
498 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

Estimation and Analysis of Some
Generalized Multiple Change-Point

Software Reliability Models
Chin-Yu Huang, Member, IEEE, and Michael R. Lyu, Member, IEEE

Abstract—Software typically undergoes debugging during both
a testing phase before product release, and an operational phase
after product release. But it is noted that the fault detection and
removal processes during software development and operation are
different. For example, the fault removal during operation occurs
generally at a slower pace than development. In this paper, we
derive a powerful, easily deployable technique for software reli-
ability prediction and assessment in the testing and operational
phases. We first review how several existing software reliability
growth models (SRGM) based on non- homogeneous Poisson pro-
cesses (NHPP) can be readily derived from a unified theory. With
the unified theory, we further incorporate the concept of multiple
change-points, i.e. points in time when the software environment
changes, into software reliability modeling. Several models are pro-
posed and discussed under both ideal and imperfect debugging
conditions. We estimate the parameters of the proposed models
by employing real software failure data, and give a fair compar-
ison with some existing SRGM. Numerical results show that the
proposed models can provide good software reliability prediction
in the various stages of software development and operation. Our
approach is flexible; we can model various environments ranging
from exponential-type to S-shaped NHPP models.

Index Terms—Change point, imperfect debugging, non-homoge-
neous Poisson process (NHPP), software reliability growth model
(SRGM), software testing.

ACRONYM1

ANSI American National Standards Institute

CARATS computer-aided reliability assessment tool for
software

CP change point

K-S Kolmogorov-Smirnov

Manuscript received May 14, 2009; revised July 01, 2010; accepted
September 08, 2010. Date of publication April 21, 2011; date of current version
June 02, 2011. The work described in this paper was supported by the National
Science Council, Taiwan, under Grants NSC 97-2221-E-007-052-MY3, NSC
98-2219-E-002-021, and NSC 99-2220-E-007-022 and by a Grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China, under Project CUHK4154/09E. Associate Editor: C. Smidts.

C.-Y. Huang is with the Department of Computer Science, National Tsinghua
University, Hsinchu, Taiwan (e-mail: cyhuang@cs.nthu.edu.tw).

M. R. Lyu is with the Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Shatin, Hong Kong.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2011.2134350

1The singular and plural of an acronym are always spelled the same.

KD Kolmogorov-Distance

LSE least squares estimation

MLE maximum likelihood estimation

MSE mean square error

MTBF mean time between failures

MVF mean value function

NHPP non-homogeneous Poisson process

RE relative error

RMSE root mean square error

RRMS relative root mean square error

SRE software reliability engineering

SRGM software reliability growth model

NOTATIONS

expected cumulative number of faults detected by
test runs

mean value function, i.e., the expected number of
software failures by time

normalized observed cumulative distribution at the
-th time point

expected cumulative distribution at the -th time
point

expected number of initial faults

fault detection rate per fault in the steady state

fault detection rate function

inflection factor

constant parameter

total amount of testing effort

scale parameter

shape parameter

inflection rate

upper control limit

lower control limit

Centerline

0018-9529/$26.00 © 2011 IEEE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 499

cumulative number of detected faults in a given
time interval

number of model parameters

fault content function

fault introduction rate

I. INTRODUCTION

S OFTWARE is a key part of many critical applications.
Modern software controls household appliances, financial

payment systems, traffic light systems, and national defense
systems, to name a few. The major problem facing the current
computer industry is how to develop reliable software. Software
is engineered in several distinct phases, including requirement
specification, risk management, system analysis, system design,
development, testing, and maintenance. In practice, at the end
of the software testing phase, project managers always want
an assessment of the software reliability (or quality) regarding
the determination of whether and when the desired level of
reliability has been reached. Software reliability measurement
therefore plays a very important role in developing a robust,
high-quality software products [1].

Reliability measurement is a set of mathematical techniques
that can be used to estimate and predict the reliability behavior
of software during its development and operation. According
to the ANSI definition, software reliability is defined as the
probability of failure-free software operation for a specified pe-
riod of time in a specified environment [2], [3]. Measuring and
computing software reliability can be used for planning and
controlling all testing resources during software development.
MM Moreover, software reliability relates directly to operation,
rather than design, of the software. To assess software relia-
bility, and assure software quality, one of the current methods
is to apply SRGM. SRGM is the one particular aspect of SRE
that has received the most attention. SRGM describe failures
as a random process, which is characterized in either times of
failures, or the number of failures at fixed time periods [4]. In
general, SRGM can provide quantitative information about how
to improve the reliability of software products, and greatly help
software engineers to measure the defect levels, failure rates,
MTBF, and reliability during the coding and testing phases. Fur-
thermore, SRGM can help project managers to determine the
testing resources and manpower needed to achieve desired reli-
ability requirements [5], [6].

Our previous studies [7] have shown that several conven-
tional SRGM can be unified under a general formulation. A
unified theory is powerful for the study of general models
without making strong assumptions. In this paper, we first re-
view the unification of SRGM based on NHPP. Then we show
how existing NHPP-based SRGM, such as the Goel–Okumoto
model, the Yamada Delayed S-shaped model, the Generalized
Goel NHPP model, and the Inflection S-shaped model, can be
derived by applying the concept of three well-known means:
the weighted arithmetic mean, the weighted geometric mean,
and the weighted harmonic mean. Consequently, many existing

SRGM based on NHPP are special cases of the unified NHPP
model.

On the other hand, if a software system has already been de-
veloped, the developers usually want to predict its reliability in
the operational phase. The operational reliability of software is
the main concern for general users [8]–[11]. Sometimes devel-
opers can use the SRGM that perform accurately during testing
to predict the reliability in the actual operation. Most SRGM
estimate the reliability using the historical data collected during
testing, and assume that the test environment can well represent
the operation profile. However, this may not be correct because
the testing environment may not represent the typical use of the
system in field operation [1], [8]. The fault detection process in
the operational phase is different from that in the testing phase.
Thus we have to make an adjustment to the selected SRGM
that was accurate in the testing phase. There are methods of
modeling software operational reliability in the literature [8],
[12]–[21].

Besides the fielded operation, due to the change of users’ re-
quirements or business needs, software systems usually have
to be updated many times during their life cycle. In this case,
traditional SRGM may be good for one revision period rather
than the whole life cycle. Therefore, when SRGM are used in
the various stages of software development and operation, the
estimated parameters of selected SRGM should be adjusted to
remove the prediction bias. In this paper, based on the unified
theory in [7], we will show how to incorporate the concept of
multiple CP into software reliability modeling. The models fur-
ther derived from this approach can easily be used to describe
the transition from the testing to the operational phase. In addi-
tion, the proposed models will also be assessed and discussed
based on real data sets under both ideal, and imperfect debug-
ging conditions.

The remainder of this paper is organized as follows. Section II
reviews the unification of SRGM based on NHPP. Based on the
unified theory, we will further study how to modify traditional
SRGM by taking the concept of multiple CP into consideration.
Section III gives some numerical examples with real software
failure data, employing the proposed models. Section IV dis-
cusses the imperfect debugging problem attacked by the pro-
posed models. Finally, Section V concludes this paper.

II. SOFTWARE RELIABILITY MODELING

A. Review of NHPP Models

First, we will give a brief review of the unification of SRGM
based on NHPP [7].

1) Weighted Arithmetic, Weighted Geometric, and Weighted
Harmonic Means: Let , and . We can define the
arithmetic mean of and as

(1)

More generally, we can define the weighted arithmetic mean
of and with weights and as

(2)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

500 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

The geometric mean of and is defined as

(3)

That is,

(4)

Similarly, the weighted geometric mean of and with
weights and is defined as

(5)

Finally, the harmonic mean of and is defined as

(6)

and the weighted harmonic mean of and with weights
and is defined as

(7)

Definition 1: Let be a real-valued strictly monotone func-
tion. If and are two nonnegative real numbers, the quasi-
arithmetic mean of and with weights and is de-
fined as

(8)

where is the inverse function of .
2) General Discrete SRGM: In this section, we discuss a

general discrete NHPP model. For the discrete Goel–Okumoto
model, suppose that the expected number of failures detected
per test run is proportional to the current fault content of a soft-
ware system,

(9)

Taking , we have

(10)

Equation (10) indicates that is equal to the weighted
arithmetic mean of , and with weights , and
respectively. That is, the discrete Goel–Okumoto model can also
be derived based on the weighted arithmetic mean.

Because the weighted arithmetic, weighted geometric, and
weighted harmonic means are all well-known means, we em-
ploy the other two means to derive other existing NHPP models.
First, consider that is equal to the weighted geometric
mean of , and with weights , and respectively;
then

(11)

Next, let’s consider the case that is equal to the
weighted harmonic mean of , and with weights , and

respectively. In this case, we have

(12)
More generally, let be a real-valued, strictly monotone func-

tion; and be equal to the quasi-arithmetic mean of ,
and with weights , and respectively. Then,

(13)
Solving (13) yields

(14)

Therefore,

(15)

3) General Continuous SRGM: We will further discuss a
general continuous NHPP model in this section. We let

be equal to the quasi-arithmetic mean of , and with
weights , and ; then

(16)

That is,

(17)

Supposing as , we get the
differential equation

(18)

For in (18) (i.e., considering the weighted arithmetic
mean), then

(19)

For example, if , then the Goel–Okumoto model can be
derived from (19). The differential equations for ,
and can also be derived from (18).

Theorem 1: Let

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 501

TABLE I
SOME CLASSICAL SRGM CORRESPONDING TO ����, ����, AND �

where is a real-valued, strictly monotonic, and differentiable
function. We have

(20)

and .

Corollary 1: Based on the weighted arithmetic mean, take
in (20), and let ; then the MVF, i.e.,

the expected mean number of faults detected in time is

Below we briefly show that some classical SRGM based on
NHPP, such as the Goel–Okumoto model, the Yamada delayed
S-shaped model, the generalized Goel NHPP model, the Inflec-
tion S-shaped model, and the Yamada Weibull Model, can be
directly derived from Corollary 1. Table I gives the SRGM cor-
responding to , , and [7].

B. Software Reliability Models With Multiple CP

During the software development process, once failures are
identified, related fault detection and isolation activities are ac-
tivated to find the root causes. In practice, the fault detection
process in the operational phase is typically different from that
in the testing phase [22], but this fact is not distinctly incorpo-
rated in many software reliability modeling approaches. Ohtera
and Yamada [16] considered that the fault detection rates per
fault during the testing and operational phases are different.
They assumed that the fault detection rate decreases during the
testing phase, and then becomes stable during the operational
phase. In reality, during the software development and oper-
ation, the fault detection rate may be neither a constant nor
smooth, i.e., it may be changed at some moments in time called
CP. In general, a CP is the time instant when a model’s param-
eter experiences a discontinuity in time. That is, it is the time at
which the parameter changes values. In recent years, a number
of papers have addressed the change point problem in the field
of software reliability modeling [23]–[29].

For example, Zhao [24] suggested that, before the software
is released to field operation, a CP could occur when the
testing strategy and resource allocation are changed. That is,

the running environment may change at that moment. The
availability of testing facilities and other random factors can
be the causes of the CP. Besides, the testing effort may not be
constant. Personnel may vary, and their time dedicated to job
functions may change. In practice, software failure data sets
are collected during testing, and this information is fed back
to the software development teams for further improvements.
Sometimes, if the company can afford the extra cost, and
engineers are also eager to detect additional faults during the
software development process, it is advisable to introduce new
tools and techniques that are fundamentally different from the
methods currently in use. The benefit of these methods is that
engineers can design (or propose) several testing programs (or
automated testing tools) to test software to satisfy the clients’
technical requirements, schedule, and budget. That is, these
approaches can provide a steady improvement in software
testing and productivity. Therefore, the timing of introducing
new tools or techniques can be treated as a CP [3].

In industry, users’ requirements or business needs are fre-
quently changed at some CP. Thus, software engineers have to
update or revise the software many times during the life cycle
of the software. In this case, traditional SRGM may be good for
one revision period rather than the whole life cycle. Based on
the fact that, when SRGM are used in different running environ-
ments or stages of software development, the estimated param-
eters of selected SRGM should be adjusted at the proper time to
remove the prediction bias. I n the following discussions, based
on the unified theory of NHPP models, we will show how to
modify (and perhaps improve) the traditional SRGM by incor-
porating the concepts of multiple CP.

1) G-O Model With Multiple CP: Let us first consider the
traditional Goel–Okumoto model. Its mathematical expression
can be described as [4]

(21)

Solving (21) using the boundary condition , we have

Furthermore, we can describe the Goel–Okumoto model with a
single CP

(22)

and

if ;
if .

(23)

Solving the above two equations under the boundary condi-
tion , we have

,
, .

(24)
In fact, (24) can also be derived from the unified theory, but we
have to make some adjustments to Theorem 1 and Corollary 1
to accommodate multiple CP. First, from Corollary 1, we have

when . If we take
, , and , we can

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

502 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

obtain the MVF . When , if we
take , and , then from Corollary 1,
we have

(25)

Note that if

(26)

we can obtain . Fur-
thermore, we can consider the Goel–Okumoto model with two
CP. If the fault detection rate is given by

if
if
if

(27)

the MVF can be obtained by following similar procedures. In
this case, we have

,
,

,
(28)

Finally, if we have CP, i.e.

if ;
if
...
if .

(29)

(30)

(31)

(32)

and

(33)

then we get a generalized solution for describing the Goel–Oku-
moto model with multiple CP as

(34)

where .

2) Generalized Goel NHPP Model With Multiple CP:
We can follow a similar procedure to that described in
Section II-B-1. For the generalized Goel NHPP model with
multiple CP, if

(35)

then we can get the MVF

(36)

3) ISS Model With Multiple CP: We follow a similar pro-
cedure to that described in Section II-B-1. For the Inflection
S-shaped model with multiple CP, if

(37)

we can get the MVF

(38)

Here, is defined as

(39)

Note that when , that is all faults are detectable initially,
then the exponential model is obtained, because . Only if

(or) does the reliability growth curve have an
inflection [4].

4) Yamada Weibull Model With Multiple CP: We follow a
similar procedure to that described in Section II-B-1. For the
Yamada Weibull model with multiple CP, if

(40)

we can get the MVF

(41)

Note that the Weibull-type testing-effort function is given by [4],
[7]

(42)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 503

TABLE II
DS-1

CNF: Cumulative Number of Failures

TABLE III
DS-2

CNF: Cumulative Number of Failures

5) Yamada DSS Model With Multiple CP: We follow a sim-
ilar procedure to that described in Section II-B-1. For the Ya-
mada delayed S-shaped model with multiple CP, if

(43)

we can get the MVF

(44)

III. NUMERICAL EXAMPLES AND SIMULATION RESULTS

A. Data Description

To validate our approach, the first data set (DS-1) we em-
ployed was from a real software project [31]. The system was
a Brazilian Electronic Switching system, TROPICO R-1500,
for 1500 telephone subscribers. Its software size was about 300
kb written in assembly language. During an 81-week software
execution period, 461 faults were removed. This data set has

81 corresponding data entries. Table II gives the complete data
set. It is noted that entries 1 through 30 were obtained during
the system validation phase, entries 31 through 42 were ob-
tained during field trials, and entries 43 through 81 were ob-
tained during system operation [2]. The second data set (DS-2)
was obtained from a wireless network product in [32], and the
software ran on an element within a wireless network switching
center. Table III lists the data set. The third data set (DS-3) used
in this paper was collected in the bug tracking system on the
website of Xfce [33]. Xfce is a lightweight desktop environ-
ment for UNIX-like OS. Note that DS-3 was collected from
11/12/2003 to 04/07/2004, and is given in Table IV. In the fol-
lowing, we will use two existing methods, Laplace trend anal-
ysis, and charts, to determine whether the software undergoes
reliability growth or decrease, and to identify the location of CP,
respectively.

Laplace test is generally used for identifying trends in
grouped data or time-series. Among the analytical tests, Laplace
test is the most commonly used, and has been discussed in
detail [2], [31]. We will calculate the Laplace trend factor .
For example, with reference to the data sets in Tables II–IV, the
Laplace trend test results are shown in Figs. 1–3, respectively.
As seen from Figs. 1–3, we observe that the values of are
almost always negative, which indicates a growth in reliability.
In the case of reliability growth, our proposed models can

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

TABLE IV
DS-3

CNF: Cumulative Number of Failures

Fig. 1. Laplace trend test for DS-1.

Fig. 2. Laplace trend test for DS-2.

Fig. 3. Laplace trend test for DS-3.

be applied to predict the number of detected failures, and the
failure intensity during the development phase.

On the other hand, the chart is a commonly used tool for
monitoring the software process. In the chart, control limits
are estimated. The parameters of the chart are defined as [34]

(45)

Fig. 4. C chart for DS-1.

Fig. 5. C chart for DS-2.

Fig. 6. C chart for DS-3.

and

(46)

Figs. 4 –6 give the chart diagrams for DS-1, DS-2, and DS-3,
respectively.

The accuracy of projection is typically directly related to the
sample size of the failure data. Without enough failure data, it

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 505

may not be possible to obtain unbiased or reduced biased es-
timates for some models. Thus, we assumed that if we would
like to observe (or decide) the CP(s), the projection is required
to be made at least after 50% of the end of test time. There are
some existing rules (or tests) to detect unusual patterns and non-
random behavior [34]. Here we assume that, if a single point
falls outside the or , this will be a CP. On the other
hand, it is also assumed that, if we observe at least eight suc-
cessive values fall on the same side of the centerline, or

, a CP may occur. In addition, a CP could be indicated
by a trend of six or more values in a row steadily increasing or
decreasing.

For DS-1, we have clearly known from [31] that entries 1
through 30 were obtained during the system validation phase,
and entries 31 through 42 were obtained during field trials.
Based on this reason, we have simply decided that the first
CP will be located at the 31st week. Similarly, we assume the
second CP to have occurred at the 43rd week. For DS-2, as
seen from Fig. 5, after 50% of the end of test time, weeks 35-50
(more than eight successive values) are below the centerline
and fall on the same side. Thus we can treat the 35th week as a
CP. Finally, for DS-3, as shown in Fig. 6, we find that two point
falls outside the at the 10th and 19th weeks, after 50%
of the end of test time. Besides, there are two obvious inflection
points near at the 10th and 19th weeks. Consequently, it is
decided that the 10th, and the 19th week are the first, and the
second CP, respectively.

B. Performance Evaluation Criteria

A model can generally be analyzed according to its retro-
dictive capability (i.e., its ability to reproduce the observed
behavior of the software), and predictive capability (i.e., its
ability to predict future behavior of the software from the
observed failure data) [1], [31]. Because the data sets listed
in Tables II–IV are obtained as failure counts, we employ the
following criteria to assess and compare the performance of all
selected models.

1) The Goodness-of-Fit Criterion. The RMSE is expressed as
[35]

(47)

A smaller RMSE indicates a smaller fitting error [5]. In
addition, the RRMS can be calculated as [36]

Conte et al. [37] suggested that is an ac-
ceptable performance criterion for a prediction model. The
smaller value of RRMS suggests the better fit. On the other
hand, the MSE is also used for comparison, and is defined
as [35], [38]

(49)

2) After the proposed model is fitted to the actual observed
data, the deviation between the observed and the fitted
values can be evaluated by using the K-S test, or the chi-
square test. The K-S test is considered to be the more
informative of the two [2], [39]. The KD is defined by [2]

(50)

where is the sample size. It takes the absolute differ-
ence between the normalized cumulative distributions of
the observed rates and the expected rates from the model
at each point, and chooses the maximal value among these
differences.

3) The Predictive Validity Criterion. This criterion was pro-
posed by Musa et al. [39]. The capability of the model
to predict failure behavior from the present and the past
failure behavior is called Predictive Validity, which can be
represented by computing the value of RE for a data set

Relative Error(RE) (51)

Assuming we have observed failures by the end of test
time , we employ the failure data up to time to
estimate the parameters of . Substituting the estimates
of these parameters in the MVF yields the estimate of the
number of failures by . The estimate is compared
with the actual number , and the procedure will be re-
peated for various values of . We can generally check the
predictive validity by plotting the RE for different values
of . Positive values of error indicate overestimation; neg-
ative values of error indicate underestimation. Musa [39]
reported that, if a model is found to have the best predictive
validity based on failure data, it may yield the best values
of other reliability quantities.

C. Performance Analysis

In this section, we compare the proposed models to some ex-
isting SRGM. Due to the limitations of space, we only give
detailed discussions of the results from two models: the G-O
model with multiple CP, and the ISS model with multiple CP.
On the other hand, the parameters of SRGM can typically be
estimated by using the methods of LSE, and MLE [4], [30].
The method of least squares minimizes the sum of squares of
the deviations between what we actually observe and what we
expect. The maximum likelihood technique estimates parame-
ters by solving a set of simultaneous equations. Because MLE
generally tends to be biased [3], but LSE can produce unbiased
results [30], we decide to use LSE to estimate the parameters of
all selected models.

1) DS-1: As shown in Table II, entries 1–30 were obtained
during the system validation phase, entries 31–42 were ob-
tained during field trials, and entries 43–81 were obtained
during system operation. Therefore, in the following, we will
show the evaluation results of the models using 37% (i.e., the
faults observed in (0, 30]), 52% (i.e., the faults observed in (0,
42]), and 100% (i.e., all faults observed in (0, 81]) of the histor-
ical failure data. Table V summarizes the estimated parameters,
and the comparison results of the traditional G-O model using
37%, 52%, and 100% of the data. Furthermore, because this
data set is collected from different phases, we can assume that
the derivation of MVF would take CP into consideration. Here

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

TABLE V
PARAMETER ESTIMATION AND COMPARISON RESULT OF ALL SELECTED MODELS (DS-1)

Fig. 7. Relative error curves for the selected models based on DS-1.

we can use (30) to estimate software reliability growth. Table V
also shows the estimated parameters and the comparison results
of all selected models using 37%, 52%, and 100% of the data.
Fig. 7 shows the relative errors for the selected models against
normalized time. We can see that, except for the traditional
DSS model, after 50% of the end of test time, most models
project the future behavior well for this data set, and the error
curve is within 5 percent. It is also noted that some of the
dispersion in the projection in Fig. 7 may be due to different
sizes (i.e., 37%, 52%, and 100%) of failure data. In fact, the
accuracy of the project is direct related to the sample size of
the failure data. Therefore, after this point, it could be more
important to select other criteria.

From Table V, we can see that the RMSE, RRMS, and MSE
of the G-O model with multiple CP using 52% and 100% of
the data are less than those of the traditional G-O model using
52% and 100% of the data. Moreover, we also see that the G-O
model with multiple CP achieves smaller values of the KD. On
the whole, it is reasonable to conclude that the G-O model with
multiple CP has a better goodness-of-fit than the traditional G-O
model. It is also obvious that the performance improvement is
achieved by introducing the concepts of multiple CP to reflect
the possible changes of various fault detection rates and environ-
ments in the different phases instead of making the traditional
assumption of a constant fault detection rate.

On the other hand, the estimated parameters for the traditional
ISS model are also given in Table V. As with the previous model,
we estimate the traditional ISS model using 37%, 52%, and
100% of the actual data. Table V summarizes the comparison
results of the traditional ISS model using 37%, 52%, and 100%
of the data. As before, we consider that the derivations of MVF
needed to take CP into consideration, and engage (34) to esti-
mate software reliability growth. Table V shows the estimated
parameters for the ISS model with multiple CP using 37%, 52%,
and 100% of the data. From Fig. 7, the ISS model with multiple
CP seems to be biased to the underestimation side when pro-
jection is made before 40% of the end of test time. After that,
the relative error would tend to approach zero. From Table V,
we can see that the RMSE and RRMS of the ISS model with
multiple CP using 52% and 100% of the data are still smaller
than those of the traditional ISS model using 52% and 100%
of the data. See from Table V that the ISS model with mul-
tiple CP using 52% and 100% doesn’t provide the smaller MSE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 507

TABLE VI
PARAMETER ESTIMATION AND COMPARISON RESULT OF ALL SELECTED MODELS (DS-2)

compared to the traditional ISS model, but the differences are
small. We still find that the ISS model with multiple CP achieves
smaller values of the KD.

Finally, when using 52% (100%) of the data, from Table V,
we can find that the RMSE of the G-O model with a single CP is
about a 17.45% (28.24%) decrement compared with the value of
RMSE computed by the traditional G-O model. This means that
the G-O model with CP has more accurate early prediction capa-
bility of the defects compared with the traditional G-O model.
Actually, this information is very useful for project managers
to plan ahead, and to better schedule and manage the testing
process. When using 100% of the data, from Table V, we have
the inflection parameter of the traditional ISS model.
That is, the inflection rate (i.e., ratio of the number of detectable
faults to the total number of faults in the program) is 0.633, in-
dicating the growth curve is slightly S-shaped.

2) DS-2: Similarly, we show the evaluation results of the
models using 66% (i.e., the faults observed in (0, 35]), and 100%
(i.e., all faults observed in (0, 51]) of the historical failure data.
Table VI summarizes the estimated parameters and the compar-
ison results of the G-O model with or without single CP, and the
ISS model with or without single CP using 66%, and 100% of
the data. Table VI also shows the estimated parameters and the
comparison results of the Yamada DSS model and Generalized
Goel NHPP model using 66%, and 100% of the data. The rel-
ative errors for all selected models can be plotted as shown in
Fig. 8. We can see that, except for the traditional DSS model,
after 30 percent of the end of test time, most models project
the future behavior well for this data set, and the error curve is
within 10%. Therefore, after this point, it could be more im-
portant to select other criteria. Fig. 8 shows that the G-O model
with a single CP is superior to the traditional G-O model in pro-
jective validity. Also, the traditional G-O model, the traditional
ISS model, the G-O model with a single CP, and the ISS model
with a single CP tend to be biased to the underestimation side
when projection is made before 30% of the end of test time. But
the Yamada DSS model always tends to underestimate.

As we can see from Table VI, the RMSE, RRMS, and MSE
of the G-O model with a single CP using 100% of the data are
smaller than those of the traditional G-O model using 100% of
the data. It is also clear from Table VI that the G-O model with

Fig. 8. Relative error curves for the selected models based on DS-2.

a single CP has smaller values of the KD, and we can conclude
that this model has a better goodness-of-fit. It is observed that in-
corporating the concept of CP(s) into the traditional G-O model
improves the descriptive properties of the model, and the pre-
dictive properties as well.

Table VI also summarizes the comparison results of the tra-
ditional ISS model using 66%, and 100% of the data. As shown
in Table VI, both RMSE, and RRMS of the ISS model with a
single CP are smaller than those of the traditional ISS model.
Although the ISS model with multiple CP using 100% doesn’t
provide the least MSE compared to the traditional ISS model,
but the difference is very small. However, we still see that the
ISS model with a single CP obtains smaller values of the KD.
Finally, it is also noted that that, when using 100% of the data,
we have the inflection parameter of the traditional
ISS model. Therefore, the inflection rate is 0.176, and this indi-
cates an S-shaped growth curve. This is equivalent to assuming
that only a few faults are detectable at the beginning, and faults
rapidly become detectable thereafter.

3) DS-3: As shown in Table VII, we list the evaluation re-
sults of all selected models using 43%, 86%, and 100% of the
third data set. Table VII summarizes the estimated parameters of
all selected models using 43%, 86%, and 100% of the data; and
the performance of the selected models as measured by the four
criteria. Fig. 9 plots the relative errors for all selected models.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

508 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

TABLE VII
PARAMETER ESTIMATION AND COMPARISON RESULT OF ALL SELECTED MODELS (DS-3)

Fig. 9. Relative error curves for the selected models based on DS-3.

Note that, except the traditional DSS model, after 20% of the
end of test time, other models project the future behavior well
for DS-3, and the error curve is within 10%. We can find that
the G-O model with multiple CP, and the ISS model with mul-
tiple CP, on the whole yield the best projection for this data set.

On the other hand, Table VII shows that the values of RMSE
and RRMS of the G-O model with multiple CP using 86% and
100% of the data are smaller than those of the traditional G-O
model using 86% and 100% of the data. Although the G-O
model with multiple CP using 52% and 100% doesn’t provide
the least MSE compared to the traditional G-O model, but the

differences are small. However, we still see that the G-O model
with multiple CP has smaller KD.

Similarly, the estimated parameters for the ISS model with or
without multiple CP are also given in Table VII. From Table VII,
see that the values of RMSE and RRMS of the ISS model with
multiple CP using 86% and 100% of the data are smaller than
those of the traditional ISS model using 86% and 100% of the
data. Note that the MSE of the ISS model with multiple CP using
86% of the data are smaller than that of the traditional ISS model
using 86% of the data. Although the ISS model with multiple CP
using 100% doesn’t provide the smaller MSE compared to the
traditional ISS model, but the difference is small. However, we
still see that the ISS model with multiple CP results in smaller
KD. Thus, it is obvious that the ISS model with multiple CP
predicts more accurately than the traditional ISS model.

Finally, from Table VII, when 86% of the data are available,
we can find that the MSE of the ISS model with a single CP
is about 20.24% decrement compared with the value of MSE
computed by the traditional ISS model. Similarly, when using
86% of the data, we also find that the RMSE of the ISS model
with a single CP is about a 17.2% decrement compared with
the value of the RMSE computed by the traditional ISS model.
This shows that the ISS model with CP has more accurate ca-
pability of early fault prediction, and improves the descriptive
properties of the traditional ISS model. It can also be noted
that, when using 100% of the data, we have inflection parameter

of the traditional ISS model. That is, the inflection
rate is 0.968, signifying that the growth curve is highly expo-
nential. It is equivalent to assuming that all faults of a program

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 509

are detectable from the beginning of software testing activities,
resulting in a substantial improvement in the prediction perfor-
mance of the G-O model with multiple CP.

IV. IMPERFECT DEBUGGING PROBLEM

In general, different SRGM make different modeling assump-
tions, and therefore can be applied to different situations. Some-
times these assumptions help to reduce the complexity of mod-
eling software reliability [1], [2], [4]. Most SRGM, in partic-
ular, assume that each time a failure occurs, the fault that caused
the failure is immediately removed, and no new faults are intro-
duced. However, we know that software debugging is a labor-in-
tensive process of identifying the cause of software defective
behavior and addressing that problem, and iI n reality, devel-
opers experience cases where they fix one bug but could create
another new one.

Ohba and Chou [40], for example, reported that about 14 per-
cent of the faults detected and removed during an observation
period introduced new faults as a result of imperfect debugging.
Goel and Okumoto [41] also showed that the imperfect debug-
ging model provided a good fit to the software failure data from
a real-time control system for a land-based radar system devel-
oped by the Raytheon Company. In another study, Yin et al. [42]
reported that imperfect debugging should be taken into consid-
eration when the software product is reaching a mature stage,
where the number of remaining faults and the number of in-
troduced faults are in the same order of magnitude [43]. Ac-
tually, the problem of imperfect debugging has been addressed
by many papers [44]–[48]. In the following, we incorporate a
relaxation of some common assumptions to make the SRGM
more realistic and practical. Specifically, we consider SRGM
with multiple CP, and imperfect debugging.

By modifying (16), if we let be equal to the quasi-
arithmetic mean of and with weights and

, then

(52)

Note that . That is,

(53)

Supposing as , we get the
differential equation

(54)

For example, if , then (54) becomes

(55)

Theorem 2: Let ,
where is a real-valued, strictly monotonic, and differentiable
function. We have

(56)
and .

In the following, we describe how to incorporate imperfect
debugging in the modeling approach we have established.

A. G-O Model With Multiple CPS and Imperfect Debugging

Firstly, we can describe the G-O model with a single CP under
imperfect debugging as

(57)

and

if ;
if .

There are some fault content functions in [42]–[44], but further
discussion of this subject is beyond the scope of this paper. Here
we simply assume that

(58)

Therefore, (58) becomes

(59)

Solving (59), and assuming , we obtain the MVF as
[See (60) at the bottom of the page]. In fact, (60) can also be
derived based on the unified theory. When , if we
take , , and , then
from Theorem 2 and (58) with , we obtain the MVF

(61)

Furthermore, when , if we take , and
, from Theorem 2, we have

(62)

,when
,when (60)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

510 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

TABLE VIII
PARAMETER ESTIMATION OF SELECTED MODELS WITH MULTIPLE CPS CONSIDERING ID (DS-1)

ID: imperfect debugging

Note that

(63)

Thus we have

(64)
In this case, the fault content function is given by [See (65) at
the bottom of the page]. Finally, if

(66)

we obtain a generalized solution for describing the G-O model
with multiple CP under imperfect debugging:

(67)

and

(68)

The mathematical expressions for other selected SRGM
with multiple CP, and imperfect debugging, are given in the
Appendix.

B. Experiment and Discussion: From Theory to Reality

Due to space limitations, here we only select the G-O model
with multiple CP, and the ISS model with multiple CP to address
the issue of imperfect debugging. Table VIII gives the estimated
values of model parameters for DS-1. As shown in Table VIII,
we observe that the fault removal process in the software devel-
opment and testing environment may not be a perfect debugging
process, because the estimated values of the fault introduction
rate are all close, but not equal to zero. For example, when
using 37%, 52%, and 100% of the historical failure data, the es-
timated fault introduction rate of the G-O model with multiple
CP is , , and , respectively. So
when we use 100% of the failure data, about five faults will be
introduced per 100 removed faults. Similarly, when using 37%,
52%, and 100% of failure data, the estimated fault introduction
rate of the ISS model with multiple CP is , ,
and , respectively. On average, the result means that
about two extra faults will be introduced if 100 faults are re-
moved. Consequently, we can find that the introduction of new
faults during the correction process is not a negligible issue for
this data set, especially for the high severity faults if they are
introduced accidentally.

In general, among various SRGM, there are two most impor-
tant factors affecting reliability: the number of initial faults, and
the fault detection rate [1]. The number of initial faults is the
number of faults in the software at the beginning of the test, and
is usually a representative measure of software reliability. But
this number could be changed by an imperfect debugging phe-
nomenon. Knowing the number of residual faults can also help
us determine how much more testing resources are required, and
whether the software is suitable for customers to use or not.
On the other hand, the fault detection rate is engaged to mea-
sure the effectiveness of fault detection by test techniques and
test cases. In this paper, we assume that, during the software

,when
,when (65)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 511

Fig. 10. Some user-interface views of CARATS.

development process, the fault detection rate may be neither a
constant nor smooth, and may change at some CP. By adding
some extra parameters in modeling software reliability growth,
the estimation becomes more difficult as more numerical cal-
culations are involved. But these additional calculations can be
fully automated.

In the past, we have developed a versatile object-oriented
software reliability assessment tool called CARATS [49], which
provides quantitative estimation of software project manage-
ment during testing. CARATS is originally developed for soft-
ware failure data collection, software reliability analysis, param-
eter estimation, software cost estimation, etc. We use C++ to im-
plement the tool. In this paper, our proposed models have also
been incorporated into CARATS. Fig. 10 displays three screen-
shots of several working views of CARATS.

Finally, SRGM can produce reasonable results when enough
failure data sets are used. When SRGM are employed for esti-
mation of reliability growth, representative models need to be
selected and applied sensibly. The objective of software relia-
bility growth modeling is to predict the sequence of successive
inter-failure execution times of a program, but the limitations of
SRGM are inherent, and may not be eliminated by clever mod-
eling [50]. It is thus generally accepted that, although SRGM
sometimes give good results, there is no single model that can be
selected a priori in providing accurate results under all circum-
stances [2], [36]. Nevertheless, software reliability researchers
keep attacking the modeling problems from different angles,
and they often come up with innovative ideas and approaches,
such as the recalibration technique, the weighted combinational
models, the simulation approach, the infinite server queueing
approach, etc [1], [51]–[55]. In this paper, we take a new angle
on the software reliability modeling process, and address mul-
tiple CP observed in the software development processes. From
the numerical results in Sections IV and V, we see that the pro-
posed new approaches can be considered as favorable software
reliability models from both the theoretical and the practical
viewpoints.

V. CONCLUSION

Diversity of software faults is one of main contributing fac-
tors of software unreliability. In practical, analyzing fault distri-
bution and estimating failure intensity are very important tasks
during software development because they provide very useful,
valuable information for project managers to make decisions.
Over the past three decades, many SRGM have been proposed
for software reliability assessment, and the theory of SRGM
typically involves the nature of stochastic process and statis-
tical analysis. In this paper, we first review how several existing
SRGM based on NHPP can be derived by adopting the con-
cept of weighted arithmetic, weighted geometric, and weighted
harmonic means. Based on a unified theory, we further propose
several SRGM with multiple CP, and these models can be used
for reliability estimation and prediction in the testing and opera-
tional phases. We also show that most existing SRGM based on
NHPP can be improved by incorporating the concepts of mul-
tiple CP, which enables them to provide fairly good measure-
ment capability for software reliability. Our goal is not to add
one more model to the already-existing large number of SRGM,
but to emphasize a new approach for the development of soft-
ware reliability models. Moreover, our approach in describing
the working status of various software operational environments
is very flexible, as we can model various environments ranging
from an exponential NHPP to an S-shaped growth curve. Based
on the integrated theoretical foundation, the technologies and
approaches presented in this paper offer a consistent, quantita-
tive software reliability evaluation scheme in both the testing
and operational phases.

Finally, by adding some extra parameters when modeling the
fault detection process, the estimation becomes more tedious as
more numerical calculations are involved. However, these ad-
ditional calculations can be fully automated. When high relia-
bility is required, as for some critical applications such as very
large-scale commercial software, safety-critical flight software,
or online banking service, the cost of the extra computation re-
quired to obtain more accuracy can be easily justified.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

512 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

APPENDIX

SRGM WITH MULTIPLE CP, AND IMPERFECT DEBUGGING

Generalized Goel NHPP Model With Multiple CP, and
Imperfect Debugging

We can follow a similar procedure to that described in
Section IV-B. Therefore, for the generalized Goel NHPP model
with multiple CP under imperfect debugging, we have the MVF

(69)

and

(70)

where , and .

ISS Model With Multiple CP, and Imperfect Debugging

We follow a similar procedure to that described in
Section IV-B; therefore, for the ISS model with multiple
CP under imperfect debugging, we have

(71)

and

(72)

Yamada Weibull Model With Multiple CP, and Imperfect
Debugging

We follow a similar procedure to that described in
Section IV-B; therefore, for the Yamada Weibull model
with multiple CP under imperfect debugging, we have

(73)

and

(74)

Yamada DSS Model With Multiple CP, and Imperfect
Debugging

We follow a similar procedure to that described in
Section IV-B; therefore, for the Yamada DSS model with
multiple CP under imperfect debugging, we have the MVF [See
(75) at the bottom of the page] and [See (76) at the bottom of
the page].

(75)

(76)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

HUANG AND LYU: SOME GENERALIZED MULTIPLE CHANGE-POINT SOFTWARE RELIABILITY MODELS 513

ACKNOWLEDGMENT

The authors would like to express their gratitude to the asso-
ciate editor and anonymous reviewers for their insightful com-
ments, encouragement, and suggestions.

REFERENCES

[1] M. R. Lyu, “Software reliability engineering: A roadmap,” in Proceed-
ings of the 29th International Conference on Software Engineering
(ICSE 2007), Future of Software Engineering, Minneapolis, MN, May
2007, pp. 153–170.

[2] M. R. Lyu, Handbook of Software Reliability Engineering. New
York: McGraw Hill, 1996.

[3] J. D. Musa, Software Reliability Engineering: More Reliable Software,
Faster Development and Testing, 2nd ed. Bloomington, IN: Author-
House, 2004.

[4] M. Xie, Software Reliability Modeling. New York: World Scientific
Publishing Company, 1991.

[5] C. Y. Huang and C. T. Lin, “Analysis of software reliability mod-
eling considering testing compression factor and failure-to-fault rela-
tionship,” IEEE Trans. on Computers, vol. 59, no. 2, pp. 283–288, Feb.
2010.

[6] C. Y. Huang and M. R. Lyu, “Optimal testing resource allocation and
sensitivity analysis in software development,” IEEE Trans. on Relia-
bility, vol. 54, no. 4, pp. 592–603, Dec. 2005.

[7] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A unified scheme of some
non-homogenous poisson process models for software reliability es-
timation,” IEEE Trans. on Software Engineering, vol. 29, no. 3, pp.
261–269, March 2003.

[8] C. Y. Huang, S. Y. Kuo, M. R. Lyu, and J. H. Lo, “Quantitative soft-
ware reliability modeling from testing to operation,” in Proceedings of
the 11th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE 2000), San Jose, CA, Oct. 2000, pp. 72–82.

[9] K. Tokuno and S. Yamada, “Markovian availability measurement with
two types of software failures during the operation phase,” Interna-
tional Journal of Reliability, Quality and Safety Engineering, vol. 6,
no. 1, pp. 43–56, March 1999.

[10] D. A. Christenson, “Using software reliability models to predict field
failure rates in electronic switching systems,” in Proceedings of the 4th
Annual National Joint Conference on Software Quality and Produc-
tivity, Washington, DC, March 1988, pp. 158–163.

[11] P. K. Kapur, A. K. Bardhan, and N. L. Butani, “Modelling failure phe-
nomenon of a commercial software in operational use,” in Proceedings
of the 2001 International Conference on Quality, Reliability and Con-
trol, Mumbai, 2001.

[12] T. Philip, P. N. Marinos, and K. S. Trivedi, A Multiphase Software
Reliability Model: From Testing to Operational Phase Center for Ad-
vanced Computing and Communication, Duke University, , Technical
Report (TR-96-01), January 1996.

[13] H. Okamura, T. Dohi, and S. Osaki, “A reliability assessment method
for software products in operational phase—Proposal of an accelerated
life testing model,” Electronics and Communications in Japan, vol. 84,
no. 8, pp. 25–33, 2001.

[14] B. Yang and M. Xie, “A study of operational and testing reliability
in software reliability analysis,” Reliability Engineering and Systems
Safety, vol. 70, no. 2, pp. 323–329, 2000.

[15] Q. Kenney, “Estimating defects in commercial software during oper-
ational use,” IEEE Trans. on Reliability, vol. 42, no. 1, pp. 107–115,
March 1993.

[16] H. Ohtera and S. Yamada, “Optimum software-release time consid-
ering an error-detection phenomenon during operation,” IEEE Trans.
on Reliability, vol. 39, no. 5, pp. 596–599, Dec. 1990.

[17] S. Yamada, “Software Reliability Measurement during Operation
Phase and its Application,” Journal of Computer and Software Engi-
neering, vol. 1, no. 4, pp. 389–402, 1993.

[18] S. Keene and C. Lane, “Reliability Growth of Fielded Software,” in
Proceedings of the 1993 Annual Reliability and Maintainability Sym-
posium (RAMS’93), Atlanta, GA, USA, Jan. 1993, pp. 360–365.

[19] D. R. Jeske, X. Zhang, and L. Pham, “Adjusting software failure rates
that are estimated from test data,” IEEE Trans. on Reliability, vol. 54,
no. 1, pp. 107–114, March 2005.

[20] A. L. Goel, “Relating operational software reliability and workload:
Results from an experimental study,” in Proceedings of the 1996 IEEE
Annual Reliability and Maintainability Symposium (RAMS’96), Las
Vegas, NV, January 1996, pp. 167–172.

[21] Y. Chen, “Modeling software operational reliability via input domain-
based reliability growth model,” in Proceedings of the 28th IEEE In-
ternational Symposium on Fault-Tolerant Computing (FTCS’98), Mu-
nich, Germany, Jun. 1998, pp. 314–323.

[22] R. Chillarege, R. K. Iyer, J. C. Laprie, and J. D. Musa, “Field fail-
ures and reliability in operation,” in Proceedings of the 4th IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE’93),
Denver, CO, Nov. 1993, pp. 122–126.

[23] Z. Wang and J. Wang, “Parameter estimation of some NHPP soft-
ware reliability models with change-point,” Communications in Sta-
tistics: Simulation and Computation, vol. 34, no. 1, pp. 121–134,
Feb. 2005.

[24] M. Zhao, “Statistical reliability change-point estimation models,” in
Handbook of Reliability Engineering. New York: McGraw-Hill,
2003, pp. 157–163.

[25] C. T. Lin and C. Y. Huang, “Enhancing and measuring the predictive
capabilities of the testing-effort dependent software reliability models,”
Journal of Systems and Software, vol. 81, no. 6, pp. 1025–1038, June
2008.

[26] C. Y. Huang, “Performance analysis of software reliability growth
models with testing-effort and change-point,” Journal of Systems and
Software, vol. 76, no. 2, pp. 181–194, May 2005.

[27] X. Li, M. Xie, and S. H. Ng, “Sensitivity analysis of release time of
software reliability models incorporating testing effort with multiple
change-points,” Applied Mathematical Modelling, vol. 34, no. 11, pp.
3560–3570, Nov. 2010.

[28] J. Zhao, H. W. Liu, G. Cui, and X. Z. Yang, “Software reliability growth
model with change-point and environmental function,” Journal of Sys-
tems and Software, vol. 79, no. 12, pp. 1578–1587, Dec. 2006.

[29] C. Y. Huang and C. T. Lin, “Reliability prediction and assessment of
fielded software based on multiple change-point models,” in Proceed-
ings of the 11th IEEE International Symposium on Pacific Rim Depend-
able Computing (PRDC’05), Changsha, Hunan, China, Dec. 2005, pp.
379–386.

[30] M. Xie, “Software reliability models—Past, present and future,” in Re-
cent Advances in Reliability Theory: Methodology, Practice and Infer-
ence. Birkhauser, Boston: , 2000, pp. 323–340.

[31] K. Kanoun, M. Martini, and J. Souza, “A method for software relia-
bility analysis and prediction application to the TROPICO-R switching
system,” IEEE Trans. on Software Engineering, vol. 17, no. 4, pp.
334–344, April 1991.

[32] D. R. Jeske, X. Zhang, and L. Pham, “Adjusting software failure rates
that are estimated from test data,” IEEE Trans. on Reliability, vol. 54,
no. 1, pp. 107–114, March 2005.

[33] Y. Tamura and S. Yamada, “Comparison of software reliability assess-
ment methods for open source software,” in Proceedings of the 11th In-
ternational Conference on Parallel and Distributed Systems (ICPADS
2005), Los Almitos, CA, July 2005, pp. 488–492.

[34] W. A. Florac and A. D. Carleton, Measuring the Software Process: Sta-
tistical Process Control for Software Process Improvement (SEI Series
in Software Engineering). New York: Addison-Wesley, 1999.

[35] W. K. Ehrlich and T. J. Emerson, “Modeling software failures and re-
liability growth during system testing,” in Proceedings of the 9th Inter-
national Conference on Software Engineering (ICSE’87), Monterey,
CA, March 30–April, 2, 1987, pp. 72–82.

[36] P. Rook, Software Reliability Handbook. New York: Elsevier Science
Inc., 1990.

[37] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering
Metrics and Models. Redwood City, CA: Benjamin-Cummings Pub-
lishing Co., Inc., 1986.

[38] N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed. New
York: Wiley, 1998.

[39] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability, Mea-
surement, Prediction and Application. New York: McGraw Hill,
1987.

[40] M. Ohba and X. Chou, “Does imperfect debugging affect software re-
liability growth?,” in Proceedings of the 11th International Conference
on Software Engineering (ICSE’89), Pittsburgh, PA, May 1989, pp.
237–244.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

514 IEEE TRANSACTIONS ON RELIABILITY, VOL. 60, NO. 2, JUNE 2011

[41] A. L. Goel and K. Okumoto, “An analysis of recurrent software errors
in a real-time control system,” in Proceedings of the 1978 Annual Con-
ference (ACM’78), Washington, DC, Dec. 1978, pp. 496–501.

[42] M. L. Yin, L. E. James, S. Keene, R. R. Arellano, and J. Peterson, “An
adaptive software reliability prediction approach,” in Proceedings of
the 23rd Annual Software Engineering Workshop, Greenbelt, MD, Dec.
1998, NASA/Goddard Space Flight Center.

[43] M. C. J. van Pul, “Statistical Analysis of Software Reliability Models,”
PhD. Dissertation, Department of Mathematics, Utrecht University, ,
Netherlands, 1993.

[44] S. Yamada, K. Tokuno, and S. Osaki, “Software reliability measure-
ment in imperfect debugging environment and its application,” Relia-
bility Engineering & System Safety, vol. 40, no. 2, pp. 139–147, 1993.

[45] H. Pham, L. Nordmann, and X. Zhang, “A general imperfect software
debugging model with S-shaped fault detection rate,” IEEE Trans. on
Reliability, vol. 48, no. 2, pp. 169–175, June 1999.

[46] X. Zhang, X. Teng, and H. Pham, “Considering fault removal effi-
ciency in software reliability assessment,” IEEE Trans. on Systems,
Man, and Cybernetics—Part A: Systems and Humans, vol. 33, no. 1,
pp. 2241–2252, Jan. 2003, 114-120.

[47] M. Xie and B. Yang, “A study of the effect of imperfect debugging
on software development cost,” IEEE Trans. on Software Engineering,
vol. 29, no. 5, pp. 471–473, May 2003.

[48] P. E. Amman, S. S. Brilliant, and J. Knight, “The effect of imperfect
error detection on reliability assessment via life testing,” IEEE Trans.
on Software Engineering, vol. 20, no. 2, pp. 142–148, Feb. 1994.

[49] C. C. Chen, C. T. Lin, H. H. Huang, S. W. Huang, and C. Y. Huang,
“CARATS: A computer-aided reliability assessment tool for software
based on object-oriented design,” in CD-ROM Proceedings of 2006
IEEE Region 10 Conference (TENCON 2006), Hong Kong, China,
Nov. 2006.

[50] B. Littlewood, “Dependability assessment of software-based systems:
State of the art,” in Proceedings of the 27th International Conference
on Software Engineering (ICSE 2005), St. Louis, MO, May 2005, pp.
6–7.

[51] S. Brocklehurst, P. Y. Chan, B. Littlewood, and J. Snell, “Recalibrating
software reliability models,” IEEE Trans. on Software Engineering,
vol. 16, no. 4, pp. 458–470, April 1990.

[52] C. J. Hsu and C. Y. Huang, “Reliability analysis using weighted combi-
national models for web-based software,” in Proceedings of the 18th In-
ternational World Wide Web Conference (WWW 2009), Madrid, Spain,
April 2009, pp. 1131–1132.

[53] C. T. Lin and C. Y. Huang, “Staffing level analysis of software debug-
ging through rate-based simulation approaches,” IEEE Trans on Reli-
ability, vol. 58, no. 4, pp. 711–724, Dec. 2009.

[54] S. S. Gokhale and M. R. Lyu, “A simulation approach to structure-
based software reliability analysis,” IEEE Trans. on Software Engi-
neering, vol. 31, no. 8, pp. 643–656, Aug. 2005.

[55] C. Y. Huang and W. C. Huang, “Software reliability analysis and mea-
surement using finite and infinite server queueing models,” IEEE Trans.
on Reliability, vol. 57, no. 1, pp. 192–203, March 2008.

Chin-Yu Huang (M’05) received the M.S. (1994), and the Ph.D. (2000) in elec-
trical engineering from National Taiwan University, Taipei. He is currently an
Associate Professor in the Department of Computer Science at National Tsing
Hua University, Hsinchu, Taiwan. He was with the Bank of Taiwan from 1994
to 1999, and was a senior software engineer at Taiwan Semiconductor Manu-
facturing Company from 1999 to 2000. Before joining NTHU in 2003, he was a
division chief of the Central Bank of China, Taipei. He received the Ta-You Wu
Memorial Award from the National Science Council of Taiwan in 2008. He also
received an Honorable Mention Best Paper Award in IEEM’2010. His research
interests are software reliability engineering, software testing, software metrics,
software testability, fault tree analysis, and system safety assessment.

Michael R. Lyu (M’10) received the B.S. (1981) in electrical engineering from
National Taiwan University, the M.S. (1985) in computer engineering from Uni-
versity of California, Santa Barbara, and the Ph.D. (1988) in computer science
from University of California, Los Angeles. He is a Professor in the Com-
puter Science and Engineering Department of the Chinese University of Hong
Kong. He worked at the Jet Propulsion Laboratory, Bellcore, and Bell Labs;
and taught at the University of Iowa. His research interests include software re-
liability engineering, software fault tolerance, distributed systems, image and
video processing, multimedia technologies, and mobile networks. He has pub-
lished over 330 papers in these areas. He has participated in more than 30 in-
dustrial projects, and helped to develop many commercial systems and software
tools. Professor Lyu is frequently invited as a keynote or tutorial speaker to
conferences and workshops in U.S., Europe, and Asia. He initiated the Interna-
tional Symposium on Software Reliability Engineering (ISSRE), and was Pro-
gram Chair for ISSRE’1996, Program Co-Chair for WWW10, SRDS’2005 and
ICEBE’2007, and General Chair for ISSRE’2001 and PRDC’2005. He also re-
ceived Best Paper Awards in ISSRE’98 and in ISSRE’2003, and SigSoft Distin-
guished Paper Award in ICSE’2010. He is the editor-in-chief for two book vol-
umes: Software Fault Tolerance (Wiley, 1995), and the Handbook of Software
Reliability Engineering (IEEE and McGraw-Hill, 1996). He has been an Asso-
ciate Editor of IEEE Trans. Reliability, IEEE Trans. Knowledge and Data Engi-
neering, Journal of Information Science and Engineering, and Wiley Software
Testing, Verification & Reliability Journal. Professor Lyu is an IEEE Fellow,
and an AAAS Fellow, for his contributions to software reliability engineering
and software fault tolerance.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 07:37:51 UTC from IEEE Xplore. Restrictions apply.

