Hilbert Space Embeddings of Hidden Markov Models

ICML 2010 Best Paper Le Song, Byron Boots, Sajid Siddiqi, Geoff Gordon and Alex Smola presented by Shouyuan Chen

Hidden Markov Models (HMMs)

Video sequence

High-dimensional features Hidden variables *Unsupervised* learning

Notation

Preliminaries: Learning Discrete HMMs

- EM algorithm [Dempster et al. 77]:
 - Maximum likelihood solution (Baum-Welch)
 - Local maxima
 - Curse of dimensionality
- Spectral algorithm for HMM [Hsu et al. 09]:
 - No local optima
 - Consistent

A Spectral Algorithm for Learning HMM

Background

- Learning linear system [van Overschee and de Moor 1996] $\mathbf{x}^{(n+1)} = A\mathbf{x}^{(n)} + B\mathbf{u}^{(n)} + \mathbf{\varepsilon}_{\chi}^{(n)}$ $\mathbf{y}^{(n)} = C\mathbf{x}^{(n)} + D\mathbf{u}^{(n)} + \mathbf{\varepsilon}_{\chi}^{(n)}$

- Observation: Y, U
- Subspace identification
 - estimate A,B,C,D using SVD (up to a linear transformation)
- Deterministic model (except noise)
- HMM is also a linear system (probabilistic) $\mathbb{E}[\vec{h}_{t+1} | \vec{h}_t] = T\vec{h}_t$ and $\mathbb{E}[\vec{x}_t | \vec{h}_t] = Oh_t$

[Hsu, 09] Use subspace identification to learn HMM

Predictive Distributions of HMMs

- Input $x_{t:1} := (x_t, ..., x_1)$ output $\mathbb{P}(X_{t+1}|x_{t:1})$
- Variable elimination:

Predictive Distributions of HMMs

- Input $x_{t:1} := (x_t, ..., x_1)$ output $\mathbb{P}(X_{t+1}|x_{t:1})$
- Variable elimination (matrix representation):

$$\left[\mathbb{P}(X_{t+1}=i|x_{t:1})\right]_{i=1}^{M} \propto OA_{x_{t:1}}\pi := OA_{x_{t}}\dots A_{x_{1}}\pi$$

$$O$$

$$A_{x_{t}} \dots A_{x_{1}}\pi$$

Observable representation of HMM

• Key observation: need *not* recover A_{x_t} :

Only need to estimate *O*, *A*^{*x*} and π up to invertible transformation *S*

• $S = U^{\top}O$ where U are singular vectors of joint probability of sequence pairs [Hsu et al. 09]

Observable representation for HMM

Observable representation for HMMs

Key Objects in Graphical Models

- Marginal distributions $\mathbb{P}(Y)$
- Joint distributions $\mathbb{P}(Y, X)$
- Conditional distributions $\mathbb{P}(Y|X)$
- Sum rule $\mathbb{P}(Y) = \int_X \mathbb{P}(Y|X)\mathbb{P}(X)$
- Product rule $\mathbb{P}(X, Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$

Use kernel representation for distributions, do probabilistic inference in feature space

Embedding distributions

• Summary statistics for distributions $\mathbb{P}(Y)$:

• Pick a kernel $k(y, y') = \langle \phi(y), \phi(y') \rangle$, and generate a different summary statistic

Embedding distributions

- One-to-one mapping from $\mathbb{P}(Y)$ to μ_Y for certain kernels (RBF kernel)
- Sample average converges to true mean at $O_p(m^{-\frac{1}{2}})$

Embedding joint distributions

• Embedding joint distributions $\mathbb{P}(Y,X)$ using outer-product feature map $\phi(Y)\varphi(X)^{\top}$

$$\mu_{YX} = \mathbb{E}_{YX}[\phi(Y)\varphi(X)^{\top}]$$
$$\hat{\mu}_{YX} = \frac{1}{m}\sum_{i=1}^{m}\phi(y_i)\varphi(x_i)^{\top}$$

- μ_{YX} is also the covariance operator C_{YX}
- Recover discrete probability with delta kernel
- Empirical estimate converges at $O_p(m^{-\frac{1}{2}})$

Embedding Conditionals

- For each value X=x conditioned on, return the summary statistic for $\mathbb{P}(Y|X=x)$
- Some *X*=*x* are *never* observed

Embedding conditionals

Conditional Embedding Operator

• Estimation via covariance operators [Song et al. 09]

$$\mathcal{U}_{Y|X} := \mathcal{C}_{YX} \mathcal{C}_{XX}^{-1}$$
$$\hat{\mathcal{U}}_{Y|X} = \Phi(K + \lambda I)^{-1} \Upsilon$$
$$\Phi := (\phi(y_1), \dots, \phi(y_m)), \quad L = \Phi^\top \Phi$$
$$\Upsilon := (\varphi(x_1), \dots, \varphi(x_2)), \quad K = \Upsilon^\top \Upsilon$$

- Gaussian case: covariance matrix instead
- Discrete case: joint over marginal
- Empirical estimate converges at $O_p((\lambda m)^{-\frac{1}{2}} + \lambda^{\frac{1}{2}})$

Sum and Product Rules

	Probabilistic Relation	Hilbert Space Relation
Sum Rule	$\mathbb{P}(Y) = \int_X \mathbb{P}(Y X)\mathbb{P}(X)$	$\mu_Y = \mathcal{U}_{Y X} \mu_X$
Product Rule	$\mathbb{P}(X,Y) = \mathbb{P}(Y X)\mathbb{P}(X)$	$\mu_{XY} = \mathcal{U}_{Y X} \mathcal{C}_{XX}$

$$\begin{split} \mu_Y &= \mathbb{E}_Y[\phi(Y)] = \mathbb{E}_X \mathbb{E}_{Y|X}[\phi(Y)] = \mathbb{E}_X[\mathcal{U}_{Y|X}\varphi(X)] = \mathcal{U}_{Y|X}\mu_X \\ & \text{Total} & \text{Conditional} & \text{Linearity} \\ & \text{Expectation} & \text{Embedding} \end{split}$$

Hilbert Space HMMs

 $\left[\mathbb{P}(X_{t+1} = i | x_{t:1})\right]_{i=1}^{M} \propto OA_{x_{t:1}}\pi := OA_{x_t} \dots A_{x_1}\pi$

 $\mu_{X_{t+1}|x_{t:1}} \propto \mathbb{E}_{X_{t+1}|x_{t:1}}[\varphi(X_{t+1})]$

 $\propto \mathbb{E}_{H_{t+1}|x_{t:1}} \mathbb{E}_{X_{t+1}|H_{t+1}} [\varphi(X_{t+1})]$ (Total expectation)

$$\begin{array}{c} H_1 \longrightarrow H_2 \longrightarrow H_t \longrightarrow H_{t+1} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ X_1 & X_2 & \cdots & X_t & X_{t+1} \end{array}$$

- $\propto \mathbb{E}_{H_{t+1}|x_{t:1}} [\mathcal{U}_{X_{t+1}|H_{t+1}} \phi(H_{t+1})]$ (Conditional embedding operator)
- $\propto \mathcal{U}_{X_{t+1}|H_{t+1}} \mathbb{E}_{H_{t+1}|x_{t:1}} [\phi(H_{t+1})]$ (Linearity)

$$\propto \mathcal{U}_{X_{t+1}|H_{t+1}} \mathcal{A}_{x_t} \mathbb{E}_{H_t|x_{t-1:1}} [\phi(H_t)] (\mathcal{A}_{x_t} := \mathbb{P}(X_t = x_t | h_t) \mathbb{E}_{H_{t+1}|h_t} [\phi(H_{t+1})])$$

$$\propto \mathcal{U}_{X_{t+1}|H_{t+1}}\mathcal{A}_{x_t}\dots\mathcal{A}_{x_1}\mu_1$$

(recursion and $\mu_1 := \mathbb{E}_{X_1}[\varphi(X_1)]$)

Hilbert space HMMs

Experiment

- Video sequence prediction
- Slot car sensor measurement prediction
- Speech classification
- Compare with
 - Discrete HMMs learned by EM [Dempster et al. 77],
 - Reduced rank HMM [Sajid et al. 10]
 - Spectral HMM [Hsu et al. 09]
 - Linear dynamical system approach (LDS) [Sajid et al. 08]

Predicting Video Sequences

- Sequence of grey scale images as inputs
- Latent space dimension 50

Predicting Sensor Time-series

- Inertial unit: 3D acceleration and orientation
- Latent space dimension 20

Audio Event Classification

- Mel-Frequency Cepstral Coefficients features
- Varying latent space dimension

Summary

- Represent distributions in feature spaces, reason using Hilbert space sum and product rules
- Extends HMMs nonparametrically to domains with kernels
- Kernelize belief propagation, CRF and general graphical models with hidden variables?

Genealogy

Thanks!

Big Picture Question

Graphical Models	Kernel Methods
 Dependent variables Hidden variables 	 Wigh dimensional Nonlinear Multimodal
 High dimensional Nonlinear Multimodal 	 Dependent variables Hidden variables

Combine the best of graphical models and kernel methods.