



# Application of Machine Learning to Epileptic Seizure Detection

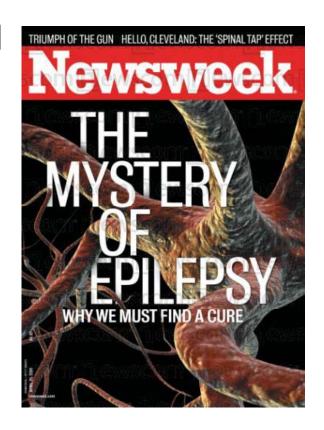
The runner-up of Best Application Paper Award, ICML 2010.

Author: Ali Shoeb, John Guttag

Prepared by Ning Wang

## Epilepsy (癫痫症)

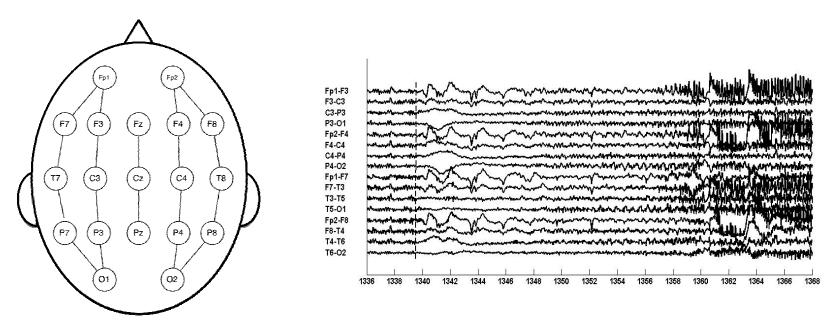
- Neurological disorder characterized by recurring seizures (发作)
- Affects 1% of world's population
  - 1 out of 3 cases not well controlled by medication
- Aftermath of seizures causes most harm



- "There are currently only a few ways to treat epilepsy, and applying them is still an art as much as it is a science."
  - "In the Grip of the Unknown," Newsweek, 20 April 2009

## What Happens Today?

- Diagnosis using electroencephalogram (EEG)
  - Record electrical activity of brain using multiple electrodes
- Train a classifier to detect seizure onset using EEG data
  - Seizure onset detection restricted to clinical environment

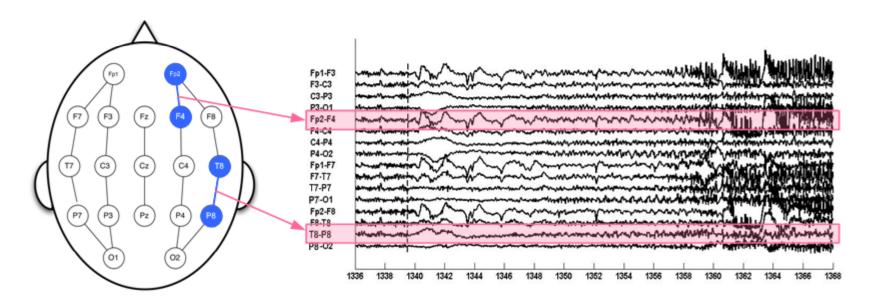


## Scalp EEG

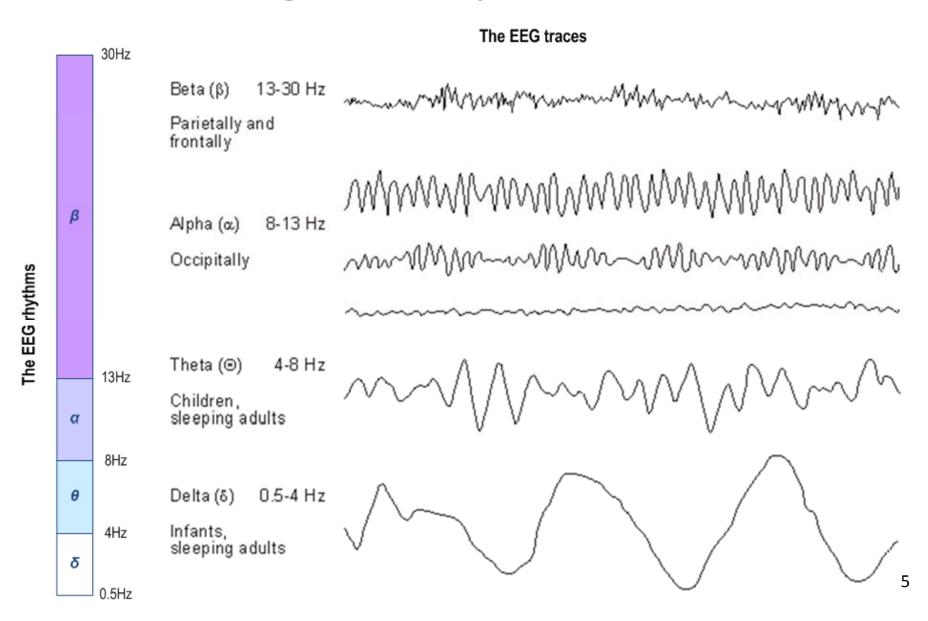
#### Data recording

- Noninvasive electrodes uniformly arrayed on the scalp.
- Channel signal = difference between potentials measured at two electrodes.

#### Scalp EEG

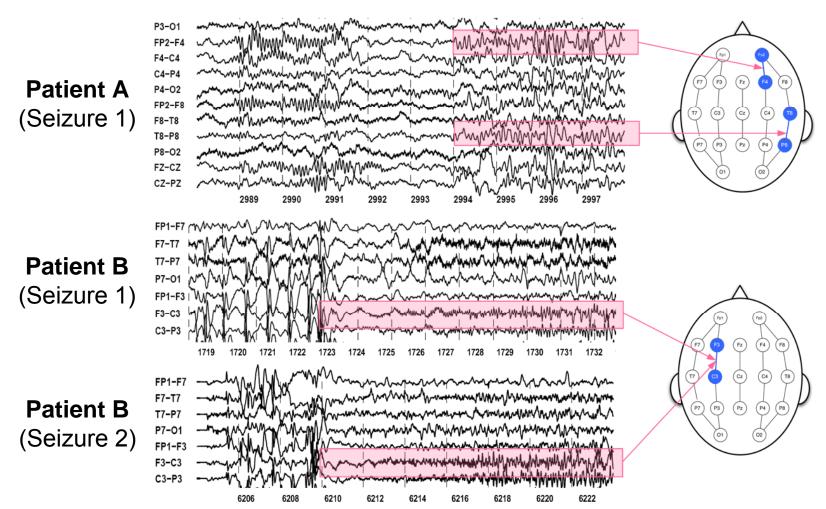


## EEG Signal's Rhythmic Pattern



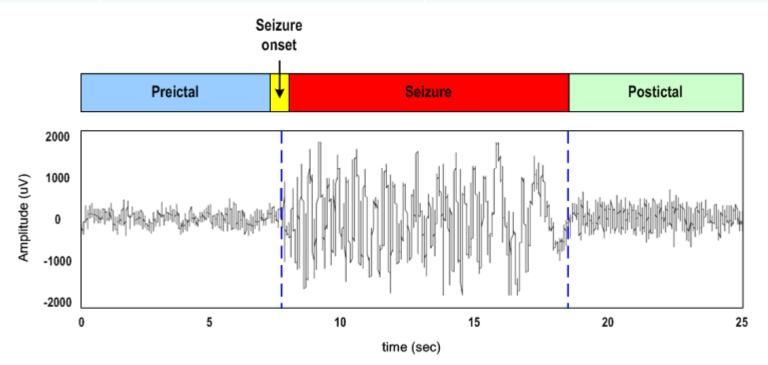
## Personal Dependency

- 3 seizures from 2 patients (A and B).
- Inter-patient variability & intra-patient consistency.



## Seizure Detection Tasks & Applications

| Task                    | Requirements                                                                                           | Application scenarios                                                                                                                      |
|-------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Seizure event detection | <ul> <li>greatest possible <i>accuracy</i>,</li> <li>not necessarily shortest <i>delay</i>.</li> </ul> | Apps. requiring an accurate account of seizure activity over a period of time.                                                             |
| Seizure onset detection | <ul> <li>shortest possible <i>delay</i>,</li> <li>not necessarily highest <i>accuracy</i>.</li> </ul>  | Apps. requiring a rapid response to a seizure. e.g., initiating functional neuro-imaging studies to localize cerebral origin of a seizure. |



## Seizure Detection through EEG Analysis

- Rhythmic activity following a seizure onset typically
  - Involves a set of EEG channels.
  - Contains multiple frequency components.
  - Differs in structure among patients.

#### **Patient-specific**

- EEG characteristics vary significantly across patients.
- Rhythmic patterns exhibit considerable intra-patient consistency for a same brain region.

#### **Machine learning-based**

- Identifying discriminative features.
- Supervised learning.
- Segmentation of seizure/non-seizure states → binary classification.

## Challenges

 Considerable overlap in EEG associated with seizure and nonseizure states among patients.

Specificity and sensitivity tradeoff.

 EEG constantly transitions between regimes both within seizure and non-seizure states.

Non-stationarity.

Medical applications require quick seizure onset detection.

Latency and specificity tradeoff.

Seizures are rare event.

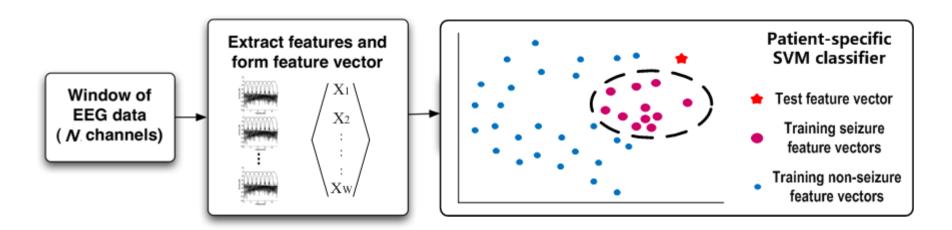
Paucity of seizure training data.

## Scalp EEG Database

- CHB-MIT data set
  - 916 hours of continuous scalp EEG.
  - 23 pediatric patients at Children's Hospital Boston and one adult patient at Beth Israel Deaconess Medical Center.
  - 173 events judged to be clinical seizures by experts.
  - 18 EEG channels.



#### Patient-specific Detector Architecture

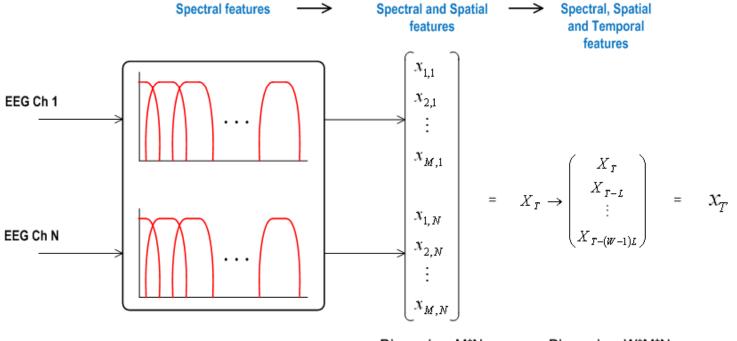


[1] Ali Shoeb, Ph.D Thesis, MIT, 2009.

- Algorithm examines 2 second windows that overlap by 1 second.
- Patient-specific, support vector machine classifier is learned offline using training data

#### Feature Vector Design

- Features characterizing an EEG signal
  - **Spectral** structure
  - Spatial occupation of concerned rhythmic activity
  - Short-term *temporal* evolution

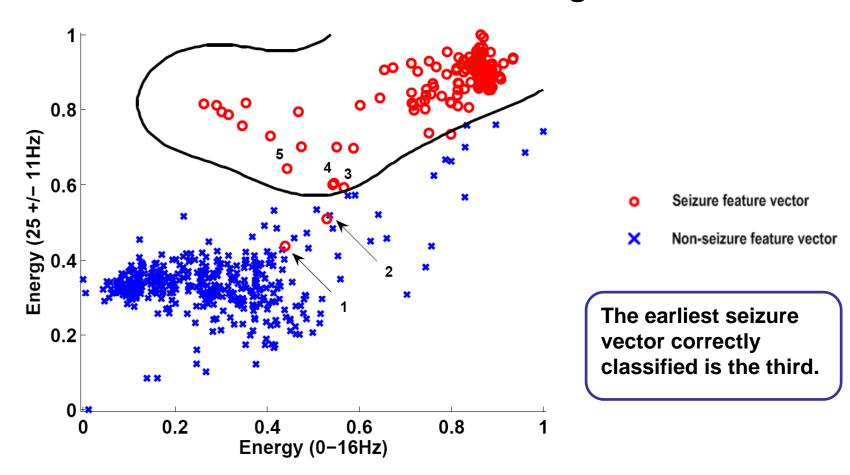


Dimension: M\*N

Dimension: W\*M\*N

## Feature Vector Binary Classification

- Support vector machine
- Non-linear decision boundaries using RBF kernel.



## **Instantiating Detector Parameters**

| Stage              | Parameter  | Description                                       |
|--------------------|------------|---------------------------------------------------|
|                    | L = 2 sec  | EEG epoch length                                  |
|                    | N = 18     | Number of EEG channels                            |
| Feature extraction | M = 8      | Number of filters in filterbank                   |
|                    | W = 3      | Number of feature vectors that form $X_T$         |
|                    | H >= 24 h  | # of non-seizure training data                    |
| Training           | K = 3      | # of seizures used for training                   |
|                    | S = 20 sec | # of seizure training data                        |
|                    | γ= 0.1     | SVM radial basis kernel parameter                 |
| SVM classification | J = 1      | Relative cost of misclassifications               |
|                    | C = 1      | Trade-off between classification margin and error |

## **Evaluation Methodology**

- Pre-recorded data for training
  - One hour long records: seizure records, non-seizure records.
  - Number of seizures per patient: 2 to 38 (mean: 8.9)
- For each patient:
  - Create training and test data sets using both seizure and nonseizure data files
  - leave-one-record-out cross-validation scheme.

#### **Evaluation Metrics**

- Electrographic seizure onset detection latency *EO*Latency.
  - Delay between electrographic onset and detector recognition of seizure activity.
- Sensitivity *S*.
  - Percentage of test seizures identified by a detector.
- False alarms per hour FA.
  - Number of times over the course of an hour, a detector declares the onset of seizure activity in absence of an actual seizure.

#### **Evaluation Metric Measurement**

| <b>N</b> ns                   | <b>N</b> s                |
|-------------------------------|---------------------------|
| Number of non-seizure records | Number of seizure records |

#### Sensitivity & Latency

- Training: NNS non-seizure records (median NNS = 33), NS-1 seizure records (median NS = 5).
- Test: withheld seizure record.
- Repeat Ns times so that each seizure record is tested.
- Measurement:
  - 1. Sensitivity

$$S = \frac{1}{N_S} \sum_{m=1}^{N_S} S_m \quad \left( S_m \in \{0, 1\} : \text{ whether detector note the } m^{th} \text{ seizure} \right)$$

2. latency

$$EO_{latency} = \frac{1}{K} \sum_{m=1}^{N_S} S_m \times EO_{latency, m} \quad (K : total number of detected seizures)$$

#### Specificity

- Training: Ns seizure records, Nns-1
   non-seizure records
- Test: withheld non-seizure record.
- Repeat N<sub>NS</sub> times so that each non-seizure record is tested.
- Measurement:
  - 1. False alarm FA

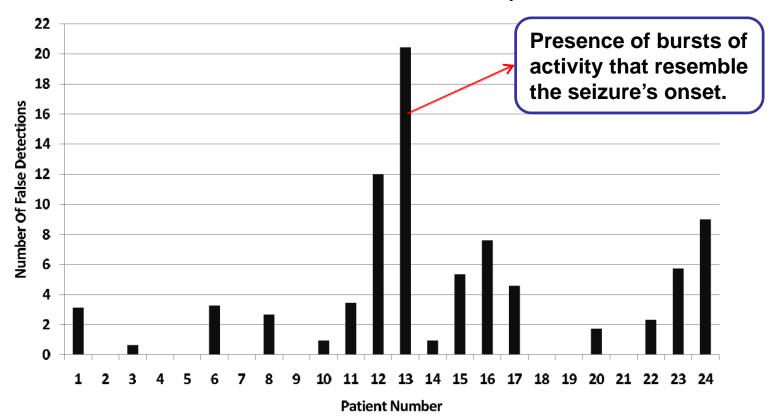
$$FA = \frac{1}{N_{NS} + N_{S}} \left[ \sum_{n=1}^{N_{NS}} FA_{NS,n} + \sum_{m=1}^{N_{S}} FA_{S,m} \right]$$

## Performance: Sensitivity and Latency

- 96% of 173 test seizures detected.
- Mean latency for declaring seizure onset: 4.6 seconds.
- In specific, among the 173 seizures,
  - 50% detected within 3 seconds.
  - 71% detected within 5 seconds.
  - 91% detected within 10 seconds.

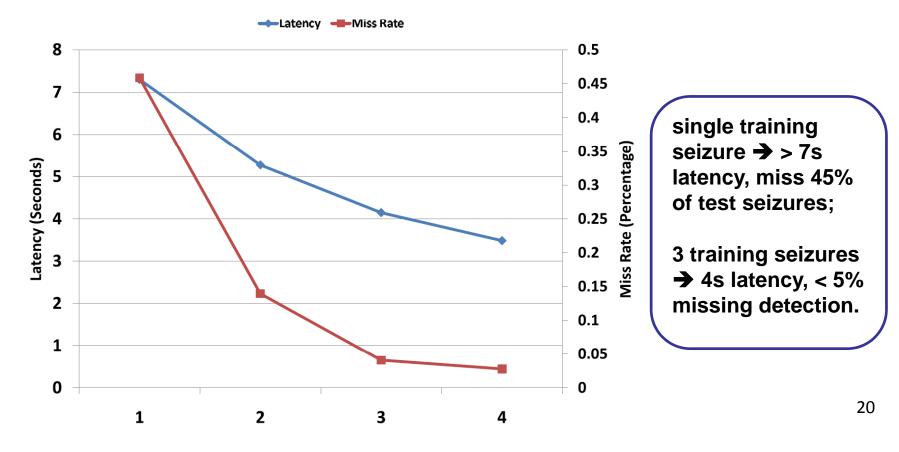
## Performance: Specificity

- Patient-specific detector.
- False alarms (FA) declared per 24 hours.
- Median FA rate is 2 FAs/24 hour period.



## Rate of Learning

- Average detection latency and miss rate decrease with an increasing number of training seizures.
- Statistics from 5 randomly selected patients.



## Comparison with Patient Non-specific Classifier

- Reveal algorithm (Wilson et al., 2004)
  - Offline, commercially available.
  - Uses neural network.
  - Trained on hundreds of seizure and non-seizure epochs.
  - From a large number of pediatric and adult patients.
- Evaluation on Reveal algorithm
  - 61% of seizures detected.
  - 33 false detections per 24 hour period reported.

#### **EEG-ECG** based Seizure Detection

- Include electrocardiogram (ECG) information
  - feature augmentation by 2 dimension:

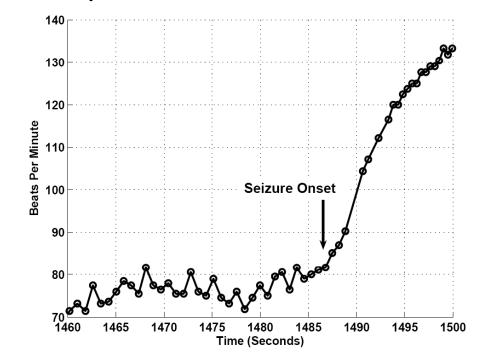
mean heart rate,

heart rate change information.

10 seizures and 66 hours of synchronized EEG-ECG from

Patient 24.

A seizure with an onset lacking rhythmic activity, but accompanies a heart-rate acceleration.

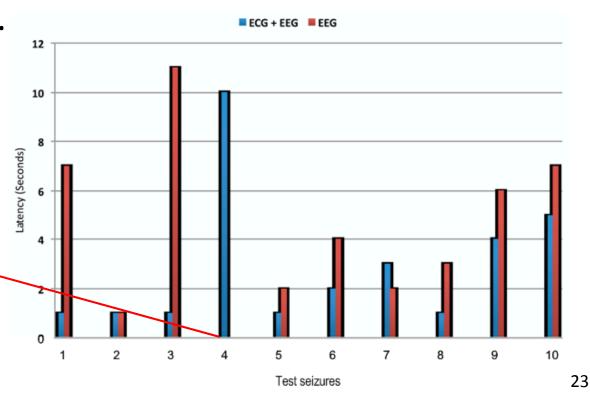


#### Latency Improvement

- Performance reinforcement
- Mean latency:  $4.2 \rightarrow 2.7$  seconds
- False alarms: 9 → 5 per 24 hour period.

• Sensitivity: 100%.

The 4<sup>th</sup> seizure *cannot* be detected by the EEG-only detector.



#### **Conclusions**

- Patient-specific epileptic seizure onset detection
  - Through analysis of scalp EEG, a non-invasive measure of brain's electrical activity.
  - Formulating problem into appropriate machine learning framework.
  - Identifying features critical to discriminating seizures.
- Advantages
  - High performance.
  - Suitable for clinical use.

## Thank you very much!

