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Epilepsy (st

e Neurological disorder characterized R
by recurring seizures (/< | &)
e Affects 1% of world’s population

— 1 out of 3 cases not well controlled by
medication

e Aftermath of seizures causes most ENESHSB]| ™ EAS
harm WHYWEMUSTFI%ACURE

{
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“There are currently only a few ways to treat epilepsy, and
applying them is still an art as much as it is a science.”

~ "In the Grip of the Unknown,” Newsweek, 20 April 2009



What Happens Today?

e Diagnosis using electroencephalogram (EEG)

— Record electrical activity of brain using multiple electrodes

e Train a classifier to detect seizure onset using EEG data

— Seizure onset detection restricted to clinical environment
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Scalp EEG

e Data recording
— Noninvasive electrodes uniformly arrayed on the scalp.

— Channel signal = difference between potentials measured at
two electrodes.

e Scalp EEG
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EEG Signal’s Rhythmic Pattern

The EEG traces
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Personal Dependency

e 3 seizures from 2 patients (A and B).
e |nter-patient variability & intra-patient consistency.
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Seizure Detection Tasks & Applications

Seizure event e greatest possible accuracy, Apps. requiring an accurate account of seizure
detection e not necessarily shortest delay. activity over a period of time.
Seizure onset e shortest possible delay, Apps. requiring a rapid response to a seizure.
. . . e.g., initiating functional neuro-imaging studies to
detection e not necessarily highest accuracy.

localize cerebral origin of a seizure.

Seizure
onset
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Seizure Detection through EEG Analysis

e Rhythmic activity following a seizure onset typically

— Involves a set of EEG channels.

— Contains multiple frequency components.

— Differs in structure among patients.

/Patient—specific \

e EEG characteristics vary significantly
across patients.

e Rhythmic patterns exhibit considerable
intra-patient consistency for a same brain

region.
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e Identifying discriminative features.

achine learning-based \

e Supervised learning.

e Segmentation of seizure/non-seizure
states - binary classification.
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Challenges

Considerable overlap in EEG associated with seizure and non-
seizure states among patients.

Specificity and sensitivity tradeoff.

EEG constantly transitions between regimes both within seizure
and non-seizure states.

Non-stationarity.

Medical applications require quick seizure onset detection.
Latency and specificity tradeoff.

Seizures are rare event.

Paucity of seizure training data.



Scalp EEG Database

e CHB-MIT data set

— 916 hours of continuous scalp EEG.

— 23 pediatric patients at Children’s Hospital Boston and one
adult patient at Beth Israel Deaconess Medical Center.

— 173 events judged to be clinical seizures

by experts.
— 18 EEG channels. .
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Patient-specific Detector Architecture

Extract features and
form feature vector

Window of s X
EEG data P X1
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[1] Ali Shoeb, Ph.D Thesis, MIT, 2009.

Patient-specific
SVM classifier

% Test feature vector

Training seizure
feature vectors

Training non-seizure
feature vectors

e Algorithm examines 2 second windows that overlap by

1 second.

e Patient-specific, support vector machine classifier is

learned offline using training data




Feature Vector Design

e Features characterizing an EEG signal
— Spectral structure
— Spatial occupation of concerned rhythmic activity
— Short-term temporal evolution

Spectral featuress ——> Spectral and Spatial ——>  Spectral, Spatial
features and Temporal
features
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Feature Vector Binary Classification

e Support vector machine
e Non-linear decision boundaries using RBF kernel.
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Instantiating Detector Parameters

Feature extraction

Training

SVM classification

L=2sec
N=18
M=8
W=3
H>=24h
K=3
S =20 sec
y=0.1
J=1
c=1

EEG epoch length

Number of EEG channels

Number of filters in filterbank

Number of feature vectors that form Xr

# of non-seizure training data

# of seizures used for training

# of seizure training data

SVM radial basis kernel parameter
Relative cost of misclassifications

Trade-off between classification margin and error
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Evaluation Methodology

e Pre-recorded data for training
— One hour long records: seizure records, non-seizure records.
— Number of seizures per patient: 2 to 38 (mean: 8.9)

e For each patient:

— Create training and test data sets using both seizure and non-
seizure data files

— leave-one-record-out cross-validation scheme.
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Evaluation Metrics

e Electrographic seizure onset detection latency EOLatency.

— Delay between electrographic onset and detector recognition
of seizure activity.

e Sensitivity S.
— Percentage of test seizures identified by a detector.

e False alarms per hour FA.

— Number of times over the course of an hour, a detector
declares the onset of seizure activity in absence of an actual
seizure.
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Evaluation Metric Measurement

Number of non-seizure records

e Sensitivity & Latency

— Training: Nns non-seizure records
(median Nns = 33), Ns-1 seizure
records (median Ns =5).

— Test: withheld seizure record.

— Repeat Ns times so that each seizure
record is tested.

— Measurement:
1. Sensitivity

NS
S= NLZSm (S,, € {0,1}: whether detector note the m" seizure)

S m=1

2. latency

Ns
EO uenyy = %z S X EOenyy.m (K : total number of detected seizures)
m=1

Number of seizure records

o Specificity

Training: Ns seizure records, Nns-1

non-seizure records

Test: withheld non-seizure record.

Repeat Nns times so that each
non-seizure record is tested.
Measurement:

1. False alarm FA

n=1 m=1

1 Nis Ng
FA = NN, {Z FAs +ZFAW}
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Performance: Sensitivity and Latency

e 96% of 173 test seizures detected.
e Mean latency for declaring seizure onset: 4.6 seconds.

e |n specific, among the 173 seizures,
— 50% detected within 3 seconds.
— 71% detected within 5 seconds.
— 91% detected within 10 seconds.
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Performance: Specificity

e Patient-specific detector.

e False alarms (FA) declared per 24 hours.
e Median FA rate is 2 FAs/24 hour period.
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Rate of Learning

Average detection latency and miss rate decrease with
an increasing number of training seizures.

Statistics from 5 randomly selected patients.
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Comparison with Patient Non-specific

Classifier
e Reveal algorithm (Wilson et al., 2004)
— Offline, commercially available.
— Uses neural network.
— Trained on hundreds of seizure and non-seizure epochs.
— From a large number of pediatric and adult patients.

e Evaluation on Reveal algorithm
— 61% of seizures detected.
— 33 false detections per 24 hour period reported.
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EEG-ECG based Seizure Detection

e |Include electrocardiogram (ECG) information
— feature augmentation by 2 dimension:

mean heart rate,

heart rate change information.
— 10 seizures and 66 hours of synchronized EEG-ECG from

Patient 24. 140r
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Latency Improvement

e Performance reinforcement

e Mean latency: 4.2 = 2.7 seconds

e False alarms: 9 = 5 per 24 hour period.
e Sensitivity: 100%.
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Conclusions

e Patient-specific epileptic seizure onset detection

— Through analysis of scalp EEG, a non-invasive measure of
brain’s electrical activity.

— Formulating problem into appropriate machine learning
framework.

— ldentifying features critical to discriminating seizures.

e Advantages
— High performance.
— Suitable for clinical use.
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Thank,you,very,much!

Q&A

25



