, respectively. We define the conditional dis-
tribution over the observed ratings as

p(R|U, V, σ 2
R) =

m∏
i=1

n∏
j=1

N [(
rij|g(UT

i Vj), σ 2
R

)]IR
ij , (5)

where IR
ij is the indicator function that is equal to 1 if user i rated movie j and equal

to 0 otherwise. We also place zero-mean spherical Gaussian priors on user and movie
feature vectors.

p(U|σ 2
U) =

m∏
i=1

N (Ui|0, σ 2
UI)

p(V|σ 2
V) =

n∏
j=1

N (Vj|0, σ 2
VI) (6)

Hence, similar to Eq. (3), through a Bayesian inference, we have

p(U, V|R, σ 2
R, σ 2

U, σ 2
V )

∝ p(R|U, V, σ 2
R)p(U|σ 2

U)p(Z |σ 2
V)

=
m∏

i=1

n∏
j=1

N [(
rij|g(UT

i Vj), σ 2
R

)]IR
ij

×
m∏

i=1

N (Ui|0, σ 2
UI) ×

n∏
j=1

N (Vj|0, σ 2
VI). (7)

3.1.4. Matrix Factorization for Social Trust Recommendation. As analyzed in Section 1, in
order to reflect the phenomenon that a user’s social connections will affect this user’s

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 9, Publication date: April 2011.
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Fig. 2. Graphical model for social trust recommendation.

judgement of interest in items, we model the problem of social recommendation using
the graphical model described in Figure 2, which fuses both the social network graph
and the user-item rating matrix into a consistent and compact feature representation.

Based on Figure 2, we have

p(U, V, Z|C, R, σ 2
C, σ 2

R, σ 2
U, σ 2

V , σ 2
Z )

∝ p(R|U, V, σ 2
R)p(C|U, Z, σ 2

C)

× p(U|σ 2
U)p(V|σ 2

V)p(Z|σ 2
Z ). (8)

The log of the posterior distribution for the preceding equation is given by

ln p(U, V, Z|C, R, σ 2
C, σ 2

R, σ 2
U , σ 2

V, σ 2
Z) =

− 1
2σ 2

R

m∑
i=1

n∑
j=1

IR
ij (rij − g(UT

i Vj))2

− 1
2σ 2

C

m∑
i=1

m∑
k=1

IC
ik(c∗

ik − g(UT
i Zk))2

− 1
2σ 2

U

m∑
i=1

UT
i Ui − 1

2σ 2
V

n∑
j=1

VT
j Vj − 1

2σ 2
Z

m∑
k=1

ZT
k Zk

−1
2

⎛⎝⎛⎝ m∑
i=1

n∑
j=1

IR
ij

⎞⎠ lnσ 2
R +

(
m∑

i=1

m∑
k=1

IC
ik

)
lnσ 2

C

⎞⎠
−1

2
(
mllnσ 2

U + nllnσ 2
V + mllnσ 2

Z

)
+ C, (9)

where C is a constant that does not depend on the parameters. Maximizing the log-
posterior over three latent features with hyperparameters (i.e., the observation noise
variance and prior variances) kept fixed is equivalent to minimizing the following

ACM Transactions on Information Systems, Vol. 29, No. 2, Article 9, Publication date: April 2011.
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sum-of-squared-errors objective functions with quadratic regularization terms.
We have

L(R, C,U, V, Z) =
1
2

m∑
i=1

n∑
j=1

IR
ij (rij − g(UT

i Vj))2

+
λC

2

m∑
i=1

m∑
k=1

IC
ik(c∗

ik − g(UT
i Zk))2

+
λU

2
‖U‖2

F +
λV

2
‖V‖2

F +
λZ

2
‖Z‖2

F, (10)

where λC = σ 2
R/σ 2

C, λU = σ 2
R/σ 2

U , λV = σ 2
R/σ 2

V , λZ = σ 2
R/σ 2

Z , and ‖ · ‖2
F denotes the

Frobenius norm. A local minimum of the objective function given by Eq. (10) can be
found by performing gradient descent in Ui, Vj, and Zk,

∂L
∂Ui

=
n∑

j=1

IR
ij g′(UT

i Vj)(g(UT
i Vj) − rij)Vj

+ λC

m∑
j=1

IC
ikg′(UT

i Zk)(g(UT
i Zk) − c∗

ik)Zk + λUUi,

∂L
∂Vj

=
m∑

i=1

IR
ij g′(UT

i Vj)(g(UT
i Vj) − rij)Ui + λV Vj,

∂L
∂ Zk

= λC

m∑
i=1

IC
ikg′(UT

i Zk)(g(UT
i Zk) − c∗

ik)Ui + λZ Zk, (11)

where g′(x) is the derivative of logistic function g′(x) = exp(x)/(1 + exp(x))2. In order
to reduce the model complexity, in all of the experiments we conduct in Section 4, we
set λU = λV = λZ . The algorithm for learning U, V, and Z is straightforward: we first
randomly initialize U, V, and Z , then iteratively update these three matrices based
on their gradients until the value of the objective function converges.

3.1.5. Complexity Analysis. The main computation of gradient methods is evaluating
the object function L and its gradients against variables. Because of the sparsity of
matrices R and C, the computational complexity of evaluating the object function L is
O(ρRl+ ρCl), where ρR and ρC are the numbers of nonzero entries in matrices R and C,
respectively. The computational complexities for gradients ∂L

∂U , ∂L
∂V , and ∂L

∂ Z in Eq. (11)
are O(ρRl + ρCl), O(ρRl), and O(ρCl), respectively. Therefore, the total computational
complexity in one iteration is O(ρRl+ρCl), which indicates that the computational time
of our method is linear with respect to the number of observations in the two sparse
matrices. This complexity analysis shows that our proposed approach is very efficient
and can scale up with respect to very large datasets.

3.2. Recommendation with Social Tags

In the previous section, we demonstrate how to recommend by incorporating users’
social trust information. Actually, this general framework can also be easily extended
to fuse the user-item rating matrix with social tags information. We can use a similar
factor analysis approach by utilizing both users’ rating information and tagging infor-
mation at the same time in light of the facts that both users’ rating information and
users’ tagging information can reflect their opinions about Web content. Specifically,
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Fig. 3. Graphical model for recommendation with user tags.

Fig. 4. Graphical model for recommendation with item tags.

on the one hand, we connect users’ rating information with users’ tagging informa-
tion through the shared user latent feature space. The graphical model of this case is
shown in Figure 3, where the matrix T represents the latent feature of each tag, and
Fik indicates how many times that user ui used tag tk. We can also have the similar ob-
ject function as shown in Eq. (10) with the parameter λU

T controlling how many users’
tag information should be used. On the other hand, we connect items’ received rating
information with items’ received tagging information through the shared item latent
feature space. The related graphical model is shown in Figure 4, where Fjk represents
how many times that item v j is tagged by tag tk. In the objective function, we employ
λV

T to control how many items’ tag information should be incorporated.
The user latent feature space affects users’ behaviors on both rating and tagging

activities, while the item latent feature space determines both the received rating in-
formation and received tagging information.
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4. EXPERIMENTAL ANALYSIS

In this section, we conduct several experiments to compare the recommendation qual-
ity of our social recommendation approach with other state-of-the-art collaborative
filtering methods. We conduct the experiments on two different datasets: one is Epin-
ions which is associated with a social trust network, another is Movielens which has
tag information that is issued by different users.

Our experiments are intended to address the following questions.

(1) How does our approach compare with the published state-of-the-art collaborative
filtering algorithms?

(2) How does the model parameter λC affect the accuracy of prediction?
(3) What is the performance comparison on users with different observed ratings?
(4) Can our algorithm achieve good performance even if users have no observed rat-

ings?
(5) Is our algorithm efficient for large datasets?

4.1. Metrics

We use two metrics, the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE), to measure the prediction quality of our proposed approach in comparison
with other collaborative filtering and trust-aware recommendation methods.

The metrics MAE is defined as

MA E =

∑
i, j |ri, j − r̂i, j|

N
, (12)

where ri, j denotes the rating user i gave to item j, r̂i, j denotes the rating user i gave
to item j as predicted by a method, and N denotes the number of teted ratings. The
metrics RMSE is defined as

RMSE =

√∑
i, j(ri, j − r̂i, j)2

N
. (13)

4.2. Compared Methods

In this section, in order to show the performance improvement of our recommenda-
tion algorithm with social contextual information (SoRec), we compare our algorithm
with two baseline methods user mean and item mean, three state-of-the-art matrix
factorization algorithms NMF [Lee and Seung 1999], SVD [Kurucz et al. 2007], and
PMF [Salakhutdinov and Mnih 2008b], as well as a trust-aware recommendation al-
gorithm trust [Massa and Avesani 2004].

4.3. Epinions Dataset

4.3.1. Description of the Epinions Dataset. A tremendous amount of data has been pro-
duced on the Internet every day over the past decade. Millions of people influence
each other implicitly or explicitly through online social network services, such as
Facebook7. As a result, there are many online opportunities to mine social networks
for the purposes of social recommendations.

We choose Epinions as the data source for our experiments on social recommen-
dation. Epinions.com is a well-known knowledge sharing and review site that was
established in 1999. In order to add reviews, users (contributors) need to register for

7http://www.facebook.com
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Table I. Statistics of User-Item Rating Matrix
of Epinions

Statistics User Item

Max. Num. of Ratings 1,960 7,082
Avg. Num. of Ratings 12.21 7.56

Table II. Statistics of Social Trust Network of Epinions

Statistics Trust per User Be Trusted per User

Max. Num. 1,763 2,443
Avg. Num. 9.91 9.91

free and they begin submitting their own personal opinions on topics such as prod-
ucts, companies, movies, or reviews issued by other users. Users can also assign
products or reviews integer ratings from 1 to 5. These ratings and reviews will in-
fluence future customers when they are deciding whether a product is worth buying or
a movie is worth watching. Every member of Epinions maintains a “trust” list which
presents a network of trust relationships between users, and a “block (distrust)” list
which presents a network of distrust relationships. This network is called the “web of
trust”, and is used by Epinions to reorder the product reviews such that a user first
sees reviews by users that they trust. Epinions is thus an ideal source for experiments
on social recommendation. Note that in this article, we only employ trust statements
between users while ignoring the distrust statements, for the following two reasons:
(1) The distrust list of each user is kept private in Epinions.com in order to protect the
privacy of users, hence it is not available in our dataset. (2) As presented in Guha et al.
[2004], the understanding of distrust is more complicated than trust, which indicates
that the user trust latent feature space may not be the same as the user distrust latent
feature space. The study of distrust-based social recommendation will be conducted as
future work.

The dataset used in our experiments is collected by crawling the Epinions.com site
on January 2009. It consists of 51,670 users who have rated a total of 83,509 different
items. The total number of ratings is 631,064. The density of the user-item rating ma-
trix is less than 0.015%. We can observe that the user-item rating matrix of Epinions is
very sparse, since the densities for the two most famous collaborative filtering datasets
Movielens (6,040 users, 3,900 movies and 1,000,209 ratings) and Eachmovie (74,424
users, 1,648 movies and 2,811,983 ratings) are 4.25% and 2.29%, respectively. More-
over, an important factor in choosing the Epinions dataset is that user social trust
network information is not included in the Movielens and Eachmovie datasets. The
statistics of the Epinions user-item rating matrix is summarized in Table I. As to the
user social trust network, the total number of issued trust statements is 511,799. The
statistics of this data source is summarized in Table II.

We also observe a number of power-law distributions in our dataset, including items
per user distribution, and social trust network outdegree and indegree distributions.
The distributions are shown in Figure 5.

4.3.2. Comparison. We use different amounts of training data (90%, 80%, 70%, 60%)
to test all the algorithms. Training data 90%, for example, means we randomly select
90% of the ratings from Epinions dataset as the training data to predict the remaining
10% of ratings. The random selection was carried out 5 times independently. The ex-
perimental results are shown in Table III. The parameter settings of our approach are
λC = 20, λU = λV = λZ = 0.001, and in all the experiments conducted in the following
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Fig. 5. Power-law distributions of the Epinions dataset. (a) Items per user distribution; (b) trust graph
outdegree distribution; (c) trust graph indegree distribution.

Table III. MAE Comparison with Other Approaches on Epinions Dataset

Methods 90% Training 80% Training 70% Training 60% Training

User Mean 0.9294 0.9319 0.9353 0.9384
Item Mean 0.8936 0.9115 0.9316 0.9528

Trust 0.9005 0.9044 0.9082 0.9153

5D

NMF 0.8938 0.8975 0.9229 0.9430
SVD 0.8739 0.8946 0.9214 0.9421
PMF 0.8678 0.8946 0.9127 0.9350
SoRec 0.8442 0.8638 0.8751 0.8948

10D

NMF 0.8712 0.8951 0.9211 0.9408
SVD 0.8702 0.8921 0.9189 0.9382
PMF 0.8651 0.8886 0.9092 0.9328
SoRec 0.8404 0.8580 0.8722 0.8921

(A smaller MAE value means a better performance).

Table IV. RMSE Comparison with Other Approaches on Epinions Dataset

Methods 90% Training 80% Training 70% Training 60% Training

User Mean 1.1927 1.1968 1.2014 1.2082

Item Mean 1.1678 1.1973 1.2276 1.2505
Trust 1.1697 1.1761 1.1797 1.1894

5D

NMF 1.1649 1.1861 1.2090 1.2311
SVD 1.1635 1.1845 1.2067 1.2298
PMF 1.1583 1.1798 1.2008 1.2271
SoRec 1.1333 1.1530 1.1690 1.1892

10D

NMF 1.1621 1.1832 1.2073 1.2294
SVD 1.1600 1.1812 1.2011 1.2268
PMF 1.1544 1.1760 1.1968 1.2230
SoRec 1.1293 1.1492 1.1660 1.1852

(A smaller RMSE value means a better performance).

sections, we set all of the parameters λU , λV , and λZ equal to 0.001. From Table III and
Table IV, we can observe that our approach outperforms the other methods. The im-
provements are significant, which shows the promising future of our recommendation
approach.
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4.3.3. Impact of Parameter λC. The main advantage of our recommendation approach
is that it incorporates the social trust network information, which helps predict users’
preferences. In our model, parameter λC balances the information from the user-item
rating matrix and the user social trust network. If λC = 0, we only mine the user-item
rating matrix for matrix factorization, and if λC = ∞, we only extract information from
the social network to predict users’ preferences. In other cases, we fuse information
from the user-item rating matrix and the user social network for probabilistic matrix
factorization and, furthermore, to predict ratings for active users.

Figure 6 shows the impacts of λC on MAE and RMSE. We observe that the value
of λC impacts the recommendation results significantly, which demonstrates that fus-
ing the user-item rating matrix with the user social trust network greatly improves
the recommendation accuracy. As λC increases, the prediction accuracy also increases
at first, but when λC surpasses a certain threshold, the prediction accuracy decreases
with further increase of the value of λC. This phenomenon confirms the intuition that
fusing the user-item rating matrix and the user social trust network can generate bet-
ter performance than only purely using each of these two resources separately. From
Figure 6, we observe that for this Epinions dataset, our social recommendation method
achieves the best performance when λC is around 20, while smaller values like λC = 0.1
or larger values λC = 100 can potentially degrade the model performance.

4.3.4. Performance on Different Users. One main task we target in this article is to pro-
vide accurate recommendations when users only supply a few ratings, or even have
no rating records. Although previous work has noticed this critical problem, few ap-
proaches perform well when few user ratings are given. Hence, in order to compare
our approach with the other methods thoroughly, we first group all the users based
on the number of observed ratings in the training data, and then evaluate prediction
accuracies of different user groups. The experimental results are shown in Figure 7.
Users are grouped into 6 classes: “1 − 10”, “11 − 20”, “21 − 40”, “41 − 80”, “81 − 160”,
and “> 160”, denoting how many ratings users have rated.

Figure 7(a) summarizes the distributions of testing data according to groups in the
training data (90% as training data). For example, there are a total of 3,360 user-item
pairs to be predicted in the testing dataset in which the related users in the training
dataset have rating numbers from 1 to 10. In Figure 7(b) and Figure 7(c), we observe
that our SoRec algorithm consistently outperforms other methods even when users
only rated very few ratings.

4.3.5. Efficiency Analysis. The complexity analysis in Section 3.1.5 states that the com-
putational complexity of our approach is linear with respect to the number of ratings,
which proves that our approach is scalable to very large datasets. Actually, our ap-
proach is very efficient even when using a very simple gradient descent method. In
the experiments using 90% of the data as training data, each iteration only needs less
than 2 seconds. Also, as shown in Figure 8, when using 90% of the data as training
data, our method needs less than 300 iterations to converge, which only needs ap-
proximately 10 minutes. When using 60% of the data as training data, we only need
less than 5 minutes to train the model. All the experiments are conducted on a nor-
mal personal computer containing an Intel Pentium D CPU (3.0 GHz, Dual Core) and
1 gigabyte memory.

From Figure 8, we also observe that when using a small value of λC, such as λC = 0.1
or λC = 1, after 50 or 100 iterations, the model begins to overfit, while a larger λC, such
as λC = 20, does not have the overfitting problem. These experiments clearly demon-
strate that in this Epinion dataset, using little social network information can cause
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Fig. 6. Impact of parameter λC (dimensionality = 10).
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Fig. 7. Performance comparison on different users.

overfiting problem, and that the predictive accuracy can be improved by incorporating
more social network information.

4.4. MovieLens Dataset

4.4.1. Description of the MovieLens Dataset. MovieLens is a famous recommender sys-
tem. The dataset we employ in this article is the 10M/100K dataset. This dataset
contains 10,000,054 ratings and 95,580 tags added to 10,681 movies by 71,567 users
of the online movie recommender service MovieLens.

4.4.2. Comparison. In the comparison, we employ different amounts of training data,
including 80%, 50%, 30%, 10%. 80% training data means we randomly select 80% of
the ratings from the MovieLens 10M/100K dataset as the training data, and leave the
remaining 20% as prediction performance testing. The procedure is carried out 5 times
independently, and we report the average values in this article.

As introduced in Section 3.2, we can incorporate social tag information in two
ways: (1) the first method is to treat the tags as the favors of users (we call this
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Fig. 8. Efficiency analysis.

method SoRecUser, and it is related to the graphical model shown in Figure 3 with the
parameter λU

T ); (2) the second method is to interpret the tags as the properties of items
(we call this method SoRecItem, and it is associated with the graphical model shown
in Figure 4 with the parameter λV

T ).
In the comparison, we set λU

T = 0.1 and λV
T = 10. The MAE results and RMSE results

are reported in Table V and Table VI, respectively. From the results, we can see that
our SoRecUser and SoRecItem approaches consistently outperform the baseline meth-
ods and the state-of-the-art recommendation algorithms, especially when there is a
small amount of training data, which is equivalent to data sparsity in reality. In addi-
tion, it is necessary to notice that in the MovieLens 10M/100K dataset, all the selected
users have rated at least 20 movies, but in reality, according to the famous power-law
distribution phenomenon, in almost all kinds of Web activities, most users only rated
very few items. Thus, we can see the improvement of our method is significant, and
this again shows the promising future of our approach.

As to the parameters λU
T and λV

T , basically, they share similar trends with Figure 6,
hence we do not show the detailed results here.

4.4.3. Performance on Items with Different Number of Tags. One major contribution of this
article is incorporating social tagging information with traditional rating information
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Table V. MAE Comparison with Other Approaches on MovieLens Dataset

Methods 80% Training 50% Training 30% Training 10% Training

User Mean 0.7686 0.7710 0.7742 0.8234

Item Mean 0.7379 0.7389 0.7399 0.7484

10D

NMF 0.6328 0.6556 0.6911 0.7428
SVD 0.6169 0.6376 0.6821 0.7315
PMF 0.6162 0.6354 0.6648 0.7189

SoRecUser 0.6156 0.6347 0.6613 0.7115
SoRecItem 0.6155 0.6334 0.6526 0.6963

20D

NMF 0.6319 0.6526 0.6721 0.7419
SVD 0.6167 0.6355 0.6570 0.7264
PMF 0.6156 0.6350 0.6569 0.7128

SoRecUser 0.6147 0.6338 0.6547 0.7084
SoRecItem 0.6142 0.6303 0.6487 0.6951

(A smaller MAE value means a better performance).

Table VI. RMSE Comparison with Other Approaches on MovieLens Dataset

Methods 80% Training 50% Training 30% Training 10% Training

User Mean 0.9779 0.9816 0.9869 1.1587

Item Mean 0.944 0.9463 0.9505 0.9851

10D

NMF 0.8320 0.8521 0.8942 0.9798
SVD 0.8087 0.8330 0.8815 0.9703
PMF 0.8078 0.8326 0.8647 0.9336

SoRecUser 0.8077 0.8304 0.8596 0.9206
SoRecItem 0.8058 0.8274 0.8487 0.9028

20D

NMF 0.8309 0.8501 0.8768 0.9759
SVD 0.8054 0.8301 0.8575 0.9638
PMF 0.8025 0.8275 0.8553 0.9258

SoRecUser 0.8022 0.8250 0.8511 0.9187
SoRecItem 0.8018 0.8208 0.8436 0.9015

(A smaller RMSE value means a better performance).

to improve prediction quality. In order to further investigate how the number of tags
attached to one item affects the prediction accuracies, we first group all the items
based on the number of unique tags they have been annotated with, then evaluate the
prediction accuracies on different groups. We divide the items into 5 groups based on
the number of unique tags that have been annotated: “= 0”, “1-5”, “6-10”, “11-20”, and
“≥21”.

Experimental results are presented in Figure 9. This figure shows the prediction ac-
curacies (measured with MAE and RMSE) of groups of items annotated with different
numbers of unique tags, and the results of different amounts of training data are all
presented. We only report the results on dimensionality = 10. From Figure 9, we can
see that incorporating tags information can improve prediction quality significantly.
In addition, as the number of annotated unique tags increases, the prediction quality
first improves drastically, then gradually stabilizes after the number of tags surpasses
some threshold value (around 20 in this dataset). This phenomenon is reasonable,
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Fig. 9. Performance comparison on items with different no. of tags.

Fig. 10. Tag distributions of testing data on different amount of training data.

because with more tags’ information, the concept of an item can be represented more
accurately, but too many tags result in redundancy in representing the concepts of the
items. Figure 10 shows the tag distributions of testing data on different amount of
training data.
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5. CONCLUSIONS AND FUTURE WORK

In this article, in order to alleviate the data sparsity problem in traditional rec-
ommender systems, we present a novel, efficient, and general recommendation
framework fusing a user-item rating matrix with social contextual information using
probabilistic matrix factorization. The experimental results show that our approach
outperforms the other state-of-the-art collaborative filtering algorithms, and the com-
plexity analysis indicates it is scalable to very large datasets. Moreover, the data fusion
method using probabilistic matrix factorization we introduce in this article is not only
applicable to recommendation with social contextual information, but also extensible
to other popular research topics, such as social search.

For future work, we employ the inner product of two vectors to fit the observed data
in this article; this approach assumes that the observed data is a linear combination
of several latent factors. Although we use the logistic function to constrain the inner
product, a more natural and accurate improvement over this assumption is to use a
kernel representation for the two low-dimensional vectors, such as a Gaussian kernel
or a polynomial kernel, which map the relations of the two vectors into a nonlinear
space, and thus lead to an increase in the model’s performance.

Moreover, we only employ interuser trust information in this article, but in many
online social networks, distrust information is also stated by many users. Because a
user trust feature space may not be consistent with the corresponding user distrust
feature space, we cannot simply incorporate the distrust information into our model.
In the future, we need to investigate the following two problems: whether distrust
information is useful to increase the prediction quality, and how to incorporate this
distrust information to obtain better-quality results.

Furthermore, when fusing the social trust network information, we ignore the in-
formation diffusion or propagation between users. A more accurate approach is to
consider the diffusion process between users. Hence, we need to replace the social
network matrix factorization with the social network diffusion processes. This consid-
eration will help alleviate the data sparsity problem and will potentially increase the
prediction accuracy.

Lastly, we either associate tags with users or associate tags with items. Actually,
we can design a more general framework to incorporate tags with users and items
simultaneously. This consideration will provide more information than either of the
proposed methods, hence can further improve the recommendation quality.
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