

Application of Machine Learning to Epileptic Seizure Detection

The runner-up of Best Application Paper Award, ICML 2010.

Author: Ali Shoeb, John Guttag

Prepared by Ning Wang

Epilepsy (癫痫症)

- Neurological disorder characterized by recurring seizures (发作)
- Affects 1% of world's population
 - 1 out of 3 cases not well controlled by medication
- Aftermath of seizures causes most harm

- "There are currently only a few ways to treat epilepsy, and applying them is still an art as much as it is a science."
 - "In the Grip of the Unknown," Newsweek, 20 April 2009

What Happens Today?

- Diagnosis using electroencephalogram (EEG)
 - Record electrical activity of brain using multiple electrodes
- Train a classifier to detect seizure onset using EEG data
 - Seizure onset detection restricted to clinical environment

Scalp EEG

Data recording

- Noninvasive electrodes uniformly arrayed on the scalp.
- Channel signal = difference between potentials measured at two electrodes.

Scalp EEG

EEG Signal's Rhythmic Pattern

Personal Dependency

- 3 seizures from 2 patients (A and B).
- Inter-patient variability & intra-patient consistency.

Seizure Detection Tasks & Applications

Task	Requirements	Application scenarios
Seizure event detection	 greatest possible <i>accuracy</i>, not necessarily shortest <i>delay</i>. 	Apps. requiring an accurate account of seizure activity over a period of time.
Seizure onset detection	 shortest possible <i>delay</i>, not necessarily highest <i>accuracy</i>. 	Apps. requiring a rapid response to a seizure. e.g., initiating functional neuro-imaging studies to localize cerebral origin of a seizure.

Seizure Detection through EEG Analysis

- Rhythmic activity following a seizure onset typically
 - Involves a set of EEG channels.
 - Contains multiple frequency components.
 - Differs in structure among patients.

Patient-specific

- EEG characteristics vary significantly across patients.
- Rhythmic patterns exhibit considerable intra-patient consistency for a same brain region.

Machine learning-based

- Identifying discriminative features.
- Supervised learning.
- Segmentation of seizure/non-seizure states → binary classification.

Challenges

 Considerable overlap in EEG associated with seizure and nonseizure states among patients.

Specificity and sensitivity tradeoff.

 EEG constantly transitions between regimes both within seizure and non-seizure states.

Non-stationarity.

Medical applications require quick seizure onset detection.

Latency and specificity tradeoff.

Seizures are rare event.

Paucity of seizure training data.

Scalp EEG Database

- CHB-MIT data set
 - 916 hours of continuous scalp EEG.
 - 23 pediatric patients at Children's Hospital Boston and one adult patient at Beth Israel Deaconess Medical Center.
 - 173 events judged to be clinical seizures by experts.
 - 18 EEG channels.

Patient-specific Detector Architecture

[1] Ali Shoeb, Ph.D Thesis, MIT, 2009.

- Algorithm examines 2 second windows that overlap by 1 second.
- Patient-specific, support vector machine classifier is learned offline using training data

Feature Vector Design

- Features characterizing an EEG signal
 - **Spectral** structure
 - Spatial occupation of concerned rhythmic activity
 - Short-term *temporal* evolution

Dimension: M*N

Dimension: W*M*N

Feature Vector Binary Classification

- Support vector machine
- Non-linear decision boundaries using RBF kernel.

Instantiating Detector Parameters

Stage	Parameter	Description
	L = 2 sec	EEG epoch length
	N = 18	Number of EEG channels
Feature extraction	M = 8	Number of filters in filterbank
	W = 3	Number of feature vectors that form X_T
	H >= 24 h	# of non-seizure training data
Training	K = 3	# of seizures used for training
	S = 20 sec	# of seizure training data
	γ= 0.1	SVM radial basis kernel parameter
SVM classification	J = 1	Relative cost of misclassifications
	C = 1	Trade-off between classification margin and error

Evaluation Methodology

- Pre-recorded data for training
 - One hour long records: seizure records, non-seizure records.
 - Number of seizures per patient: 2 to 38 (mean: 8.9)
- For each patient:
 - Create training and test data sets using both seizure and nonseizure data files
 - leave-one-record-out cross-validation scheme.

Evaluation Metrics

- Electrographic seizure onset detection latency *EO*Latency.
 - Delay between electrographic onset and detector recognition of seizure activity.
- Sensitivity *S*.
 - Percentage of test seizures identified by a detector.
- False alarms per hour FA.
 - Number of times over the course of an hour, a detector declares the onset of seizure activity in absence of an actual seizure.

Evaluation Metric Measurement

N ns	N s
Number of non-seizure records	Number of seizure records

Sensitivity & Latency

- Training: NNS non-seizure records (median NNS = 33), NS-1 seizure records (median NS = 5).
- Test: withheld seizure record.
- Repeat Ns times so that each seizure record is tested.
- Measurement:
 - 1. Sensitivity

$$S = \frac{1}{N_S} \sum_{m=1}^{N_S} S_m \quad \left(S_m \in \{0, 1\} : \text{ whether detector note the } m^{th} \text{ seizure} \right)$$

2. latency

$$EO_{latency} = \frac{1}{K} \sum_{m=1}^{N_S} S_m \times EO_{latency, m} \quad (K : total number of detected seizures)$$

Specificity

- Training: Ns seizure records, Nns-1
 non-seizure records
- Test: withheld non-seizure record.
- Repeat N_{NS} times so that each non-seizure record is tested.
- Measurement:
 - 1. False alarm FA

$$FA = \frac{1}{N_{NS} + N_{S}} \left[\sum_{n=1}^{N_{NS}} FA_{NS,n} + \sum_{m=1}^{N_{S}} FA_{S,m} \right]$$

Performance: Sensitivity and Latency

- 96% of 173 test seizures detected.
- Mean latency for declaring seizure onset: 4.6 seconds.
- In specific, among the 173 seizures,
 - 50% detected within 3 seconds.
 - 71% detected within 5 seconds.
 - 91% detected within 10 seconds.

Performance: Specificity

- Patient-specific detector.
- False alarms (FA) declared per 24 hours.
- Median FA rate is 2 FAs/24 hour period.

Rate of Learning

- Average detection latency and miss rate decrease with an increasing number of training seizures.
- Statistics from 5 randomly selected patients.

Comparison with Patient Non-specific Classifier

- Reveal algorithm (Wilson et al., 2004)
 - Offline, commercially available.
 - Uses neural network.
 - Trained on hundreds of seizure and non-seizure epochs.
 - From a large number of pediatric and adult patients.
- Evaluation on Reveal algorithm
 - 61% of seizures detected.
 - 33 false detections per 24 hour period reported.

EEG-ECG based Seizure Detection

- Include electrocardiogram (ECG) information
 - feature augmentation by 2 dimension:

mean heart rate,

heart rate change information.

10 seizures and 66 hours of synchronized EEG-ECG from

Patient 24.

A seizure with an onset lacking rhythmic activity, but accompanies a heart-rate acceleration.

Latency Improvement

- Performance reinforcement
- Mean latency: $4.2 \rightarrow 2.7$ seconds
- False alarms: 9 → 5 per 24 hour period.

• Sensitivity: 100%.

The 4th seizure *cannot* be detected by the EEG-only detector.

Conclusions

- Patient-specific epileptic seizure onset detection
 - Through analysis of scalp EEG, a non-invasive measure of brain's electrical activity.
 - Formulating problem into appropriate machine learning framework.
 - Identifying features critical to discriminating seizures.
- Advantages
 - High performance.
 - Suitable for clinical use.

Thank you very much!

