Scalable K-Means++

Bahman Bahmani Stanford University

K-means Clustering

- Fundamental problem in data analysis and machine learning
- "By far **the most popular clustering algorithm** used in scientific and industrial applications" [Berkhin '02]
- Identified as one of the top 10 algorithms in data mining [Wu et al '07]

Problem Statement

• A scalable algorithm for K-means clustering with theoretical guarantees and good practical performance

K-means Clustering

- Input:
 - A set $X = \{x_1, x_2, ..., x_n\}$ of n data points
 - Number of clusters k
- For a set $C = \{c_1, c_2, ..., c_k\}$ of cluster "centers" define:

$$\varphi_X(C) = \sum_{x \in X} d(x, C)^2$$

where d(x,C) = distance from x to closest center in C

• **Goal:** To find a set C of centers that minimizes the objective function $\phi_x(C)$

K-means Clustering: Example

Lloyd Algorithm

- Start with k arbitrary centers $\{c_1, c_2, ..., c_k\}$ (typically chosen uniformly at random from data points)
- Performs an EM-type local search till convergence
- Main advantages: Simplicity, scalability

What's wrong with Lloyd Algorithm?

- Takes many iterations to converge
- Very sensitive to initialization
- Random initialization can easily get two centers in the same cluster
 - K-means gets stuck in a local optimum

K-means++ [Arthur et al. '07]

- Spreads out the centers
- Choose first center, c₁, uniformly at random from the data set
- Repeat for $2 \le i \le k$:
 - Choose c_i to be equal to a data point x_0 sampled from the distribution:

$$\frac{d(x_0,C)^2}{\varphi_X(C)} \propto d(x_0,C)^2$$

• **Theorem:** O(log k)-approximation to optimum, right after initialization

What's wrong with K-means++?

- Needs K passes over the data
- In large data applications, not only the data is massive, but also K is typically large (e.g., easily 1000).
- Does not scale!

Intuition for a solution

- K-means++ samples one point per iteration and updates its distribution
- What if we **oversample** by sampling each point independently with a larger probability?
- Intuitively equivalent to updating the distribution much less frequently
 - Coarser sampling
- Turns out to be sufficient: K-means | |

K=4, Oversampling factor =3

Cluster the intermediate centers

K-means | [Bahmani et al. '12]

- Choose ≥ 1 [Think $\equiv \Theta(k)$]
- Initialize C to an arbitrary set of points
- For **R** iterations do:
 - Sample each point x in X independently with probability $p_x = Id^2(x,C)/\phi_X(C).$
 - Add all the sampled points to C
- Cluster the (weighted) points in C to find the final k centers

K-means | |: Intuition

• An interpolation between Lloyd and K-means++

Theorem

Theorem: If φ and φ' are the costs of the clustering at the beginning and end of an iteration, and OPT is the cost of the optimum clustering:

$$E[\varphi'] \le O(OPT) + \frac{k}{el}\varphi$$

- Corollary:
 - Let $\psi = \cos t$ of initial clustering
 - K-means | | produces a constant-factor approximation to OPT, using only $O(\log (\psi / OPT))$ iterations
 - Using K-means++ for clustering the intermediate centers, the overall approximation factor = O(log k)

Experimental Results: Quality

	Clustering Cost Right After Initialization	Clustering Cost After Lloyd Convergence
Random	NA	22,000
K-means++	430	65
K-means	16	14

GAUSSMIXTURE: 10,000 points in 15 dimensions K=50Costs scaled down by 10^4

• K-means | | much harder than K-means++ to get confused with noisy outliers

Experimental Results: Convergence

• K-means | | reduces number of Lloyd iterations even more than K-means++

	Number of Lloyd Iterations till Convergence		
Random	167		
K-means++	42		
K-means	28		

SPAM: 4,601 points in 58 dimensions K=50

Experimental Results

- K-means | | needs a small number of intermediate centers
- Better than K-means++ as soon as $\sim K$ centers chosen

	Clustering Cost (Scaled down by 10 ¹⁰)	Number of intermediate centers	Tme (In Minutes)
Random	$6.4 * 10^7$	NA	489
Partition	1.9	$1.47 * 10^{6}$	1022
K-means	1.5	3604	87

KDDCUP1999: 4.8M points in 42 dimensions K=1000

Algorithmic Theme

- Quickly decrease the size of the data in a distributed fashion...
- ... while maintaining the important features of the data
- Solve the small instance on a single machine

