
Temple University

1

Secure Locking for Untrusted Clouds

Chiu C. Tan, Qin Liu, and Jie Wu

Department of Computer and
Information Science
Temple University

Temple University

2

Introduction
7/5/11 7:23 PMCloud Computing in Government Explodes

Page 1 of 3http://www.governing.com/blogs/bfc/cloud-computing-government-explodes.html

Subscribe
Newsletters

Advertise

CURRENT: LEADERSHIP FORUMS MANAGEMENT FINANCE FEDWATCH HEALTH PUBLIC GREAT PUBLIC OFFICIALS OF THE YEAR

EMAIL ADDRESS

VIEW SAMPLE

Get GOVERNING‘s Daily Newsletter

SEARCH

| More

6 6 votes

23
tweets

retweetretweet

COMMENTS

Commented February 2, 2011

There are plenty of US data
centers owned by US cloud
computing companies. Don't
everyone panic. Jus...

Jump to Comments

Cloud Computing in Government Explodes
POSTED BY WILLIAM D. EGGERS | JANUARY 31, 2011

Governments struggle with technology. Be it the procurement of hardware, vendor
selection or storage capacity, all of these things can present grim bureaucratic
hurdles for public administrators.

This is changing. Today, anyone with an Amazon account can instantly access
nearly unlimited computing power on Amazon's Web Services platform in a matter
of minutes. No contract is needed. With a few clicks -- the procurement process is
as simple as buying a book -- anyone can rent virtually unlimited computing capacity
and storage. Popular services such as Gmail and Flickr operate on the same
principle: Information is stored on the Web, where it is accessible from any machine,
anytime. Similar cloud services are available from IBM, Google and others.

This is cloud computing, a technology with the potential to dramatically overhaul IT
in the public sector.

It's hard to recall a recent technological development that has generated more hype than cloud computing. Why all the
excitement? Simple. Cloud computing offers governments a clear and compelling value proposition: All the technological
firepower you need without any of the headaches of ownership and maintenance.

Government's use of cloud computing is exploding, and the federal government is taking the lead. Federal CIO Vivek Kundra
recently announced a "cloud first": "When evaluating options for new IT deployments, OMB [Office of Management and
Budget] will require that agencies default to cloud-based solutions whenever a secure, reliable, cost-effective cloud option
exists. To facilitate this shift, we will be standing up secure government-wide cloud computing platforms."

Cost efficiencies are the goal, and the feds expect to close 800 of their roughly 2,100 data centers by 2015. In December,
the General Services Administration announced it would become the first federal agency to adopt a cloud solution for e-mail.

The qualities that define cloud computing -- on-demand service, elastic capacity and variable consumption -- represent a
powerful new way to deliver IT services. You no longer have to predict demand; the cloud is infinitely scalable. The
convergence of standardized Internet technologies, virtualization and automation of large-scale data centers has created a
set of software services that were unthinkable even a few years ago.

Cloud computing represents a fundamentally different way for government to architect computing resources. It allows CIOs to
leverage powerful IT infrastructures in a fraction of the time it takes to provision, develop and deploy similar assets in-house.

The cost saving potential is huge. Adopting cloud technologies eliminates capital and operational expenses associated with
servers, software licenses, maintenance fees, data center space and the employment of IT personnel. Thanks to the cloud,
government won't be stuck with obsolete legacy systems and outdated hardware that require expensive maintenance.

Unlike many technological advancements, cloud computing can provide a quick, dramatic return with limited investment. The
biggest hurdle to widespread cloud use by government is data security. Whether held in-house or located in the cloud,
governments possess reams of personal data that must remain confidential.

Looking ahead, cloud computing will bring significant disruptions. Both the private sector and government operations will
undergo turmoil during this transition. For government agencies, a thoughtful, staged approach would consist of the following
four steps.

Develop a cloud strategy tailored to your state. Cloud computing is not a one-size-fits-all solution. You need to tailor it to
your specific environment in order to garner the greatest benefit to your government organization. The state of Utah is
looking to save $4 million a year in hosting services by consolidating data centers, virtualizing servers and moving to a
private cloud platform. It is expected that Utah's hybrid private cloud will eventually deliver hosted e-mail and Web
applications to cities and counties throughout the state.

 Better Faster Cheaper

Welcome to your best source for innovative ideas
for government that deliver public value and lower
the cost of government services. We’re proud to
offer insights from some of the most influential
public-sector thought leaders writing today.

Please add your thoughts to our blog and share
your experience with others. Thanks for joining us.

– Steve Goldsmith

RSS ABOUT THIS BLOG CONTACT

LATEST FROM BETTER, FASTER, CHEAPER

Five Steps to Education Reform
Better Contracting, Greater Diversity
The Unfashionability of Public
Administration
Municipal Benchmarking: The Holy Grail
Red Balloons and XBC

HOME NEWS & TOPICS COLUMNS & BLOGS MAGAZINE EVENTS & WEBINARS BOOKS PAPERS PHOTOS

7/5/11 7:25 PMCloud Computing : Dell cloud computing solutions | Dell

Page 1 of 4http://content.dell.com/us/en/enterprise/cloud-computing.aspx

Cloud
Computing

The Value of
Cloud Computing
What is Cloud
Computing?
Benefits of Cloud
Computing
Case Studies

Your Cloud
Computing
Strategy
The Dell Difference
Assess Your Needs
Design Your
Solution
Partners

Implementing
Cloud Computing
Deploying a Private
Cloud
Using a Public
Cloud
Performance and
Functionality
Reference
Architectures

Cloud Computing
Components
Cloud Consulting
Services
Software as a
Service
Platform as a
Service
Infrastructure as a
Service
Servers Optimized
for the Cloud
Cloud Software

Cloud Computing

Temple University

3

IEEE Computer 2011 Vol 44 Issue3

Why Use The Cloud?

Temple University

4

Main Concerns

IEEE Computer 2011 Vol 44 Issue3

Temple University

5

Cloud Computing Security

In-house system
• Control over security policy, e.g. key management
• Conduct system, personal audits, e.g. background
checks
• System administration policies, e.g patches

Temple University

6

Cloud Computing Security

In-house system
• Control over security policy, e.g. key management
• Conduct system, personal audits, e.g. background
checks
• System administration policies, e.g patches

Cloud system
• SLA agreements
• Likely to be generic, not tailored to
specific needs
• No easy mechanism for verification

Temple University

7

Many Efforts To Improve Security

• Privacy preserving operations
• Search
• Computation

• Virtual machine security
• Trusted computing

• Verify system operations
• Backups
• Delete
• Concurrency control

Temple University

8

Motivation
• Most current cloud systems do not provide
concurrency control
• Main reason is performance
• Useful for certain applications, e.g. financial
applications, certain database applications

Write(x:5)

(x:10)

(x:10)

(x:10)

Read(x:10)

Alice

Bob

Read-write conflict

Temple University

9

Motivation
• Locks can be used to regulate read and write
operations
• A read lock is a shared mode lock
• A write lock is an exclusive mode lock
• Users must obtain a lock before executing an
operation

Write(x:5)

(x:10)

(x:10)

Write(x:15)

Alice

Bob

Write-write conflict

(x:10)

Temple University

10

Motivation
• The goal is not to examine how to implement
locking algorithms efficiently.
• Assuming a cloud provider claims to provide this
service, how do we verify?
• Once outsourced to 3rd party cloud, we do not
have the same control as in-house system.

Temple University

11

Motivation
• Assume that there is an SLA that requires a
certain response time

Read request

Bob

Time

Stipulated
response timeRead response

Cloud

Temple University

12

Motivation
• Assume that there is an SLA that requires a
certain response time

Read request

Bob

Time

Stipulated
response timeCannot obtain lock

Read response
Additional
time

Cloud

Temple University

13

Motivation
• Assume that there is some cost associated with
acquiring and releasing the lock
• Cloud wants to charge for the service, but try to
avoid incurring the cost

R W R W R W

Cloud

Sequence of operations
within a short window.
Needs to obtain lock 6 times

Temple University

14

Motivation
• Assume that there is some cost associated with
acquiring and releasing the lock
• Cloud wants to charge for the service, but try to
avoid incurring the cost

R W R W R W

Cloud

Sequence of operations
within a short window.
Needs to obtain lock 6 times

R R R W W W After reordering, needs to
obtain lock 4 times

Temple University

15

Our Solution

Cloud

Users

Owner

the cloud data. This is a common type of attack considered
in cloud computing security [7], and is commonly addressed
by storing encrypted data in the cloud. Our solution also
adopts this same principal. A misbehaving cloud is capable
of launching locking attacks to manipulate the locking algo-
rithm to achieve economic gains. In this paper, we identify
a lock by its lock number. So, a lock with lock number i
should be issued after lock number i-1, and so on. The types
of locking attacks are as follows:

1) Issue incorrect lock number.
2) Issue the same lock to two or more users.
3) Fraudulently claim that the lock busy.
4) Deny issuing a lock.
5) Re-order user requests before issuing a lock.

The cloud’s motivation behind the locking attacks is
economic rather than malice. Providing efficient service with
concurrency protections involves more powerful hardware,
higher energy costs, and more network resources, all of
which incurs a higher operation cost for the cloud provider.
For example, an incorrect lock number may be issued be-
cause the cloud provider did not devote sufficient resources
to ensure changes are propagated to all the replicas, or that
the cloud may pretend that a lock is unavailable to mask
latency delays. The cloud may also schedule the order of
operations to minimize locking operations. This could have
a negative impact on users by delaying important updates.

Finally, our adversary model assumes that there is no
collusion between the different parties. Therefore, the cloud
and users will not collude to cheat the owner, nor will the
owner and users collude to frame the cloud provider. We also
assume that all users are honest and will not launch attacks,
such as not releasing the lock or to fraudulently claim to
possess a lock.

III. CLOUDLOCK PROTOCOL

CloudLock allows multiple users to read the data concur-
rently since the data remains consistent. Only when a user
wants to write to the data do we need to exclude other users.
We adopt the rule from [9], where a read lock is considered
a shared mode lock, and a write lock is considered an
exclusive mode lock. Once a data object is locked in an
exclusive mode, no other user can lock that object in either
mode. A data object locked in a shared mode can allow
access to other users.

A. Overview

The CloudLock protocol consists of interactions between
four parties: the data owner, a central time server, a data
user, and the cloud provider. The overview of operations is
that each time a user wishes to access data, the user will
first obtain a timestamp from the central time server before
querying the cloud for data. The purpose is to detect any re-
ordering of operations from the cloud. We assume that there
is a bounded delay ∆t. The cloud, after waiting for ∆t, will

Figure 2. Reordering using a timestamp

have all the pending requests in a buffer. This process is
illustrated in Fig. 2 where the cloud will re-order the request
based on the timestamp value.

After receiving the user’s request, the cloud will then
perform the necessary locking operations and return the data
and some other verification information to the user (we will
elaborate on this later). When the user releases the lock
and data updates, if any, back to the cloud, the user will
also update some information with the data owner, which
maintains a table, shown in Table II. Using this table, the
data owner is able to determine when a lock number was
requested, issued, and released, and thus determine whether
the latency requirement was met by the cloud.

Lock number Requested Received Returned

...

Table II
TABLE MAINTAINED BY DATA OWNER.

B. Protocol description

CloudLock uses two locks, a read lock and a write
lock, denoted as RLOCK(i) and WLOCK(k),
where RLOCK(i) = rlni, S(rlni, SKcloud), and
WLOCK(k) = wlnk, S(wlnk, SKcloud). The read
lock number and write lock number are rlni and wlnk. We
use “i” to denote a generic read lock number, and “k” to
denote a generic write lock number, for clarity.

Our solution relies on maintaining two sets of lock
numbers, each time the cloud returning both a read and
a write lock number to the user. The intuition is that a user
holding a RLOCK will use the WLOCK to verify that he
is indeed reading the latest version, and that a user holding
a WLOCK will use the RLOCK to determine whether he
has been waiting too long.

CloudLock uses the following rules to ensure safety: First,
multiple read locks can be issued safely; second, a write lock
can only be issued when all read locks are released; third,
while a write lock has been issued and not yet recovered,
no other locks, read or write, can be issued. Table III shows

Temple University

16

Our Solution

Cloud

RLOCK (i) : read lock i, signature by cloud
WLOCK (k) : write lock k, signature by cloud

HIST(k,i) : h(k, data),
 signature of h(k, data) by user,
 signature of h(k, i) by user

User

Temple University

17

One Particular Case
• RLOCK has already been assigned, and a user
wants to obtain a WLOCK

Cloud

User

Request to perform a write

Temple University

18

One Particular Case
• RLOCK has already been assigned, and a user
wants to obtain a WLOCK

Cloud

User

Request to perform a write

Assigned WLOCK(k)
Last RLOCK(i)

Wait

Temple University

19

One Particular Case
• RLOCK has already been assigned, and a user
wants to obtain a WLOCK

Cloud

User

Request to perform a write

Assigned WLOCK(k)
Last RLOCK(i)

Wait Data, HIST(k-1,i-1)

Unlock(k), Dataʼ
HIST(k,i-1)

Temple University

20

Our Solution
• Do not require strict synchronization between
users
• Users can use HIST to detect some violations
• Ownerʼs table used to detect re-ordering and
other operations

Owner

the cloud data. This is a common type of attack considered
in cloud computing security [7], and is commonly addressed
by storing encrypted data in the cloud. Our solution also
adopts this same principal. A misbehaving cloud is capable
of launching locking attacks to manipulate the locking algo-
rithm to achieve economic gains. In this paper, we identify
a lock by its lock number. So, a lock with lock number i
should be issued after lock number i-1, and so on. The types
of locking attacks are as follows:

1) Issue incorrect lock number.
2) Issue the same lock to two or more users.
3) Fraudulently claim that the lock busy.
4) Deny issuing a lock.
5) Re-order user requests before issuing a lock.

The cloud’s motivation behind the locking attacks is
economic rather than malice. Providing efficient service with
concurrency protections involves more powerful hardware,
higher energy costs, and more network resources, all of
which incurs a higher operation cost for the cloud provider.
For example, an incorrect lock number may be issued be-
cause the cloud provider did not devote sufficient resources
to ensure changes are propagated to all the replicas, or that
the cloud may pretend that a lock is unavailable to mask
latency delays. The cloud may also schedule the order of
operations to minimize locking operations. This could have
a negative impact on users by delaying important updates.

Finally, our adversary model assumes that there is no
collusion between the different parties. Therefore, the cloud
and users will not collude to cheat the owner, nor will the
owner and users collude to frame the cloud provider. We also
assume that all users are honest and will not launch attacks,
such as not releasing the lock or to fraudulently claim to
possess a lock.

III. CLOUDLOCK PROTOCOL

CloudLock allows multiple users to read the data concur-
rently since the data remains consistent. Only when a user
wants to write to the data do we need to exclude other users.
We adopt the rule from [9], where a read lock is considered
a shared mode lock, and a write lock is considered an
exclusive mode lock. Once a data object is locked in an
exclusive mode, no other user can lock that object in either
mode. A data object locked in a shared mode can allow
access to other users.

A. Overview

The CloudLock protocol consists of interactions between
four parties: the data owner, a central time server, a data
user, and the cloud provider. The overview of operations is
that each time a user wishes to access data, the user will
first obtain a timestamp from the central time server before
querying the cloud for data. The purpose is to detect any re-
ordering of operations from the cloud. We assume that there
is a bounded delay ∆t. The cloud, after waiting for ∆t, will

Figure 2. Reordering using a timestamp

have all the pending requests in a buffer. This process is
illustrated in Fig. 2 where the cloud will re-order the request
based on the timestamp value.

After receiving the user’s request, the cloud will then
perform the necessary locking operations and return the data
and some other verification information to the user (we will
elaborate on this later). When the user releases the lock
and data updates, if any, back to the cloud, the user will
also update some information with the data owner, which
maintains a table, shown in Table II. Using this table, the
data owner is able to determine when a lock number was
requested, issued, and released, and thus determine whether
the latency requirement was met by the cloud.

Lock number Requested Received Returned

...

Table II
TABLE MAINTAINED BY DATA OWNER.

B. Protocol description

CloudLock uses two locks, a read lock and a write
lock, denoted as RLOCK(i) and WLOCK(k),
where RLOCK(i) = rlni, S(rlni, SKcloud), and
WLOCK(k) = wlnk, S(wlnk, SKcloud). The read
lock number and write lock number are rlni and wlnk. We
use “i” to denote a generic read lock number, and “k” to
denote a generic write lock number, for clarity.

Our solution relies on maintaining two sets of lock
numbers, each time the cloud returning both a read and
a write lock number to the user. The intuition is that a user
holding a RLOCK will use the WLOCK to verify that he
is indeed reading the latest version, and that a user holding
a WLOCK will use the RLOCK to determine whether he
has been waiting too long.

CloudLock uses the following rules to ensure safety: First,
multiple read locks can be issued safely; second, a write lock
can only be issued when all read locks are released; third,
while a write lock has been issued and not yet recovered,
no other locks, read or write, can be issued. Table III shows

User

Temple University

21

Our Solution

• There are other cases
the four possible cases, and Fig. 3 shows the interactions
between the user and the cloud for each of the four cases.

Request read Request write

Issued RLOCK Case 1 Case 2

Issued WLOCK Case 3 Case 4

Table III
RLOCK AND WLOCK OPTIONS

We use the term assigned RLOCK(i) or assigned

WLOCK(k) as the current read (write) lock number as-
signed to the user. The term next WLOCK(k) indicates that
the next write lock number issued will be k. The term last

RLOCK(i) means that the latest read lock number assigned
is i and the next RLOCK number that has not been assigned
yet will be i+1. When a user releases a lock, he will return
a UNLOCK−RLOCK(i) or UNLOCK−WLOCK(k)
depending on which lock he requested. The UNLOCK −
RLOCK(i) is just the read lock number and accompanying
signature, rlni, S(rlni, SKuser). The unlocking of the write
lock is similar.

The term DATA refers to the encryption of the data
d, E(d,K), and DATA′ refers to the data after being
written by a user, E(d′,K). The HIST acts like a hash
chain linking the current read and write lock numbers
with the contents on the data. This operation is performed
by a user when he releases a lock. A HIST (k, i) is
thus {H(wlnk|DATA), S(H(wlnk|DATA), SKuser),
rlni, S(wlnk|rlni, SKuser)}. For brevity, we will
omit the signatures S(H(wlnk|DATA), SKuser) and
S(wlnk|rlni, SK)user) in future discussion. Details of the
four cases are given below:

Case 1: This case occurs when a read lock as already been
issued and another user also wants a read lock. In this case,
we want to allow this user to read immediately. As shown
in Fig. 3(a), in addition to the lock numbers and DATA,
the cloud will return HIST (k − 1, < i). The < i refers to
a read lock number that is smaller than i. This HIST (k −
1, < i) is just H(wlnk−1|DATA), and its accompanying
signature, and rln<i, S(wlk−1|rln<i). The user will use
WLOCK(k) to verify that H(wlnk−1|DATA) to ensure
that he is reading the latest DATA. Then, the user checks
that his read lock rlni is correct. There could be other users
who have been issued rlns before-hand, but in any case, their
values, rl<i, have to be less than rli. The user also checks
that the smaller rln value is correctly associated with wlnk−1

by checking the signature S(wlnk−1|rln<i). The user can
only check rl<i, and not strictly rli−1, because the last read
lock issue could be the first read lock returned.

Case 2: This case occurs when a user wants to do a
write, but there is one or more read locks being issued.
The interactions are shown in Fig 3(b). The user will first
receive the assigned WLOCK(k) and the last RLOCK(i).
Since there are others holding on the the read lock, the cloud

cannot return the data. The user wait until the cloud returns
HIST (k − 1, i − 1) to him. Using WLOCK(k), the user
can verify HIST (k−1) to determine that he has been issued
the latest DATA. The last RLOCK(i) is used check that
there is a rlni−1 issued to a valid user, preventing the cloud
from claiming imaginary users with read locks.

Case 3: This case is where a WLOCK has been issued,
and a user wants to read. Using next WLOCK(k), the user
can check HIST (k− 1, < i) to verify that it is reading the
last written copy. The RLOCK(i) is used to check that the
smaller rln<i is correctly associated with S(wlnk−1|rln<i).

Case 4: The final case is where a write lock has already
been issued and another user also wants a write lock. As
before, the user will first receive the assigned WLOCK(k)
and last RLOCK(i). When the cloud eventually returns
DATA and HIST (k−1, i−1), the user uses WLOCK(k)
to verify HIST (k − 1, i− 1).

C. Security analysis

Here, we analyze the CloudLock scheme against the
various attacks. We first consider the confidentiality attack
launched by the cloud. In this attack, the cloud tries to learn
additional information about the stored data. We see that in
Fig. 3, the stored data is always encrypted with E(d, k),
so the cloud does not learn its contents. Similarly, all user
updates are also encrypted E(d′, k), so the cloud learns
nothing about the updates either. Next, we will analyze the
locking attacks that can be launched by the cloud.

Locking attack 1: Issuing an incorrect lock number.

This attack arises from an error in the cloud’s locking sys-
tem, possibly due to devoting insufficient resources needed
to reach all the replicas.

Each time the user is given the HIST , the user can
check whether the read lock number rlni and write lock
number wlnk when hashed, correctly matches the values in
HIST . The cloud cannot attempt to generate a fake HIST
because each HIST needs to be signed by a valid user with
knowledge of its private key SKuser. Since the cloud does
not know this key, the cloud cannot forge a signature.

Locking attack 2: Issuing the same lock to multiple users.

Under the multilock scheme, we can issue multiple
RLOCKS. Therefore, this attack consists of two scenarios:
one is where a RLOCK and WLOCK are issued at
the same time, and the other is when multiple WLOCKs
are issued. For both cases, this attack can be detected by
checking with the data owner’s table (Table II).

More specifically, let us consider the first case and as-
sume that Alice has obtained a read lock(RLOCK(7),
WLOCK(4), HIST (3, 6)), and before she unlocks,
the cloud issues a write lock to Bob (RLOCK(7),
WLOCK(4), HIST (3, 6)). Now, Bob’s operation is safe
since he is updating the latest copy of the DATA. However,
Alice is not safe, since the DATA she possess may change
before she releases the RLOCK. Now, if Alice releases her

• Also other types of attacks
• Issue incorrect lock number
• Incorrect lock operations
• Fraudulently claim lock is busy
• Deny issuing lock
• Re-ordering user requests

• Please see paper for details

Temple University

22

Conclusions and Future work
• Existing cloud places emphasis on availability,
which may not be sufficient for some applications
• Reusing existing, proven, distributed system
algorithms is a good idea
• Need to consider execution by, a possibly
malicious, party
• Lightweight verification and attestation will be
increasingly important

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

VirtPerf: A Performance Profiling Tool for
Virtualized Environments

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur

Dept. of Computer Science and Engineering
IIT Bombay

July 5, 2011

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 1 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Outline

1 Introduction

2 Related Work
Existing Profiling Tools
Profiling Techniques

3 Problem Definition

4 VirtPerf
Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

5 Experiments and Results
Experimental Setup
Capabilities of Virtperf

6 Future Work

7 Conclusions

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 2 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Introduction
Virtualization : An Overview

Server Consolidation with Virtual Infrastructure

Each web application is hosted on a
separate high-end server
Popularity of web applications
increase ⇒ “Server Sprawl” [9, 8]
High infrastructure cost but low
resource utilization

Solution

Eliminate old model - “One Server, One Application“

Virtualization

Pooling common infrastructure resources
Lowering IT costs, increasing the efficiency, utilization, flexibility and
availability

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 3 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Introduction
Virtualization : An Overview

Server Consolidation with Virtual Infrastructure

Each web application is hosted on a
separate high-end server
Popularity of web applications
increase ⇒ “Server Sprawl” [9, 8]
High infrastructure cost but low
resource utilization

Solution

Eliminate old model - “One Server, One Application“

Virtualization

Pooling common infrastructure resources
Lowering IT costs, increasing the efficiency, utilization, flexibility and
availability

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 3 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Introduction
Virtualization : An Overview

Virtualization : An Overview

Server Virtualization - Running multiple virtual execution environments on a single physical machine

Figure: Virtualization Platform

Virtualization Models

Paravirtualization-Xen [6]
Full virtualization-KVM [5]
Hardware virtualization

Benefits

High resource utilization
Savings on cost, energy
Software easier to migrate
Multiple execution environments on
single hardware

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 4 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Introduction
Virtualization : An Overview

Challenges in Hosting Application in Virtual Environments

1 Estimating the peak resource requirements for each workload to
decide resource provisioning

2 Analyzing effect of virtualization overheads on application
performance

3 Understanding behaviour of multi-tier web applications under
different workload patterns in virtual environments

4 For performance guarantee according to SLAs. - Resource usage
estimation and capacity analysis is must !

Need of a profiling tool which stress applications with different
workloads, monitor resource usage and performance levels in virtualized
environments

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 5 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Existing Profiling Tools
Profiling Techniques

Existing Profiling Tools

AutoPerf

Autoperf is an automated tool for resource profiling and capacity analysis
of web-based systems deployed in physical environment

XenMon [3] Xenoprof [1] Hyperic [4]
Support for virtual platforms Xen Xen Xen
Inbuilt load generator Not present Not present Not present
Profiling with multiple resource al-
locations

No No No

CPU overhead charge back to spe-
cific VMs

Implemented but
with assumption of
Page flipping

No No

Profiling with VM Migration No No No

Summary

Existing profiling tools are not aware of virtualization
Need of profiling tool that supports multiple virtualization platforms
e.g Xen, KVM
Capability to emulate real time scenarios - Concurrent users,
Thinktime distribution, Resource usage tuning for VM, Profiling
while virtual machine migration
Analysis of multi-tier applications deployed in virtual environment

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 6 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Existing Profiling Tools
Profiling Techniques

Profiling Techniques

a presents a framework for automated server benchmarking. They have
concentrated on automation policies which are independent of underlying
framework e.g server implementation, automated workload generator, resource
allocations and virtualization technology
b presents the workload characterization of a busy WWW server (NCSA
webserver) deployed on non virtualized high end HP server. They explain
characteristics of the systems response times. But, they have not studied
system resource utilization patterns as a function of workload
c presents a workload generation toolkit for virtualized applications, which
considers three dimensions for workload generation - variation in amount of
load, variation in mix of operations performed by clients and variation in
popularity of data accessed. No emphasis on resource allocation or VM
migration.

a
Piyush Shivam et. al. Cutting Corners: Workbench Automation for Server Benchmarking. In USENIX Annual Technical Conference,

2008
b

John A. Dilley. Web Server Workload Characterization. Technical Report HPL-96-160, Hewlett Packard Laboratories, 1996.
c

Aaron Beitch et.al. Rain: A Workload Generation Toolkit for Cloud Computing Applications. Technical Report EECS-2010-14, UC
Berkeley, 2010

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 7 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Existing Profiling Tools
Profiling Techniques

Virtualization Related Requirements

Support for profiling with multiple virtualization technologies - e.g
Xen, KVM
System wide profiling (both at the guest and host levels)
Support for profiling multi-tier applications and report individual
behavior of tiers.
Support for profiling with setting limits on resource availability for
VMs (memory, network bandwidth, CPU cores)
Support for profiling the behavior of an application during virtual
machine migration

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 8 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Problem Definition

Given input - server deployment configuration, transaction information,
load generation information and resource configurations for application
deployed in virtualized environments

Goal

To develop a benchmarking tool which measures,

Performance Metrics :
Response time
Throughput
Maximum Achievable Throughput

Resource Utilization :
Network I/O
Disk I/O
CPU Utilization
Service Demand

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 9 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

VirtPerf Architecture

Figure: VirtPerf Architecture

Modules

1 Controller

2 Load Generator

3 Profiler

Profiler Module

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 10 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Profiling Scenario

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 11 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Input to VirtPerf - I

Transaction Information - It consists of URL of the server process and sequence-list to
generate the dynamic URLs.

Examples

<transaction>
<name>DomU</name>
<sequencelist>

<sequence name="k">1,2,3,4,5,6,7,8,9,10</sequence>
</sequencelist>
<url>http://192.168.50.71/WebCalendar-1.2.3/day.php?date=201011$k</url>

</transaction>

Load Description - Load levels i.e number of concurrent users and execution count for each
user thread along with the distribution type (e.g poisson, uniform) and mean value for
thinktime distribution can be specified.

Examples

<farmer>
<name>Farmer1</name>
<executioncount>100</executioncount>
<distribution>poisson</distribution>
<thinktime>150</thinktime>
<usetransaction>DomU</usetransaction>

</farmer>
<farm>

<name>Message</name>
<usefarmer count="5">Farmer1</usefarmer>

</farm>

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 12 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Input to VirtPerf - II

Deployment Information - It consists of server location (IP address and port number) of
privileged and guest domains and name of the server process which is to be profiled. It also
contains resource configuration and migration event information.

Examples

<NodeInfo type="nonJavaNode">
<Node>10.129.41.58</Node>
<Process>apache2</Process>
<Port>2012</Port>
<migrate>

<targetvm>10.129.41.173</targetvm>
<destinationpm>10.129.112.84</destinationpm>
<when>20</when>

</migrate>
<coreinfo>

<corecount>192.168.50.71:0:1:2:3</corecount>
<corecount>192.168.50.72:0:1</corecount>

</coreinfo>
<cpuinfo>

<cpucap>10.129.41.173:100:400</cpucap>
<step>75</step>

</cpuinfo>
<meminfo>

<memset>10.129.41.173:128:1024</memset>
<step>2</step>

</meminfo>
</NodeInfo>

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 13 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Reports and Analysis Produced by VirtPerf

For each loadlevel (concurrent users accessing
web application),

Host domain gives resource utilization of
all active domains at VM level

Each guest domain gives its own resource
usage information at process level

Performance metrics are measured at
master side

Xen Measurements

Host measurements : xentop [11]
Guest measurements : ps, netstat,
iostat

KVM Measurements

Host and Guest measurements :
ps, netstat, iostat

Finally,

Maximum achievable throughput

Load at which maximum throughput is achieved

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 14 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Key Features

Automatic Saturation Load Level Determination
Warm-up Detection
Profiling modes : Simple, Multiple Load Level [-c]
Execution Count Determination
Capacity Analysis
Profiling modes - Fixed Multiple Load Level [-n]
Dynamic Generation Of URLs
Emulating real user behavior - Think time distributions (Poisson,
Uniform)
Profiling in multiple virtual environment - Xen, KVM
Profiling with resource usage tuning [CPU, Memory]
Profiling while virtual machine migration

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 15 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Profiling With Resource Usage Tuning

CPU : VirtPerf allows the specification of CPU
percentage to be allocated per VM and also configured
mapping of VMs to specific CPU cores

< coreinfo >

<coreinfo>

<corecount>192.168.50.71:0:1:2</corecount>

</coreinfo>

< cpuinfo >

<cpuinfo>

<cpucap>192.168.50.72:20:80</cpucap>

<step>20</step>

</cpuinfo>

Memory : VirtPerf allows the specification of memory
(MB) to be allocated per VM.

< meminfo >

<meminfo>

<memset>192.168.50.72:200:1000</memset>

<step>200</step>

</meminfo>

Tools Used

Xen : xm
KVM : virsh and cpulimit

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 16 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Architecture Details
Input to Tool
Reports and Analysis Produced by VirtPerf
Key Features

Profiling with Virtual Machine Migration

< migrate >

<migrate>
<targetvm>10.129.41.173</targetvm>
<destinationpm>10.129.112.84</destinationpm>
<when>20</when>

</migrate>

Profiling Phases

S1-M1 - Before Migration
M1-M2 - While Migration
M2-S2 - After Migration

Back

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 17 of 34

Introduction
Related Work

Problem Definition
VirtPerf

Experiments and Results
Future Work
Conclusions

Thank You !

Prajakta Patil, Purushottam Kulkarni, Umesh Bellur VirtPerf 31 of 34

	Introduction
	Related Work
	Existing Profiling Tools
	Profiling Techniques

	Problem Definition
	VirtPerf
	Architecture Details
	Input to Tool
	Reports and Analysis Produced by VirtPerf
	Key Features

	Experiments and Results
	Experimental Setup
	Capabilities of Virtperf

	Future Work
	Conclusions

