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Context: Assessing the accuracy in operation of a Machine Learning (ML) system for image classification on 
arbitrary (unlabeled) inputs is hard. This is due to the oracle problem, which impacts the ability of automatically 
judging the output of the classification, thus hindering the accuracy of the assessment when unlabeled previously 
unseen inputs are submitted to the system.
Objective: We propose the Image Classification Oracle Surrogate (ICOS), a technique to automatically evaluate the 
accuracy in operation of image classifiers based on Convolutional Neural Networks (CNNs).
Method: To establish whether the classification of an arbitrary image is correct or not, ICOS leverages three 
knowledge sources: operational input data, training data, and the ML algorithm. Knowledge is expressed through 
likely invariants - properties which should not be violated by correct classifications. ICOS infers and filters 
invariants to improve the correct detection of misclassifications, reducing the number of false positives. We 
evaluate ICOS experimentally on twelve CNNs – using the popular MNIST, CIFAR10, CIFAR100, and ImageNet 
datasets. We compare it to two alternative strategies, namely cross-referencing and self-checking.
Results: Experimental results show that ICOS exhibits performance comparable to the other strategies in terms 
of accuracy, showing higher stability over a variety of CNNs and datasets with different complexity and size.
Conclusions: ICOS likely invariants are shown to be effective in automatically detecting misclassifications by 
CNNs used in image classification tasks when the expected output is unknown; ICOS ultimately yields faithful 
assessments of their accuracy in operation. Knowledge about input data can also be manually incorporated into 
ICOS, to increase robustness against unexpected phenomena in operation, like label shift.
1. Introduction

Machine Learning (ML) systems are today integral part of many ap-
plications due to their ability of reaching the same level or of even 
outperforming human beings (Kühl et al., 2020, He et al., 2015, Silver 
et al., 2017) for many tasks, like in the image classification (IC) domain. 
An ML system “is a software system including one or more components 
that learn how to perform a task from a given data set” (Riccio et al., 
2020). The learning components are based on ML models. The main 
performance indicator of such models is the accuracy, namely the num-
ber of correctly classified images out of the total. The accuracy of an 
ML model relies on different factors, like the data chosen for training, 
the training process itself, and the verification process.
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To assess the model accuracy on the field (operational accuracy), an 
arbitrarily large set of operational data could be collected (operational 
dataset) and submitted to the model. However, the correct labels for 
operational data are generally unknown, and the most reliable approach 
to define the ground truth is still manual labeling – this is because of 
the well known oracle problem (Murphy et al., 2007).

Evaluating ML-based IC systems with a large number of arbitrary in-
put images without an automatic oracle – thus, by manually checking 
that each image is correctly classified - is clearly expensive. There are 
two main strategies in the literature to address this problem: a) sam-
pling a conveniently small subset from the operational dataset, accord-
ing to a certain belief (e.g., selecting those samples more representative 
of the whole operational dataset (Li et al., 2019) or by selecting the 
likeliest failing samples (Guerriero et al., 2021)) and then manually la-
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beling only such inputs to get an estimate of the expected accuracy on 
the whole operational dataset; b) exploiting ML algorithms and statis-
tical techniques to automatically detect failures as the input image is 
classified.

Our work focuses on the latter strategy, with the aim to avoid the 
cost of manual labeling the selected samples. A common approach for 
such a strategy is to build oracles through cross-referencing, like in mul-
tiple implementation testing (Srisakaokul et al., 2018), e.g., detecting 
classification failures by majority voting. The various techniques of this 
type differ in the way by which multiple models are derived: one can, 
for instance, train different models on the same set (Srisakaokul et al., 
2018, Pei et al., 2017), or consider intermediate models during training 
(Wang et al., 2020).

A sort of cross-referencing oracle is also used by SelfChecker, the 
self-checking system for Deep Neural Networks (DNNs) proposed by 
Xiao et al. (2021), which “monitors DNN outputs and triggers an alarm 
if the internal layer features of the model are inconsistent with the final 
prediction” The technique is shown to be effective in detecting failures 
with an acceptable false positives rate - probably the trickiest issue in 
automatic oracles.

These techniques rely on the knowledge encoded in the training set 
and/or in the internal structure of the model (single neurons or layers 
output). However, in operation, well-known phenomena like concept 
drift (Tsymbal, 2004), distribution shift and label shift (Garg et al., 2020) 
can strongly impact the accuracy of the model, since the model is called 
to operate on inputs that deviate from those observed at training time. 
In these cases, such knowledge becomes less effective as a source to 
build an automatic oracle, as we show in the experiments.

To target this problem, emerging ML systems lifecycles like MLOps 
(Alla & Adari, 2021) foresee specialized teams, involving both software 
and operations engineers. They have to ensure the correct behavior tak-
ing into account the characteristics of the actual execution environment 
and of the operational domain knowledge, collected during active mon-
itoring and exploited to contrast the above-mentioned phenomena.

We propose ICOS (Image Classification Oracle Surrogate), a technique 
to address the oracle problem when assessing the operational accuracy 
provided by ML-based IC systems. It consists of an oracle surrogate that 
judges if the IC program under test correctly classifies an arbitrary in-
put image whose label is unknown. The ICOS automatic oracle aims to 
robustness to operational changes by: i) considering multiple sources of 
information, including, besides the training set and the ML algorithm, 
the operational domain knowledge; ii) filtering the knowledge in the 
training set more robust to changes in order to balance the occurrence 
of false positives and maximize the number of true positives.

ICOS derives a set of likely invariants representing properties that 
all correct outputs should preserve, leveraging the following sources of 
knowledge:

• Input data: the invariants from the operational input (called input-

data-dependent invariants) encode the operational domain knowl-
edge as rules defined by domain experts on the input and provided 
to the ML model; the resulting invariants are then automatically 
checked for violation.

• Training data: training-data-dependent invariants are automatically 
extracted from training data to give a characterization of the ML 
model’s expected behavior.

• ML algorithm: algorithm-dependent invariants capture the informa-
tion about how the output is computed from the ML algorithm.

When any invariant is violated, ICOS labels the test output as fail, 
otherwise as pass. The implementation of ICOS is publicly available on 
GitHub.1 A recent work from Google stresses the need and importance 
of incorporating domain knowledge as a set of rules to improve train-
2
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ing (Choudhary, 2022). In line with this work, with input-dependent-
invariants, we integrate into ICOS the domain knowledge to assess 
CNNs operational accuracy. The objective is to create an automatic 
oracle more effective than the state-of-the-art ones in estimating the 
accuracy of the CNN during the operation.

We evaluate ICOS on twelve Convolutional Neural Networks 
(CNNs), the most popular and performing ML-based IC solutions 
(Sharma et al., 2018). We compare ICOS to the Cross-Referencing Ora-
cle (CRO) implementation provided by Srisakaokul et al. (2018) and to 
SelfChecker (Xiao et al., 2021). The experimental datasets are MNIST 
(LeCun & Cortes, 2010), CIFAR10, CIFAR100 (Krizhevsky, 2009), and 
ImageNet (Deng et al., 2009), widely used in IC. We study the accu-
racy estimation ability considering the contribution of different types 
of invariants, the sensitivity to invariant selection criteria, and the ro-
bustness of the oracle surrogate in presence of label shift.

Results show that ICOS is able to faithfully estimate the accuracy 
provided by the CNNs in the operational environment, outperforming 
CRO and SelfChecker. All the three types of invariants contribute to 
misclassification detection, but a fine selection of the invariant influ-
ences the obtained results. In the results, we see that by selecting more 
invariants the number of correctly detected failures increases, but pay-
ing in terms of false positives. Finally, performance is shown to be more 
robust than the baselines with respect to unexpected phenomena like 
label shift, with an error reduction in presence of shift ranging of two 
orders of magnitude in the best case.

2. Related work

We analyze related research on the operational accuracy assess-
ment of ML systems, with specific reference to CNNs for Image Clas-
sification.

A significant research effort has been devoted in recent years to 
quality evaluation of ML systems (Riccio et al., 2020), yet few works 
concern the assessment of the accuracy provided in the operational 
environment. In fact, researchers primarily focused on testing of ML sys-
tems, with the main aim of exposing mispredictions, namely of spotting 
as many failing behaviors as possible (Pei et al., 2019, Ma, Juefei-Xu, 
et al., 2018, Zhang et al., 2018, Ma, Zhang, Xue, et al., 2018, Odena & 
Goodfellow, 2019).

The output of this type of failure-finding testing (and then debug-
ging) process is an improved model, with higher accuracy. This re-
sembles what is called debug testing in the traditional testing literature 
(Frankl et al., 1998). Clearly, as in the traditional debug testing, the 
so-obtained testing results are not necessarily related to the accuracy 
actually experienced in operation, and cannot be used for operational 
accuracy assessment, as testing data may be not representative of the 
actual operational context. This happens both when test data are gener-
ated artificially (like in adversarial examples generation) or when they 
are natural but differ significantly from input observed in the field. 
The resulting number of exposed mispredictions and/or the coverage 
achieved give only an “indirect” indication of the expected accuracy in 
operation, and ultimately of the confidence that can be placed in the 
system, but no quantitative estimation is given.

For estimating the accuracy in operation, two main strategies are:

• sampling a subset of the operational input dataset to be manually 
labeled, and then use it to estimate the accuracy. The idea is to 
select an as much small as possible subset of inputs, from which an 
accurate and stable (i.e., small variance) estimate is obtained (Li et 
al., 2019, Guerriero et al., 2021, Zhao et al., 2022). This mirrors 
operational testing for conventional (not ML-based) systems (Musa, 
1996, Pietrantuono & Russo, 2016).

• exploiting ML algorithms and statistical techniques to automati-
cally detect failures in operation. The idea is to evaluate the output 
automatically, namely to implement an oracle, so as to avoid the 

need of manually labeling the inputs (Guerriero, 2020).
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As the cost of manual labeling can be high and is not scalable, this work 
focuses on the second solution, which also allows an online evaluation 
of the operational accuracy. The rest of the section focuses on the liter-
ature on automated oracles.

Automated oracles The oracle problem in ML testing is one of the 
main challenges tackled by researchers Zhang et al. (2022). Often the 
proposed solutions are tailored for, or at least evaluated on, image clas-
sification.

A common strategy to build an automatic oracle is to use cross ref-
erencing, such as multiple-implementation testing (MIT) (Srisakaokul et 
al., 2018). MIT is proposed by Srisakaokul et al. to test supervised learn-
ing software. A test input’s proxy oracle is derived from the majority-
voted output of multiple implementations of the same algorithm. The 
cost of multiple implementations is clearly high. On the other hand, 
the solution is able to obtain a feedback about the output of any arbi-
trary input submitted to the system under test. The technique does not 
require any prior knowledge about the images’ labels.

Pei et al. adopt multiple Deep Learning (DL) systems in their Deep-
Xplore framework for white-box testing (Pei et al., 2019). They define 
a neuron coverage metric to measure the parts of the SUT exercised 
by test inputs. The DL systems are used as cross-referencing oracles to 
avoid manual checking.

Wang et al. (2020) propose DISSECTOR, a fault tolerance approach 
to distinguish input potentially causing a failure of the ML system. The 
input validation is performed by training sub-models on top of the pre-
trained model under test, hence using sub-models for cross-referencing.

The common characteristic among the three presented techniques is 
the source of knowledge used to set up the oracle as cross-referencing. 
In all the cases, the output of the ML system is evaluated based on 
the knowledge encoded into the training set. The multiple implementa-
tions, different from each other (different ML models, or the same ML 
model but different architecture, or sub-models trained from the same 
main ML model), aim to extract as much knowledge as possible from 
the training set to perform a majority voting based on that knowledge. 
These techniques are strictly affected by biases in the training set. When 
the training data are not representative of the operational environment, 
the performance of that oracles degrades significantly.

Corbière et al. (2019) propose a criterion for failure prediction of 
CNNs based on True Class Probability (TCP). The criterion is learned 
by a confidence neural network (ConfidNet) built upon a classification 
model. TCP is shown effective in performing failure prediction on clas-
sification and segmentation problems.

Currently, automatic oracles are of great interest also in misbehavior 
prediction of DNNs in autonomous driving (Jahangirova et al., 2021). 
Stocco et al. propose SelfOracles to detect unsupported driving scenar-
ios based on DNN run time behavior (Stocco et al., 2020). Based on 
the images in the training set, autoencoders are used to compute for 
each operational image a reconstruction error. The higher the error, the 
higher the probability of failure on the considered sample.

Xiao et al. (2021) recently proposed SelfChecker (SC) for both failure 
detection of CNNs and autonomous driving systems. SC detects failures 
in deployment when the output of the internal layers of the model under 
test is inconsistent with the final prediction. In this case, the internal 
layers’ output is used for cross-referencing. Besides failure detection, SC 
also suggests an alternative prediction. SC significantly outperforms the 
state-of-the-art techniques (DISSECTOR (Wang et al., 2020), ConfidNet 
(Corbière et al., 2019), and SelfOracle (Stocco et al., 2020)).

The difference between the first three (MIT, DeepXplore, and DIS-
SECTOR) and the last three (ConfidNet, SelfOracle, and SC) techniques 
is how the knowledge is extracted from the training set. In particular, 
the first three approaches try “different” models learning from the same 
source, exploiting the ensemble effect. The last three techniques com-
pute metrics to exploit the knowledge encoded in each training image. 
This strategy is particularly effective for SC, which outperforms state-
3

of-the-art techniques in failure prediction.
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The discussed techniques do not account for possible deviations of 
the operational context from the pre-deployment one. Hence, they are 
expected to perform insufficiently in presence of phenomena like label 
shift (Garg et al., 2020).

Two other techniques only partially addressing the oracle problem 
are mutation testing (Ma, Zhang, Sun, et al., 2018, Li et al., 2022) and 
metamorphic testing (Xie et al., 2019). The former is proposed by Ma 
et al. to evaluate test data quality (Ma, Zhang, Sun, et al., 2018). They 
define a set of source-level operators to inject faults into the sources of 
a DL model, like training data and programs, and model-level operators 
to inject faults directly into models. Data-related mutations (Ma, Zhang, 
Sun, et al., 2018, Li et al., 2022) aim to act directly on input data with a 
known label, to generate new samples, or alter the correct label. As the 
mutation approach requires knowledge of the label, it does not allow to 
submit test cases whose expected output is unknown.

Metamorphic testing leverages relations (metamorphic relations) be-
tween changes of input and output over various executions; when a 
relation is violated, a failure is detected. It finds application in many do-
mains, like IC (Xie et al., 2019, Dwarakanath et al., 2018), autonomous 
driving (Tian et al., 2018) and sentiment analysis (Jiang et al., 2022). 
In IC, it is used to generate new images preserving semantics (namely, 
the label) (Xie et al., 2019, Dwarakanath et al., 2018), or images with 
a label certainly different from the original one (Dwarakanath et al., 
2018), to find defects, like implementation bugs. As this way of apply-
ing metamorphic testing assumes that tests are generated from images 
whose labels are already known, it is not applicable to test arbitrary 
images with unknown labels.

3. ML systems life cycle

The accuracy assessment is essential in the life cycle of ML systems 
subject in operation to phenomena, which may negatively affect the 
faithfulness of the predictions. We describe the ML systems life cycle, 
according to the main proposals in literature (Ashmore et al., 2021, 
Alla & Adari, 2021), and show how the accuracy assessment task can 
be integrated into it.

Ashmore et al. (2021) present a detailed ML systems life cycle, rep-
resented in Fig. 1. Four main stages can be identified:

• Data Management: data collected in operation are processed and 
selected to generate new training and verification datasets;

• Model Learning: an ML model is selected and trained;
• Model Verification: the trained model is evaluated on the verifica-

tion set; if the generalization error exceeds a threshold, the process 
returns to the Data Management stage;

• Model Deployment: the model satisfying the requirements is inte-
grated into the operational environment; its operation is moni-
tored, and the model is updated through offline maintenance or 
online learning.
Fig. 1. ML systems life cycle according to ref. (Ashmore et al., 2021).
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Fig. 2. ML systems life cycle with accuracy assessment.

This spiral life cycle allows the collection of operational data to im-
prove the model over iterations. In the emerging MLOps perspective 
(Alla & Adari, 2021), the first three stages can be seen as the experimen-

tal stage; Model Deployment corresponds to the deployment stage.
Fig. 2 depicts a generic ML system life cycle, concealing Ashmore 

and MLOps perspectives. In particular, the Data Preprocessing, Remod-

eling & Retraining, and Model verification phases correspond to the first 
three stages proposed by Ashmore, and they are considered in the exper-
imental stage, concerning all the actions performed pre-release, outside 
the operational environment. The Deployment phase includes the ac-
tivities to deploy the ML system in the operational environment; it 
represents the transition phase between the experimental and deploy-
ment stages. In the deployment stage, the Monitoring phase concerns 
the collection of operational data, peculiar environment characteristics, 
and the output of the ML system useful to evaluate the ML system’s 
accuracy in operation and to take correcting/improving actions in the 
next cycle. We refer to this life cycle in the rest of the paper.

MLOps principles (Google, 2022) strongly focus on the concepts 
of Continuous Integration and Continuous Delivery. They aim to de-
velop a system able to evolve according to the operational environment, 
stressing the monitoring process, collecting statistics on the model per-
formance (e.g. operational accuracy) based on live data, and envisaging 
the online auto-improving of model accuracy in operation (e.g. via auto-
training). The main threat to achieving these objectives is the oracle 
problem. For ML systems, including CNNs for IC, “there is no reliable 
test oracle to indicate what the correct output should be for arbitrary 
input” (Murphy et al., 2008). The automation of an operational accu-
racy assessment process is limited by the unavailability of the correct 
label for operational inputs.

The online assessment performed via automatic oracle can partially 
solve this problem, and it can be integrated into the life cycle of Fig. 2. 
Specifically, the Online Assessment phase can be placed in the deployment 
stage: the oracle computes the predicted accuracy on the data coming 
from monitoring the CNN in operation. The predicted accuracy is then 
forwarded into the experimental stage. Based on this estimate, correct-
ing/improving actions can be performed in the Data Preprocessing and 
Remodeling & Retraining phases.

4. Image Classification Oracle Surrogate

We now present ICOS and describe the three types of likely invari-
ants for evaluating CNN output when the expected output is unknown.

4.1. Overview

According to Murphy et al. (2007), an oracle is an entity able to 
“indicate what the correct output should be for arbitrary input”. We 
define an oracle surrogate as an entity able to evaluate as correct or 
wrong each prediction of the CNN, based on some knowledge. The Im-

age Classification Oracle Surrogate implements an oracle surrogate in the 
4
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Fig. 3. ICOS workflow.

and the adopted ML algorithm, representing assertions that a correct 
CNN response should never violate. As Fig. 3 shows, both the image 
and the CNN output are submitted to ICOS, which checks against the 
invariants: if at least one invariant is violated, the ICOS output is fail, 
otherwise pass. When a failure is detected by one type of invariant, the 
remaining ones are neglected.

Invariants are expressed, as in constraint logic programming, as 
clauses in the form:

𝐻 :- 𝐶1 ∧⋯ ∧𝐶𝑛,𝐵1 ∧⋯ ∧𝐵𝑚 (1)

where 𝐻 and 𝐵𝑖 are atomic formulas and 𝐶𝑖 are constraints, and it is 
read as a rule: 𝐻 is true if 𝐶1 and 𝐶2 and 𝐶𝑛 are satisfied, and 𝐵1 and 𝐵2
and 𝐵𝑚 are true. This representation suits the three types of invariants 
considered. The following sections detail the invariants.

As an example, consider the following clause:

(outcome = Fail) :- (pixel1 > 25) ∧⋯ ∧ (pixel𝑛 < 250),

(predicted_label ≠ 3) ∧ (predicted_label ≠ 6)
(2)

stating that the outcome of ICOS is Fail if the values of the specified pix-
els satisfy the respective constraints, and the predicted label is different 
from 3 and 6. In this example, outcome = Fail is the atomic formula 𝐻 , 
predicted_label! = 3, and predicted_label! = 6 are the atomic formulas 𝐵, 
and pixel1 > 25 and pixel𝑛 < 250 are the constraints 𝐶 .

4.2. Input-data-dependent invariants

The invariants considered in the first stage of ICOS aim to partition 
the operational input, based on specific features of the operational en-
vironment (e.g. the way images are generated) that are unavailable for 
training images, e.g., deriving from the operational domain knowledge.

Knowledge about the context in which the classifier operates can 
help reduce the error, as it can, for instance, exclude labels that could 
never occur in that context. Reasonably, this information can be used 
to define an invariant such as “if the operational input belongs to the 
partition 𝑋, then the label predicted by the CNN cannot be 𝑦”. This 
invariant can be considered deterministic for a system, where 𝑋 is the 
partition of all images generated from the camera pointed in the garden, 
and 𝑦 is the airplane label.

Another example is the classification of handwritten digits, a very 
common task in image classification research (Lecun et al., 1998). Con-
sider a system with two input forms: in the first form the user must enter 
only digits without straight lines; in the second form, the user has to en-
ter only digits with straight lines. The operational input may be clearly 
divided into two partitions: digits without straight lines (𝑃1) and digits 
with straight lines (𝑃2). The corresponding invariants are:

fail :- input_image ∈ 𝑃1, output ∉ {0,3,6,8,9}

fail :- input_image ∈ 𝑃2, output ∉ {1,2,4,5,7}

ICOS aims to incorporate such additional invariants when available. 
For instance, in a successive release of the system, the second form is 
replaced by two forms that require the user to insert respectively: input 
images without curves (𝑃2,1), and digits with both curves and straight 
lines (𝑃2,2). Accordingly, the second invariant is updated as follows:

fail :- input_image ∈ 𝑃2,1, output ∉ {1,4,7}
fail :- input_image ∈ 𝑃2,2,output ∉ {2,5}.
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Fig. 4. Two training-data-dependent invariants for the MNIST dataset.

Table 1

Two misclassifications detected by the invariants in Fig. 4.

EO: Expected output; PO: output predicted by the CNN; IO: ICOS outcome;

CME: Confusion Matrix Element.

This information represents upfront knowledge related to the system 
and its domain and does not depend on the training data and/or the 
CNN architecture. Google researchers confirm the advantages of user-
defined rules in Deep Neural Networks (Seo et al., 2021), incorporating 
a rule encoder directly into the models. They also envisage an improve-
ment in terms of domain adaptation using the rule strength, becoming 
robust to distribution shift.

These invariants are called input-data-dependent invariants (IDIs) 
since they depend on features specific of the operational input. Let 
𝐹IDI denote the set of mispredictions detectable through IDIs, called 
input-related failures. When the CNN output violates some IDIs, an input-
related failure has occurred (i.e., the accuracy as for the detection of 
input-related failures is 100%, with no false positives); on the other hand, 
there may be many failures not detected through IDIs (i.e., a high num-
ber of false negatives). IDIs are defined manually.

4.3. Training-data-dependent invariants

The second source of knowledge considered is the training data. 
A CNN is trained on a training set reflecting the expected behavior in 
operation. ICOS automatically infers knowledge from the training set 
through explainable ML algorithms, such as decision rules or decision 
trees. It relates incorrect outputs to the observed inputs, encoding the 
inferred relation as a list of invariants.

In image classification, an invariant inferable from training data may 
consist of sets of pixels which, every time they have values beyond spe-
cific thresholds, make the CNN assign a certain class to the input image. 
These are training-data-dependent invariants (TDIs). A TDI violation oc-
curs when the class assigned by the CNN is different from the class 
corresponding to the first invariant in the inferred ordered list, which 
matches the image in input.

As examples, Fig. 4 shows two invariants extracted from the training 
set of the MNIST dataset. Training data in Fig. 4 a), labeled as digit 1, 
have an invariant represented here with green and red pixels: green 
ones are pixels expected to be close to white (pixel value close to 0) for 
an input image to be classified as 1; red pixels are pixels expected to 
be close to black (value close to 255) in a 1. Similarly for a digit 7 in 
Fig. 4 b). Table 1 reports two misclassifications detected based on these 
5

invariants.
Let 𝐹TDI denote the set of failures detectable by training-data-depend-

ent invariants, called training-related failures. 𝐹TDI may contain failures 
different from 𝐹IDI , including false positives. Indeed, unlike the previ-
ous case, these are likely invariants, since the consequent of the rule is 
only probabilistically true given the antecedents. But they are expected 
to significantly improve the oracle in terms of low number of false neg-
atives, at the price of more false positives. The idea is similar to “mirror 
programs” proposed by Qin et al. (2018), generated from training data, 
and used as pseudo oracles for ML programs testing.

The effectiveness of TDIs depends mostly on how well the training 
set represents operational inputs. A training set 𝑇 is representative of 
operational inputs if the accuracy Acc(𝑇 ) achieved using it to train a 
classifier is such that Acc(𝑇 ) ≈ Acc(𝑇 ∗), where 𝑇 ∗ is an ideal perfect 
training set (Borovicka et al., 2012). The failure detection ability of 
TDIs depends on how close Acc(𝑇 ) is to Acc(𝑇 ∗): TDIs can work well 
if 𝑇 is sufficiently representative of actual inputs; otherwise, they are 
likely to lead to many false positives.

4.4. Algorithm-dependent invariants

A CNN can fail in ways that may not be detected by IDIs and TDIs. 
Specific characteristics of the CNN can be observed to look for possible 
patterns occurring when there is a failure, e.g., in the output of a cer-
tain layer of the neural network. For instance, Ma et al. (2019) show 
that for an input belonging to a specific class, a specific set of neurons 
is activated. They exploit these conditions to define invariants to detect 
adversarial samples. Observing how the algorithm behaves in the nom-
inal case, one should be able to collect the patterns describing it. Based 
on the idea by Ma et al., ICOS is able to detect failures when such pat-
terns are violated.

The output of the last layer of the CNN, namely a probability vector, 
is considered a relevant feature, as the definition of invariants based 
on the closeness of the output softmax values is a well-known way to 
define the uncertainty of a model (Feng et al., 2020, Weiss & Tonella, 
2021a, 2021b). ICOS extracts the patterns observed in the nominal case 
from the probability values, notifying a failure when a pattern is vi-
olated. Nominal patterns are extracted by a random forest algorithm. 
These are algorithm-dependent invariants (ADIs). Let 𝐹ADI be the set of 

failures detectable by ADIs, called algorithm-related failures. 𝐹ADI may 
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Table 2

Examples of ICOS output for MNIST.

CME: Confusion Matrix Element.

contain failures different from those in the set 𝐹IDI ∪ 𝐹TDI , including 
false positives. Therefore, as for IDIs, these are likely invariants.

Table 2 shows six examples from the MNIST dataset, along with the 
CNN predictions, ICOS response, and the type of invariant violated. For 
instance, the third row is a handwritten digit, whose label is 8; the digit 
is wrongly classified by the CNN as a 7, and the misclassification is 
correctly detected by ICOS (a true positive), through the violation of 
some TDIs. The last row represents a 6, it is correctly classified by the 
CNN, yet ICOS outcome is fail (a false positive).

A final remark is about the relation between the invariants: since 
the invariants are evaluated in sequence, the TDIs and ADIs aim to de-
tect failures that “escape” the previous IDIs. It may well be that two 
inputs share some invariants. Moreover, it may well be that a CNN fail-
ure on a given input is detectable by violations of more than one type of 
invariants – ICOS notifies a detection at the first violation of any invari-
ant (the possibility to adopt more elaborated strategies, e.g., a majority 
voting on violations of different invariants to notify a detection or asso-
ciating confidence depending on how many violations are raised, is left 
to future investigation).

5. Evaluation

We formulate the Research Questions and outline the experimental 
settings. We then provide a detailed description of how ICOS is imple-
mented, and we report a description of the baselines for comparisons.

5.1. Research questions

The evaluation targets three research questions:

RQ1 (Effectiveness): How effective is ICOS at evaluating the operational 
accuracy, compared to a cross referencing oracle and to SelfChecker?

RQ1 aims at assessing the extent to which ICOS faithfully evaluates 
the accuracy of the CNN in operation, compared to the baselines. 
As we expect that partitioning plays a role, we consider two par-
titioning criteria, detailed in Section 5.4. The experimental results 
are scrutinized to infer the contribution of each type of invariant 
to performance.

RQ2 (Sensitivity to invariants selection): How does invariants selection 
influence the ICOS performance?

RQ2 aims at assessing the extent to which criteria used to extract 
invariants influence the results. The focus is on TDI, which are con-
trolled by tuning ICOS hyper-parameters (IDIs are covered by RQ1, 
while ADIs are built by a random forest algorithm, whose hyper-
parameters tuning is outside our scope). ICOS hyper-parameters are 
support and confidence of rules to extract. Support is the number of 
samples covered by the rule: it refers to how often the rule appears 
6
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a correct prediction to the times it appears (namely, divided by 
its support). We consider three combinations of support and confi-
dence, corresponding to three invariants’ selection criteria.

RQ3 (Robustness): How does ICOS perform in presence of label shift?

RQ3 aims to evaluate ICOS when operational inputs strongly di-
verge from those used in training, namely in presence of label shift. 
The shift is emulated by mutating the training dataset, as done by 
Li et al. (2019).

5.2. Experimental subjects

The subjects are twelve Convolutional Neural Networks, three for 
each of the following four datasets: MNIST (LeCun & Cortes, 2010), CI-
FAR10 (Krizhevsky, 2009), ten synsets of ImageNet (Deng et al., 2009), 
and CIFAR100. Table 3 reports the number of layers and of parameters 
for each CNN. Further details are made publicly available on Github.1

We experiment with datasets and CNNs of various complexities to guar-
antee diversity and improve the generalizability of results. The datasets 
are diverse in the number of pixels and classes, and the networks are 
diverse in the number of layers and parameters.

We split the datasets into training, validation and operational sets. 
For validation set, we mean the set of images used to evaluate the CNN 
and to compute the generalization error. For operational set, we mean 
the unlabeled images used to assess the operational accuracy. This split-
ting is done to avoid biases: Recht et al. (2019) showed in fact that using 
previously unseen test sets in the assessment causes the real accuracy 
to drop by 3% to 15% on CIFAR10 and by 11% to 14% on ImageNet, 
compared to the claimed accuracy.

The training set size is set as follows:

• For MNIST and CIFAR10: 40% of the available dataset size (28, 000
and 24, 000, respectively);
The ImageNet and CIFAR100 datasets need bigger training sets to 
have an acceptable accuracy (we assume at least 0.5). Therefore, 
the training set sizes are set as follows.

• For ImageNet: we consider 10 synsets, resulting in a training set of 
about 3, 000 samples, which is 60% of the dataset;

• For CIFAR100: 40, 000 samples, yielding at least 400 examples per 
class, which is 66% of the dataset.

The validation set size is:

• For MNIST and CIFAR10: 2,500 samples (250 examples for each 
class);

• For ImageNet: 1,200 samples (120 examples for each class);
• For CIFAR100: 5,000 samples (50 examples for each class).

Table 3

Characteristics of the twelve experimental subjects.

CNN Dataset # of Layers # of Parameters Accuracy on the 
validation set

A
MNIST

7 6,237 0.965
B 6 97,114 0.968
C 8 545,546 0.964

D
CIFAR10

13 1,084,234 0.697
E 10 258,762 0.657
F 12 550,570 0.625

G
ImageNet

13 476,874 0.664
H 9 1,307,338 0.578
I 13 4,247,985 0.602

L
CIFAR100

16 15,047,588 0.552
M 9 564,484 0.522
N 13 1,465,220 0.579
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Operational samples are selected randomly (without replacement) 
from those remaining after constructing the training and validation sets 
(in the number of 39,500 for MNIST, 33,500 for CIFAR10, 3,072 for Ima-
geNet, and 15,000 for CIFAR100). The operational set size is so set:

• For MNIST and for CIFAR10: 20,000 samples;
• For ImageNet: 2,000 samples;
• For CIFAR100: 3,000 samples.

Each experiment is repeated 30 times for statistical significance. The 
random selection procedure is performed before each repetition. The la-
bels of the selected samples are removed to emulate unknown expected 
output. Table 3 also provides a quantitative evaluation of each CNN’s 
accuracy based on the scores achieved on the corresponding validation 
set. Since the operational dataset changes with each repetition, we do 
not report the accuracy there.

5.3. Evaluation metrics

The metric to evaluate ICOS performance in predicting the opera-
tional accuracy is the Mean Absolute Error (MAE), computed as:

𝑀𝐴𝐸(�̂�) = 1
𝑁

𝑁∑
𝑖=1

|�̂�𝑖 − 𝜙𝑖| (3)

where 𝑁 is the number of repetitions (𝑁 = 30 in our experiments), 𝜙𝑖

is the actual accuracy computed on the operational dataset sampled 
during the 𝑖𝑡ℎ repetition, and �̂�𝑖 is the predicted accuracy computed 
through oracle predictions on the same operational dataset.

We consider also the metrics used by Xiao et al. (2021) to evaluate 
SelfChecker:

• True Positive Rate (TPR): the ratio of failures correctly detected 
out of all failures (𝑇𝑃𝑅 = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁));

• False Positive Rate (FPR): 𝐹𝑃𝑅 = 𝐹𝑃∕(𝑇𝑁 + 𝐹𝑃 )
• F1-score (F1): 𝐹1 = (2 × 𝑇𝑃 )∕(2 × 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 )

The goal is to achieve high TPR, low FPR, and high F1.

5.4. ICOS implementation

The invariants considered by ICOS are defined/extracted as follows.

Input-data-dependent invariants IDIs are defined assuming an opera-
tional domain with various input sources (like the examples in sub-
section 4.2), where each source produces output belonging to a certain 
subset of labels. This way, we can consider disjoint partitions.

For the evaluation, we consider three partitions for MNIST:

• set of all digits without straight lines (0, 3, 6, 8, 9);
• set of all digits with straight lines (1, 4, 7) only;
• set of remaining digits (2, 5);

the following two partitions for CIFAR-10 and ImageNet:

• set of all animals (CIFAR10: dog, frog, horse, bird, cat, deer; Ima-
geNet: armadillo, cat, gorilla, hyena, zebra);

• set of all non-animals (CIFAR10: airplane, car, ship, truck; ImageNet: 
bikes, missile, revolver, ships, taxi);

and the following seven partitions for CIFAR100 (defined for brevity on 
the coarse-grain classes):

• 𝑃1: aquatic mammals, fish;
• 𝑃2: flowers, fruit, vegetables, food containers;
• 𝑃3: large carnivores, large omnivores, herbivores, medium-sized 
7

mammals, small mammals;
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Table 4

C4.5 parameter configuration.

Parameter Value

Quality measure Gini index

Pruning method No pruning

Reduced error pruning false

Min number records per node 5

• 𝑃4: insects, non-insect invertebrates, reptiles;
• 𝑃5: vehicles 1, vehicles 2;
• 𝑃6: large outdoor objects, large natural outdoor scenes, trees;
• 𝑃7: household electrical devices, furniture, people.

We call this partitioning criterion fine partitioning (fp).
To show the impact of partitioning (different partitionings can yield 

different results), we also consider a second criterion applicable to all 
datasets, which just splits the operational set into two partitions:

• Partition 𝑃1 is made by the following sets:
– {0, 1, 2, 3, 4} for MNIST;
– {airplane, automobile, bird, cat, deer} for CIFAR10;
– {armadillo, bikes, cat, gorilla, hyena} for ImageNet;
– the first 50 classes {apple, ..., mountain} for CIFAR100.

• Partition 𝑃2 is made by:
– {5, 6, 7, 8, 9} for MNIST;
– {dog, frog,horse, ship, truck} for CIFAR10;
– {missile, revolver, ships, taxi, zebra} for ImageNet;
– the last 50 classes {mouse, ..., worm} for CIFAR100.

We call this partitioning criterion equal partitioning (ep).

Training-data-dependent invariants Training-data-dependent rules are 
derived by applying the C4.5 algorithm (Quinlan, 1993), an imple-
mentation of decision trees known for its ability to generate classifiers 
interpretable by humans (Alonso et al., 2018); the setting is in Table 4.

The list of rules we obtain represents conditions satisfied by samples 
in the training set. Every time a condition is violated, a failure is de-
tected. As an instance, consider again Fig. 4.a; the following invariant 
states that when the values of pixels (shown between “$” symbols) are 
beyond given thresholds, a CNN output different from ‘1’ means a fail-
ure occurred (image pixels are ordered left to right and top to bottom):

fail :- $514$ <= 253 ∧ $406$ > 157 ∧ $539$ <= 111∧

$411$ <= 61 ∧ $347$ <= 2 ∧ $206$ <= 0 ∧ $327$ <= 7

∧ $522$ <= 0 ∧ $489$ > 56 ∧ $350$ > 165, output ≠ 1

The set of selected invariants depends on the values of confidence 
and support. For RQ1, we set the minimum confidence value at 𝐶 = 0.99
for all models and datasets, and, since the discriminating power of the 
rules depends on the support on which such a confidence is obtained, 
we filtered out low-support rules with the following criteria:

• For MNIST, we consider the minimum support, under 𝐶 ≥ 0.99, for 
which at least the 50% of operational samples are evaluated;

• For CIFAR10, ImageNet and CIFAR100, whose rules have a low 
average support, we consider the median support over the rules 
with 𝐶 ≥ 0.99.

The resulting values are: 𝑆 = 140 for MNIST, 𝑆 = 14 for CIFAR10, 𝑆 = 11
for ImageNet, and 𝑆 = 8 for CIFAR100.2

2 These parameters can be fine-tuned for improving performance on a case-
by-case basis. In RQ1 experiments, we kept this configuration. For RQ2, further 

configurations are considered.
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Table 5

Random forest parameter configuration for ADIs ex-
traction.

Parameter Value

Split criterion Information Gain Ratio

Number of models 100

For RQ2, confidence and support are set in three different ways to 
study the sensitivity to invariants selection criteria:

• Criterion 1: Select invariants with high confidence (𝐶 = 0.99) and 
high support, greater than 140 for MNIST, 𝑆 = 14 for CIFAR10, 
𝑆 = 11 for ImageNet, and 𝑆 = 8 for CIFAR100;

• Criterion 2: Select invariants with confidence greater than 0.99 (𝐶 =
0.99), regardless of support (𝑆 = 0); this is expected to give a wider 
set of rules (which can allow detecting more failures), but those 
with low support are expected to provide more false positives and 
to underestimate the CNN accuracy.

• Criterion 3: Select all the invariants, regardless their confidence 
(𝐶 = 0) and support (𝑆 = 0).

Algorithm-dependent invariants ADIs extraction uses the KNIME imple-
mentation of Random Forest (Berthold et al., 2007), with default pa-
rameter values (reported in Table 5) and considers the validation set as 
the training set. We collect the output of the last layer of each CNN cor-
responding to each element of the validation set. We use this dataset as 
the training set for Random Forest. The aim is to train the Random For-
est algorithm to detect patterns corresponding to correct outcomes, so 
as to find misclassifications each time they are not satisfied.

5.5. Cross-referencing oracle

As baseline for comparison, like Srisakaokul et al. (2018) we use 
a cross-referencing oracle (CRO) for multiple-implementation testing. For 
each dataset, we implemented a majority oracle with the three corre-
sponding CNNs of Table 3, adjudging as correct output the most voted 
value. When the three models fully disagree, CRO takes no decision.

5.6. SelfChecker

SelfChecker (SC) is an automatic oracle for in deployment evaluation 
of CNNs (Xiao et al., 2021). SC evaluates the final output provided by 
the monitored CNN considering features extracted from the internal lay-
ers. It also suggests alternative predictions in case of misclassifications 
detected. The workflow of SC is shown in Fig. 5. First, the training set 
is used to compute layer-wise density distributions for each layer using 
kernel density estimation (KDE). Then, an optimal set of layers is selected 
exploiting the predictions on the validation set. Finally, the density val-
ues of the selected layers are used to decide whether to provide an alarm 
and an alternative prediction (advice) in case of misclassification.

6. Results

We present the results of the experimentation, describe the findings, 
and discuss the advantages and limitations compared to baselines.
8

Fig. 5. Workflow of SelfChecker.
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6.1. RQ1: effectiveness

The results for the MAE metric for each dataset are shown in Fig. 6:

• On MNIST (Fig. 6a), ICOS𝑓𝑝 shows the best values of MAE. ICOS𝑒𝑝
shows values lower than the baselines for CNN A and B;

• On CIFAR10 (Fig. 6b), ICOS𝑓𝑝 outperforms the other techniques, 
while ICOS𝑒𝑝 shows values worse than SC, except for CNN D;

• On ImageNet (Fig. 6c), SC performs significantly better for CNN G 
and slightly better for CNN H compared to ICOS. ICOS𝑓𝑝 performs 
slightly better on CNN I;

• On CIFAR100 (Fig. 6d), ICOS𝑓𝑝 performs better than the other or-
acles for models L and M; SC shows the best value for model N.

Overall, while SelfChecker performs particularly well on complex 
datasets (for dimension of the images and number of classes) and net-
works (for layers and parameters, like CNN C for MNIST), ICOS𝑓𝑝 is 
more stable in terms of mean absolute error, for which it shows always 
low values.

To assess the statistical significance, we run the Friedman test (Iman 
& Davenport, 1980) on the absolute error (i.e., the offset) obtained in 
each repetition, each automatic oracle, and each subject, considering a 
significance level equals to 0.05. The test assesses if there is a signif-
icant difference among any of the five automatic oracles. The p-value

= 2.2E-16 allows rejecting the null hypothesis that “there is no differ-
ence among the offsets”.

Fig. 7 shows the critical differences resulting from the post hoc Ne-
menyi’s test (Calvo & Santafe, 2015) on the offset values. Automatic 
oracles with no significant difference are grouped using a bold horizon-
tal line – the higher the distance between two oracles (distance being 
the average ranking), the smaller the 𝑝 − value for the null hypothesis 
of equal performance. In the figure, oracles are ordered from the worst 
to the best (higher values of offset mean lower values of predicted ac-
curacy). The test shows there is no significant difference only between 
ICOS𝑒𝑝 and SC, which are confirmed to perform similarly in evaluating 
the accuracy of the CNN, while ICOS𝑓𝑝 is the best one due to the fine 
partitioning.

For a detailed view, Tables 6, 7, and 8 report the average TPR, FPR, 
and F1 over 30 repetitions. The best values per metric and per CNN are 
in bold.

As for TPR (Table 6), ICOS𝑒𝑝 shows the best values 5 times, SC 6 
times, and ICOS𝑓𝑝 just 1 time. CRO shows the best values of FPR, but 
with a TPR lower than 0.5 except for CNN A.

As for FPR (Table 7), excluding CRO, ICOS shows the best values 5 
times (3 times ICOS𝑓𝑝, 2 times ICOS𝑒𝑝), while SC shows the best values 7 
times. On the opposite, the higher number of false positives for simpler 
models causes a strong divergence of the predicted accuracy (high MAE 
values). ICOS𝑓𝑝 shows better values in terms of MAE due to the better 
balancing of TPR and FPR.

As for the F1 metric (Table 8), ICOS𝑓𝑝 has the best values for MNIST 
CNNs, ICOS𝑒𝑝 has the best value for CNN H and L (CIFAR10). SC has 
the best values for CNN G, I, M, and N.

ICOS’ results in terms of F1-score highlight the importance of choos-
ing IDIs effectively. For networks classifying MNIST images, fine parti-
tioning is more effective, while in the other cases (CNN D, E, F, H, and 
I) the equal partitioning works better. Specifically, since F1-score repre-
sents the balance between Recall and Precision, ICOS is not always able 
to keep this ratio high, but it can still balance TP and FP to have faith-
ful accuracy estimates (low MAE). About the baselines, SC achieves the 
best performance in terms of TPR. These results depend on two main 
factors:

• For CNN A and B, SC is more prone to classify the operational 
examples as failures. This gives a high TPR but also the worst False 
Positive Rate (FPR) for these networks, and consequently the worst 

Mean Absolute Error (MAE). The reason behind these results can be 
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CD - Critical Difference

Fig. 7. RQ1: Plot of post hoc Nemenyi’s test on offset values.

related to the low complexity of the MNIST dataset and the CNN 
and consequently a low number of features for the SC classification 
task.

• For CNN I-N, SC shows good values of TPR due to the higher com-
plexity of CNNs and datasets, and consequently to a high number 
of features about the classification accuracy of these networks.

The low values of FPR shown by CRO with respect to the other tech-
niques depend intuitively on the networks considered for the majority 
voting. This means that the CNNs will be more prone to agree than to 
disagree since they share the same knowledge (they are trained on the 
same training dataset). For this reason, they lead to miss more failures 
than the other techniques. On the contrary, a failure detected by CRO 
is more robustly related to an actual misclassification.

Contributions of the invariants to misclassifications detection Fig. 8 shows 
the contribution to the TPs of the three types of invariants considered 
for ICOS, averaged over the three CNNs for each dataset. IDIs contribute 

Table 6

RQ1: True Positive Rate.

TPR ↑

CNN ICOS_fp ICOS_ep CRO SC

A 0.7840 0.6252 0.5042 0.7997

B 0.7641 0.6609 0.4078 0.8364

C 0.7704 0.6495 0.3570 0.7237
D 0.6143 0.8487 0.3621 0.8318
E 0.6623 0.8498 0.4282 0.7927
F 0.6921 0.8913 0.4142 0.8138
G 0.8075 0.8243 0.3481 0.8123
H 0.8439 0.8582 0.3849 0.8245
I 0.7779 0.8151 0.3455 0.8405

L 0.7843 0.8474 0.2945 0.8903

M 0.8168 0.8622 0.4166 0.8893

N 0.7990 0.8476 0.3505 0.8700

Table 7

RQ1: False Positive Rate.

FPR ↓

CNN ICOS_fp ICOS_ep CRO SC

A 0.0075 0.0077 0.0040 0.0532
B 0.0085 0.0083 0.0071 0.0958
C 0.0076 0.0077 0.0023 0.0052

D 0.2166 0.2168 0.0440 0.3460
E 0.2441 0.2448 0.0379 0.2451
F 0.2854 0.2851 0.0294 0.2709

G 0.3766 0.3803 0.0483 0.2584

H 0.4638 0.4654 0.0415 0.4543

I 0.3603 0.3572 0.0490 0.3420
Fig. 6. RQ1: ICOS vs CRO and SelfChecker - MAE. L 0.2209 0.2190 0.0391 0.3073
M 0.2810 0.2817 0.0230 0.2607

N 0.2619 0.2615 0.0195 0.1946
9
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Table 8

RQ1: F1-score.

F1 ↑

CNN ICOS_fp ICOS_ep CRO SC

A 0.8086 0.7007 0.6318 0.5455
B 0.7581 0.6928 0.4956 0.3276
C 0.7895 0.7082 0.5024 0.7841
D 0.5801 0.7212 0.4777 0.7176
E 0.6200 0.7312 0.5560 0.7083
F 0.6282 0.7423 0.5538 0.6927
G 0.7260 0.7339 0.4807 0.7739

H 0.7351 0.7420 0.5250 0.7288
I 0.7049 0.7268 0.4756 0.7470

L 0.7069 0.7442 0.4095 0.7143
M 0.7435 0.7705 0.5637 0.7931

N 0.7365 0.7631 0.4985 0.8100

Fig. 8. RQ1: Contribution of the three types of invariants to true positives.

more, except for CIFAR 10 with fine partitioning. Although in the case 
of MNIST the contribution of the automatic invariants (TDI and ADI) is 
small, it should be considered that the CNNs are very accurate (more 
than 0.96 on the validation data, with 790 actual misclassification on 
average for each testing session), and detecting failures is hard.

In the other cases, where the accuracy is lower (on average: 0.65 for 
CIFAR10 CNNs, with 6, 650 actual misclassification for each repetition; 
0.55 for ImageNet CNNs, with 960 actual failures for each repetition; and 
0.61 for CIFAR100 CNNs, with 9, 125 actual failure for each repetition) 
the contribution of the automatic invariants is more evident.

Fig. 9 reports the sole contribution of the automatic invariants. Al-
together, TDIs and ADIs detect 13% of the total misclassifications for 
MNIST, 58% for CIFAR10, 71% for ImageNet, and 72% for CIFAR100. 
Thus, the automatic invariants of ICOS can significantly contribute: 
although the tuning is coarse-grained for CIFAR10, ImageNet and CI-
FAR100 (compared to the one used for MNIST), TDIs and ADIs detect 
more than 50% of misclassifications.

RQ1 answer

ICOS provides a better prediction accuracy compared to CRO. 
The ICOS𝑓𝑝 variant also provides better accuracy than Self-
Checker, while the ICOS𝑒𝑝 variant is statistically equivalent to 
SelfChecker.
Overall, ICOS performs comparably to SelfChecker (and better 
than CRO), exhibiting higher stability over a variety of datasets 
and CNNs.
10
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Fig. 9. RQ1: Contribution of automatic invariants to true positives (total fail-
ures=TP+FN).

6.2. RQ2: influence of invariants selection criteria

The results can be influenced by the selection of invariants. We filter 
TDIs by tuning both minimum confidence and support by the three cri-
teria described in Section 5, considering fine partitioning. Fig. 10 reports 
TPR and FPR for each criterion, and the results obtained exploiting CRO 
and SC.

The three criteria are characterized by intuitive trends: adding more 
invariants from criterion 1 to 3, the TPR increases considerably; on the 
other hand, FPR increases too. In particular, relaxing the constraint 
about TDI support (ICOS, criterion 2), TPR increases by about 6% on 
average (9% for MNIST, 11% for CIFAR10, 3% for ImageNet, 2% for 
CIFAR100). Considering all TDIs (ICOS, criterion 3), TPR increases by 
about 26% on average (20% for MNIST, 42% for CIFAR10, 19% for Ima-
geNet, 23% for CIFAR100). Contextually, with ICOS criterion 2 the FPR 
increases by five times for MNIST, 53% for CIFAR10, 30% for ImageNet, 
and 92% for CIFAR100. Considering all TDIs (ICOS, criterion 3) it in-
creases by almost fifteen times for MNIST, 213% for CIFAR10, 120% for 
ImageNet, and 220% for CIFAR100.

The comparison with ICOS and SC highlights that if we increase the 
number of TDIs considered, ICOS achieves a better TPR paying in terms 
of False Positives.

RQ2 answer

By selecting more invariants (ICOS, criterion 2), the TPR increases 
by 6% on average, but we pay in terms of False Positives, which can 
increase up to 5 times. By taking all the invariants (ICOS, criterion 
3, actually corresponding to no selection), TPR increases by 26% on 
average, but FPR can increase up to 15 times. Invariant selection is 
therefore needed to avoid excessively high FPR.

6.3. RQ3: robustness

An analysis of robustness is performed on ICOS and SC to evaluate 
the performance of these approaches in case of an operational dataset 
very different from the training dataset. To this purpose, we build a 
mutated training dataset, as by Li et al. (2019) to emulate a divergence 
between training and operational data. In detail, we switched the label 
of samples in the training dataset, while the operational dataset is left 
unchanged. We considered three different label switches (2,7), (5,6), 
and (6,8) for the MNIST dataset. The model considered for this analysis 
is CNN C, due to the good results shown by SC in the previous subsec-
tion. The three versions of CNN C trained on the mutated datasets are 
called respectively 𝐶1, 𝐶2, and 𝐶3. As shown in Fig. 11, the performance 
of the three techniques depends on the specific mutation adopted:

• in the 𝐶1 case, ICOS outperforms SC both in terms of MAE, thanks 
to the IDI, which is able to detect failures due to the label switching;

• in the 𝐶2 case, ICOS𝑒𝑝 degrades its performance due to the ineffec-
tiveness of its IDI to the label shift;

• in the 𝐶3 case, the three techniques perform badly in the same way.

To assess the statistical significance, we run the Friedman test on 
the absolute error obtained in each repetition for each automatic ora-

cle considering a significance level equal to 0.05. The p-value = 9.3E-15
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Fig. 10. RQ2: ICOS True Positive Rate and False Positive Rate for various invariant selection criteria.
Fig. 11. RQ3: ICOS vs SelfChecker.

allows rejecting the null hypothesis that “there is no difference among 
the offsets”. Fig. 12 shows the critical differences resulting from the Ne-
menyi test. The oracles are ordered from the worst to the best. The test 
shows that all the differences are significant.

The manual definition of IDIs can be decisive in case of unexpected 
inputs in operation. In this experimentation, the defined IDIs are very 
simple. Despite their simplicity, they can actually save CNN’s perfor-
mance in operation when some unexpected happens. In case of a strong 
distribution shift, with consequent label shift, IDIs can help understand 
misclassifications depending on label shifts. SC, similarly to TDIs and 

CD - Critical Difference
11

Fig. 12. RQ3: Plot of post hoc Nemenyi’s test on offset values.
ADIs, are not able to be robust against this kind of issue, due to their 
dependence on the training set, and on the model under test. Although 
the definition of IDIs can be costly, they can be very useful when unex-
pected phenomena like label shift affect data in operation.

RQ3 answer

Knowledge about input data, expressed by user-defined invari-
ants, make ICOS accuracy assessment more stable than Self-
Checker, increasing robustness against unexpected phenomena 
in operation, like label shift.

6.4. Discussion

Compared to the baselines, ICOS balances TP and FP better, provid-
ing more accurate estimates and bringing to low MAE (RQ1). As for 
training-data-dependent invariants, results show that both confidence and 
support have a relevant impact on detections. TDIs with low confidence 
and low support are representative of rare samples in the training set, 
typically the ones more likely misclassified. On the other hand, these 
invariants are more prone to generate FPs. A coarse-grain selection of 
TDIs leads to a high ability in finding failures, while a fine-grained selec-
tion leads to a low number of False Positives. Depending on the testing 
objective, users can adjust configuration parameters to have more con-
servative or more alerting operational accuracy estimates (RQ2).

As for algorithm-dependent invariants, starting from only 2,500 sam-
ples in the validation set, the automatically inferred ADIs spot several 
failures unrevealed by the two previous stages. The number of detec-
tions is clearly higher when the SUT has a higher number of failures 
(Fig. 9b and 9c), yet they detect some failures also for very accurate 
systems. (Fig. 9a).

About baselines, SC achieves the best performance in terms of TPR, 
but it often shows the worst values of FPR resulting in worse values of 
MAE. Results from ICOS are more robust than SC in case of unexpected 
phenomena in the operational environment because of IDI (RQ3). For 
this reason, ICOS is preferred when the user can extract or define IDI 
from the available knowledge of the operational environment. Due to 
the majority voting, CRO’s networks are more prone to agree than to 

disagree since they share the same knowledge. This results in missing 
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more failures than the other techniques. While its accuracy estimates 
are worse than the others, a failure detected by CRO is more robustly 
related to an actual misclassification.

A final remark is about interpretability of the predictions of the or-
acle surrogate. The output of ICOS is, to some extent, interpretable. 
For instance, considering the results of CNN C, we saw that the more 
frequent misclassification detected by IDIs is related to samples rep-
resenting a 9 classified as 4. Reasonably, this condition depends on a 
certain similarity between the two samples and a low representative-
ness of the correspondent values in the training set. When the failure 
is caused by a training-data-dependent invariant violation, we could spot 
which parts of the input are particularly prone to cause the failure. For 
instance, if the greatest part of the white pixels is very close to each 
other, and they are clustered in the center of the image, reasonably the 
image is a 1. This feedback is not possible with a Cross-Referencing 
Oracle, in which case a detection means that a subset of the versions 
disagrees with the SUT. One could just derive something like a training-

data-dependent invariant, considering that the alternatives are trained 
on the same training set: “each time the SUT disagrees with the major-
ity the outcome could be considered as fail”. As future development, it 
makes sense to consider CRO as part of ICOS to complement the ability 
to extract training-data-dependent invariants.

The automatic oracles have a cost for knowledge extraction from the 
training dataset:

• ICOS requires training for extracting TDIs and ADIs;
• SelfChecker requires to compute layer-wise density distributions 

for each layer and each image in the training dataset;
• Cross-Referencing Oracles require training for the diverse imple-

mentations.

CRO can be considered more costly in terms of training compared to 
ICOS and SC. However, they are characterized by additional cost, con-
cerning the manual invariants definition (IDIs for ICOS) and parameters 
tuning (confidence and support of TDIs for ICOS, and layer selection for 
SC). The latter cost occurs una tantum, while the training cost is re-
quired whenever the training and verification sets are altered. Since 
they can be carried out mainly simultaneously, the training cost can 
be viewed as reasonable when compared to the expense of training the 
CNN. For these reasons, one possibility is to use SC, and in general fully 
automated approaches, when the knowledge about the operational en-
vironment is scarce, or during the first deployments of the system to 
allow the operational team to learn about the execution context. ICOS 
may be preferable (or used in conjunction) for a more accurate output 
evaluation under varying operating conditions and/or in a continuous 
refinement perspective.

7. Threats to validity

Internal validity The presented results assume the correctness of the 
implementation of ICOS, as well as of the experimental code. We made 
the code available so as to favor verifiability and reproducibility.1 The 
correctness of the CNNs can be a further internal threat; the models 
used in experiments are derived from public repositories, and training 
was performed from scratch in order to avoid biases. About IDIs, differ-
ent partitioning can provide different results; a detailed investigation of 
partitioning is a matter of future work.

Construct validity The training-data-dependent and algorithm-depen-
dent invariants inferred by ICOS rely on well-established algorithms, 
namely C4.5 and Random Forest. These have been used with the default 
setting as provided by KNIME, since we focused primarily on investi-
gating the ICOS’s hyperparameters (i.e., support and confidence) rather 
than hyperparameters of such external algorithms which ICOS relies 
on. Consequently, results would be different if other algorithms and/or 
12

other hyperparameters settings are adopted.
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External validity We considered nine CNNs and three well-known 
datasets; however, results need to be confirmed across different CNN 
architectures and, more interestingly, across potential application do-
mains (e.g., autonomous driving) for improving generalizability.

8. Conclusions

Automatic assessment of the accuracy of Machine Learning image 
classification systems with arbitrary inputs is a challenging task, due to 
the oracle problem. We presented ICOS, an oracle surrogate for image 
classification systems, showing that its mechanism to infer likely invari-
ants helps assessing the actual accuracy provided by CNNs in operation, 
by detecting misclassifications when the expected output is unknown.

We have found that the invariant selection impacts ICOS perfor-
mance: by selecting more invariants, the ability to detect failures of the 
test oracle improves, although the number of false positives increases 
(causing the divergence of the estimated operational accuracy). The im-
pact varies depending on the accuracy of the model under assessment, 
but mostly on the representativeness of the training set with respect to 
the operational inputs. We have also seen that invariants with low sup-
port can detect more complex misclassifications in operation, but they 
cause a large number of false positives.

ICOS can be tuned to provide a trade-off between true and false pos-
itives to make the estimates of the operational accuracy converge to the 
true value. ICOS can be particularly effective for assessing the opera-
tional accuracy of an ML system since it can be robust to unexpected 
phenomena that are typical of the operational environment (like distri-
bution and label shifts). This is possible by incorporating operational 
features in the considered invariants.

The assessment of the accuracy of CNNs, and of DNNs in general, 
can be of interest beyond the IC domain. For instance, the steering angle 
prediction in the Autonomous Driving domain - a regression problem -
is a potential application. To this purpose, ICOS requires specific cus-
tomization: IDIs must be defined in the Autonomous Driving context 
(e.g. based on traffic rules); TDI and ADI must be re-conceived to work 
on continuous values. The integration of ICOS in the life cycle of the 
DNNs is an opportunity to deal with the collection and evaluation of 
operational features, which can be useful but needs specific reasoning 
to infer constraints. An interesting research direction is to apply inferen-
tial engines on operational features to automatically extract IDIs which 
can help detect failures, making the accuracy estimates more faithful.
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