Learning Geographical Preferences for Point-of-Interest Recommendation

Bin Liu Yanjie Fu, Zijun Yao, Hui Xiong

Rutgers University

Outline

- Background and Motivation
- Geographical Probabilistic Factor Model
- Experimental Results
- Conclusion

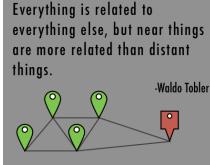
- Location-based service becomes increasingly popular
- Develop rapidly, e.g., as 2011, Foursquare (15 million users) made over 3 million check-ins per day; as Jan 2013, over 30 million people
- Users share check-in experiences, opinions, comments on a point-of-interest (a specific point location that someone may find useful or interesting, eg., restaurant, bar)

- Task: to recommend POIs based users' check-in history and community opinions
- Existing solutions
 - □ Method: collaborative filtering based method to fuse information
 - □ Failed to consider the multiple factors in decision process of a user choose a POI; lack of integrated analysis of the joint effect of the factors if considered part of them
- Various factors can influence POI check-in: user preferences, geographical influences, popularity and dynamic user mobility patterns

,

What Make POI Recommendation Special

- Law of geography: everything is related to everything else, but near things are more related than distant thing
- Regional popularity: two POIs with similar semantic topics can have different popularity if located differently
- Dynamic user mobility: user may travel to different cities or even regions
- Implicit user feedback: need to infer user preferences from implicit user feedback in terms of user check-in count data
 Everything is related to



How Decision Process be Influenced

- Geographical distance, the propensity of a user choose
 a POI is inversely proportional to the distance
- Utility matters, a user may prefer a far away POI than a nearby one for better satisfaction
- Popularity affects check-in behaviors, decision is largely affected by the word-of-mouth about the POI
- Dynamic mobility patterns: the check-in pattern may vary when people travel from one region to another

How Is a Typical User's Check-in Pattern

All POIs in different regions

A user's check-ins in different regions

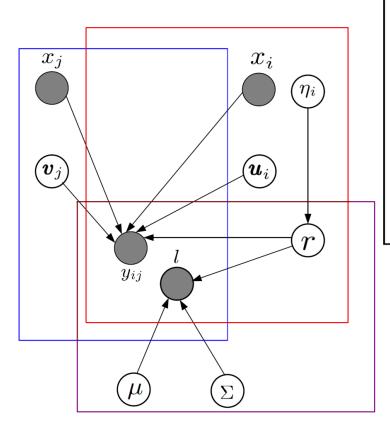
User check-ins in San Francisco

Need a model that jointly encodes the personalized preferences, spatial influence, user mobility and popularity into the user check-in decision process to learn geographical user preferences for effective POI recommendation

- $lue{}$ By Tobler's first law of geography, POIs with similar services are likely to be clustered into the same geographical area $l_j \sim \mathcal{N}(\mu_r, \Sigma_r)$
- Users are most likely to check in a number of POIs and these POIs are usually limited to some geographical regions $r \sim \mathrm{Multinomial}(\eta_i)$
- A user's propensity for a POI
 - Personalized interest
 - \square Regional popularity $p(i,j) \propto lpha(i,j)
 ho(j) (d_0 + d(i,j))^{- au}$
 - Distance

Best personalization, maximum satisfaction, at lowest distance cost

Geographical Probabilistic Factor Model



- 1. Draw a region $r \sim \text{Multinomial}(\eta_i)$. Mobility
- 2. Draw a location $l_j \sim \mathcal{N}(\mu_r, \Sigma_r)$. Law of geography
- 3. Draw a user preference Personalized Preference
 - a Generate user latent factor $\boldsymbol{u}_i \sim P(\boldsymbol{u}_i; \Psi_{\boldsymbol{u}_i})$.
 - b Generate item latent factor $\boldsymbol{v}_j \sim P(\boldsymbol{v}_j; \Psi_{\boldsymbol{v}_j})$.
 - c User-item preference $\alpha(i,j) = \boldsymbol{u}_i^{\top} \boldsymbol{v}_j + x_i^{\top} W x_j$.
- 4. $y_{ij} \sim P(f_{ij})$ where Check-in decision

$$f_{ij} = \left(oldsymbol{u}_i^ op oldsymbol{v}_j + x_i^ op W x_j
ight) \cdot
ho(j) \cdot \left(d_0 + d(i,j)
ight)^{- au}$$

Table 1: Mathematical Notations

Symbol	Size	Description
R	$1 \times \mathbb{R}$	latent region set, r is a region in R
$oldsymbol{\eta}$	$M \times \mathbb{R}$	user level region distribution
ho	$1 \times N$	item popularity
11.	\mathbb{R}^2	mean location of a latent region
$oldsymbol{\Sigma}$	$\mathbb{R}^{2 imes2}$	covariance matrix of a latent region
$oldsymbol{U}$	$M \times K$	user latent factor
V	$N \times K$	item latent factor
$oldsymbol{x}$	$(\cdot) \times \mathbb{K}$	user or item observable prosperities
$oldsymbol{ heta},oldsymbol{\pi}$	$(\cdot) \times \mathbb{K}$	user or item topic distribution

Model Specification

User mobility model

- \square A user samples a region from all R regions following a multinomial distribution $\ r \sim \mathrm{Multinomial}(\eta_i)$
- lacksquare An POI is assigned a normal distribution $l_j \sim \mathcal{N}(\mu_r, \Sigma_r)$

Distance factor

- lacksquare Distance from region center to the POI $|d(i,j)=||\mu_r-l_j||_2$
- \Box the prob. a user choose a POI decays as the power-law of the distance between them $(d_0+d(i,j))^{- au}$

Regional popularity

□ Given a region

$$\rho_j = \frac{1}{2} \left\{ \frac{\text{totalPeo}_j - 1}{\max_{j \in r} \{ \text{totalPeo}_j \} - 1} + \frac{\text{totalCk}_j - 1}{\max_{j \in r} \{ \text{totalCk}_j \} - 1} \right\}$$

Geographical-Topical Bayesian Non-negative Matrix Factorization

- Latent factor model: clod-start problem; normal assumption
- Poisson factor model for count data, and closely related to NMF
- GT-BNMF model: (1) encode the personalized preferences, spatial influence and popularity; (2) count data; (3) cold-start

$$y_{ij} \sim \mathcal{N}^R(y_{ij}|f_{ij},\sigma^2), f_{ij} = (\boldsymbol{u}_i^{\top}\boldsymbol{v}_j + \theta_i^{\top}W\pi_j)\cdot\rho(j)\cdot(d_0 + d(i,j))^{-\tau}$$

- i. Generate user latent factor $u_{ik} \sim \text{Exp}(\alpha_k)$.
- ii. Generate item latent factor $v_{jk} \sim \text{Exp}(\beta_k)$.
- iii. User-item preference $\alpha(i,j) = \boldsymbol{u}_i^{\top} \boldsymbol{v}_j + \boldsymbol{\theta}_i^{\top} W \boldsymbol{\pi}_j$.
- iv. $\sigma^2 \sim \text{Inv} \text{Gamma}(a, b)$.

Parameter Estimation

- \square Given $\mathcal{D} = \{y_{ij}, l_j\}^{I_{ij}}$ where y_{ij} is the user checkin count and l_j is the location
- □ To maximize posterior $P(\Psi, \alpha, \beta; \mathcal{D}) = \prod_{\mathcal{D}} P(y_{ij}, l_j | \Psi, \Omega)$ parameter $\Psi = \{ \mathbf{U}, \mathbf{V}, \sigma^2, W, \mathbf{\eta}, \mathbf{\mu}, \mathbf{\Sigma} \}$, priors $\Omega = \{\alpha, \beta, a, b\}$
- □ Mixing Expectation Maximization (EM) and sampling algorithm to learn all the parameters by treating latent region r as a latent variable and introduce the hidden variable $P(r|l_j, \Psi)$
 - □ Geo-clustering updates the latent regions base on both location and check-in behaviors
 - □ GT-BNMF learns the graphical preference factors

Experimental Data

- 12,422 users for 46, 194 POIs with 738,445 check-in observations from Foursquare with sparsity of 99.87%
- Wide range user check-in count data

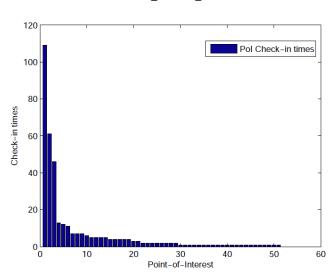
Name: Otto Enoteca Pizzeria

Address: 1 5th Ave, New York, NY 10003

Tags: pizza wine bar italian olive oil cheese mario batali meat wine pasta

gelato gluten free menu zagat rated pizza

Total people: 3,127, Total check-ins: 4,770.



Otto Enoteca Pizzeria

1 5th Ave (at E 8th St), New York, NY 10003 Pizza Place, Wine Bar, Italian Restaurant

(212) 995-9559 @ottopizzeria ottopizzeria.com

Evaluation Method

- Baselines: SVD, PMF, NMF, BNMF, F-BNMF
- Metrics:
 - Recall and precision

Precision@
$$N = \frac{|S_{N,\text{rec}} \cap S_{\text{visited}}|}{N}$$

$$\text{Recall@}N = \frac{|S_{N,\text{rec}} \cap S_{\text{visited}}|}{|S_{\text{visited}}|}$$

 Relative recall and relative precision, measure the improvement over a random recommendation

$$\text{rPrecision@}N = \frac{\text{Precision@}N}{|S_{\text{visited}}|/|C|} = \frac{|S_{N,\text{rec}} \bigcap S_{\text{visited}}| \cdot |C|}{|S_{\text{visited}}| \cdot N}$$

$$\text{rRecall@}N = \frac{\text{Recall@}N}{N/|C|} = \frac{|S_{N,\text{rec}} \bigcap S_{\text{visited}}| \cdot |C|}{|S_{\text{visited}}| \cdot N}$$

Initialize the algorithm with K-means

Precision and Recall

K	Pre	SVD	PMF	NMF	BNMF	F-BNMF	GT-BNMF
10	@1	0.0041	0.0034	0.0125	0.0181	0.0192	0.0347
	@5	0.0066	0.0062	0.0169	0.0197	0.0208	$\boldsymbol{0.0288}$
	@10	0.0081	0.0080	0.0202	0.0224	0.0237	0.0306
20	@1	0.0052	0.0029	0.0126	0.0147	0.0166	0.0326
	@5	0.0067	0.0059	0.0163	0.0160	0.0177	0.0278
	@10	0.0088	0.0079	0.0202	0.0197	0.0210	0.0304

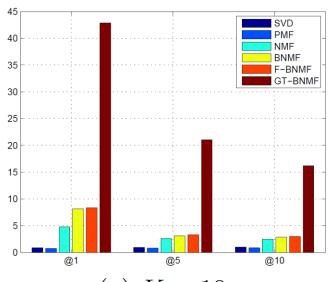
Table 3: Precision @N with different latent dimensions K.

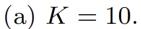
K	Recall	SVD	PMF	NMF	BNMF	F-BNMF	GT-BNMF
	@1			0.0049		0.0081	0.0061
10	@5	0.0038	0.0036	0.0103	0.0121	0.0127	0.0147
	@10	0.0060	0.0060	0.0153	0.0167	0.0176	0.0212
20	@1	0.0011	0.0006	0.0046	0.0059	0.0068	0.0060
	@5	0.0037	0.0034	0.0098	0.0097	0.0107	0.0144
	@10	0.0065	0.0059	0.0151	0.0148	0.0158	0.0210

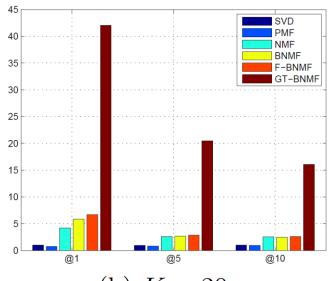
Table 4: Recall @N with two different latent dimensions K.

Relative Performances

The relative performance @N measures the improvement over a random recommendation





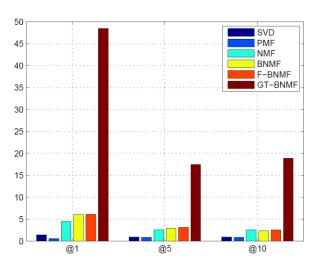


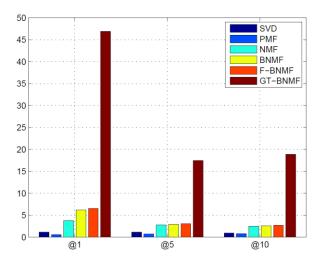
(b)
$$K = 20$$
.

K	@N	SVD	PMF	NMF	BNMF	F-BNMF	GT-BNMF
10	@1	0.8729	0.7280	4.7736	8.1243	8.3408	$\boldsymbol{42.8835}$
	@5	0.9345	0.8251	2.5871	3.0713	3.2956	21.0357
	@10	0.9829	0.8856	2.4480	2.8588	2.9585	16.1661
20	@1	1.0148	0.7124	4.1618	5.8585	6.6864	42.0183
	@5	0.9287	0.8271	2.6095	2.6219	2.8506	20.4742
	@10	1.0084	0.9067	2.5131	2.4717	2.6043	16.0662

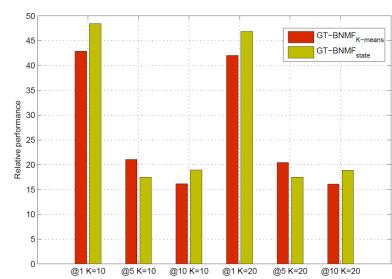
Implications of Latent Regions

How about initialize the algorithm by states

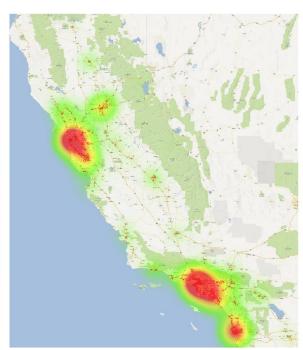




Robust to region initiations



Latent Region Analysis



- (a) K-means. (b) Latent region. (c) Ground truth.
- Voronoi visualization of POI segmentation in California area. (b) latent regions learned from our model and (a) initiation by K-means. (c) true user collaborative activity clusters. Deeper color (red) indicates more check-ins for a POI, as contrary to light color (green).
- Latent regions learned from our model is more coherent to real user activity

Conclusion

- Proposed a general framework to learn geographical preferences for POI recommendation
 - Captured the geographical influence on a user's check-in behavior by taking into consideration of geographical factors
 - Effectively modeled the user mobility patterns
 - Extended the latent factor in explicit rating recommendation to implicit feedback recommendation settings
 - Proposed model is flexible and could be extended to incorporate different later factor models
- The proposed model not only improves recommendation performances, but also provides an interesting perspective on POI segmentation

Thank You!