
Online Influence
Maximization

Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, Pierre Senellart

KDD 2015, Sydney, Australia
August 13, 2015

Influence Maximization

Important problem in social networks, with
applications in marketing, computational advertising

• objective: given a promotion budget, maximize the
influence spread in the social network (word-of-
mouth effect)

select k seeds (influencers) in the social graph,
given an influence graph and a propagation model

Influence Maximization

Data model: influence graph G(V,E,p), where

• V and E and the vertices (users) and edges (follow
relations, friendship, etc.) in the social network,

• p is a function mapping edges to influence
probabilities.

Influence Maximization
Independent cascade model — a discrete time
model of propagation:

• at time 0 — activate the seed s,

• node i activated at time t — influence is
propagated at t+1 to neighbours j independently
with probability p(i,j),

• once a node is activated, it cannot be deactivated
or activated again.

Influence Maximization

The independent cascade model is a stochastic
process

Influence maximization in this model tries to optimize
the expected influence spread, σ(S), from a set of

seeds S.

Influence Maximization
Influence maximization is computationally hard — two sources of
hardness:

• computing σ(S) is hard = evaluating probability formulas

• even if we know σ(S), computing the influence maximisation is NP-
hard (submodular maximization subject to a constraint)

Solutions:

• for computing σ(S): Monte Carlo simulations of influence spread

• for solving the influence maximization: greedy approximation algorithm

Multiple algorithms and estimators: CELF, TIM / TIM+

Online Influence
Maximization (OIM)

What if we only know the social graph, but still want
to maximize influence, with a budget?

• we need to keep an (uncertain) model of the influence
graph

• classic trade-off between exploration (refine the model)
and exploitation (use the model to maximize influence)

• lends itself to an iterative process over several rounds
(online)

Online Influence
Maximization Problem

Maximize the influence spread given a budget of N
rounds of choosing k seeds in the network

• Contribution: an online framework — maximization
and model refinement over multiple rounds

OIM Framework

Online Influence Maximization

Siyu Lei
University of Hong Kong

Pokfulam Road, Hong Kong
sylei@cs.hku.hk

Silviu Maniu
Noah’s Ark Lab, Huawei

Science Park, Hong Kong
silviu.maniu@huawei.com

Luyi Mo
University of Hong Kong

Pokfulam Road, Hong Kong
lymo@cs.hku.hk

Reynold Cheng
University of Hong Kong

Pokfulam Road, Hong Kong
ckcheng@cs.hku.hk

Pierre Senellart
Télécom ParisTech; CNRS LTCI

& NUS; CNRS IPAL
pierre@senellart.com

ABSTRACT
Social networks are commonly used for marketing purposes. For
example, free samples of a product can be given to a few influential
social network users (or seed nodes), with the hope that they will
convince their friends to buy it. One way to formalize this objective
is through the problem of influence maximization (or IM), whose
goal is to find the best seed nodes to activate under a fixed budget,
so that the number of people who get influenced in the end is maxi-
mized. Solutions to IM rely on the influence probability that a user
influences another one. However, this probability information may
be unavailable or incomplete.

In this paper, we study IM in the absence of complete information
on influence probability. We call this problem Online Influence
Maximization (OIM), since we learn influence probabilities at the
same time we run influence campaigns. To solve OIM, we propose
a multiple-trial approach, where (1) some seed nodes are selected
based on existing influence information; (2) an influence campaign is
started with these seed nodes; and (3) user feedback is used to update
influence information. We adopt Explore–Exploit strategies, which
can select seed nodes using either the current influence probability
estimation (exploit), or the confidence bound on the estimation
(explore). Any existing IM algorithm can be used in this framework.
We also develop an incremental algorithm that can significantly
reduce the overhead of handling user feedback information. Our
experiments show that our solution is more effective than traditional
IM methods on the partial information.

1. INTRODUCTION
In recent years, there has been a lot of interest about how social

network users can affect or influence others (via the so-called word-
of-mouth effect). This phenomenon has been found to be useful for
marketing purposes. For example, many companies have advertised
their products or brands on social networks by launching influence
campaigns, giving free products to a few influential individuals (seed
nodes), with the hope that they can promote the products to their
friends [20]. The objective is to identify a set of most influential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
KDD’15, August 10-13, 2015, Sydney, NSW, Australia.
c� 2015 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/2783258.2783271.

Feedback

1

42

3

Uncertain Influence Graph

Selection Phase

Heuristic

Explore‐Exploit (EE)

Choose Seeds

Update Graph

1

42

3

0.5

0.1 0.9

0.5
0.2

Real World

Seed
Nodes

PDF

X

Action Phase

follow

follow follow

followfollow

Figure 1: The OIM framework.

people, in order to attain the best marketing effect. This problem of
influence maximization (IM) has attracted a lot of research interest [6,
7, 9, 10, 23].

Given a promotion budget, the goal of IM is to select the best seed
nodes from an influence graph. An influence graph is essentially a
graph with influence probabilities among nodes representing social
network users. In the independent cascade model, for example, a
graph edge e from user a to b with influence probability p implies
that a has a chance p to affect the behavior of b (e.g., a convinces b
to buy a movie ticket) [16]. Given an influence graph, IM aims
to find k seed nodes, whose expected number of influenced nodes,
or influence spread, is maximized. Marketing efforts can then be
focused on the k nodes (or persons). In the IM literature, these seed
nodes are said to be activated [6, 7, 9, 10, 23].

While existing IM algorithms effectively obtain the most influ-
ential seed nodes, they assume that the influence probability value
between each pair of nodes is known. However, this assumption
may not hold. Consider a marketing firm starting in a new city with
some knowledge of the social network of the users in the city. The
company, however, does not know how influence propagates among
these users. Unless the influence probability information is known,
the marketing firm cannot run an IM algorithm and decide the target
users. To obtain these values, action logs, which record the social
network user’s past activities, can be used [11]. This information
may not be readily available.

Is it possible to perform IM on a social network, even if the
information about influence probabilities is absent or incomplete?
We call this problem Online Influence Maximization (OIM), as we
aim at discovering influence probabilities at the same time we are
performing influence campaigns. (We say that an IM algorithm is
offline, if it assumes that the influence probability between every
node pair is known in advance.) In the absence of complete influence
probability information, making the best marketing effort out of a
limited promotion budget can be challenging. To tackle this problem,
we propose a solution based on influencing seed nodes in multiple

problem is computationally difficult, finding a solution for the OIM
is also challenging. We propose a solution that consists of multiple
trials. In each trial, a selection (for choosing appropriate seed nodes)
and an action (for activating the seed nodes chosen) is performed
(Figure 1). The seed selection makes use of one of the offline IM
algorithms discussed in Section 3.1

We next present the uncertain influence graph, which captures
the uncertainty of influence probabilities (Section 4.1). We then
discuss our solution based on this graph in Section 4.2.

4.1 The Uncertain Influence Graph
We assume that a social network, which describes the relation-

ships among social network users, is given. However, the exact
influence probability on each edge is not known. We model this by
using the uncertain influence graph, in which the influence proba-
bilities of each edges are captured by probability density functions,
or pdf (Figure 1). The pdf can be refined based on the feedback
returned from a trial. Since influence activations are binary random
variable, we capture the uncertainty over the influence as a Beta
distribution. Specifically, the random variable of the influence prob-
ability from node i to node j, Pi j is modeled as a Beta distribution
having probability density function:

fPi j (x) =
xai j�1(1� x)bi j�1

B(ai j,bi j)
,

where B(ai j,bi j) is the Beta function, acting as a normalization
constant to ensure that the total probability mass is 1, and ai j and bi j
are the distribution parameters. For the Beta distribution, E[Pi j] =

ai j
ai j+bi j

and s2[Pi j] =
ai jbi j

(ai j+bi j)2(ai j+bi j+1) . An advantage of using
the Beta distribution is that it is a conjugate prior for Bernoulli
distributions, or more generally, binomial distributions. This allows
us to compute the posterior distributions easily when new evidence
is provided. Section 6 explains this in more detail.

At the time of the first trial, we assume no prior information
about the influence graph, except global a and b parameters, shared
by all edges, i.e., Pi j ⇠ B(a,b) 8(i, j) 2 E. These global a and
b parameters represent our global prior belief of the uncertain
influence graph. In the absence of any better prior, we can set
a = b = 1, with B(1,1) being the uniform distribution.

Our model can be extended to handle various prior informa-
tion about the influence graph. For example, if we have individ-
ual prior knowledge (ai j,bi j) about an edge, we can set Pi j as
Pi j ⇠ B(ai j,bi j). When we have access to only the mean and vari-
ance of the influence of an edge, we can derive ai j and bi j from
the formulas of E[Pi j] and s2[Pi j] given above. For the situation
in which some action logs involving the social network users are
available, algorithms for learning the influence probabilities from
these logs [11, 12] can be first applied, and the estimated influence
probabilities can then be used as prior knowledge for the graph.

4.2 The OIM Framework
Algorithm 1 depicts the solution framework of the OIM problem.

In this algorithm, N trials are executed. Each trial involves selecting
seed nodes, activating them, and consolidating feedback from them.
In each trial n (where n = 1, . . . ,N), the following operations are
performed on the uncertain influence graph G:

1. Choose (Line 5): A seed set Sn is chosen from G, by us-
ing an offline IM algorithm, and strategies for handling the
uncertainty of G (Section 5).

1In this paper we assume that the advertising budget k is fixed for
each trial.

Algorithm 1 Framework(G, k, N)

1: Input: # trials N, budget k, uncertain influence graph G
2: Output: seed nodes Sn(n = 1 . . .N), activation results A
3: A /0
4: for n = 1 to N do
5: Sn Choose(G,k)
6: (An,Fn) RealWorld(Sn)
7: A A[An
8: Update(G,Fn)
9: return {Sn|n = 1 . . .N}, A

2. RealWorld (Lines 6–7): The selected seeds set is tested in the
real world (e.g., sending advertisement messages to selected
users in the social network). The feedback information from
these users is then obtained. This is a tuple (An,Fn) comprised
of: (i) the set of activated nodes An, and (ii) the set of edge
activation attempts Fn, which is a list of edges having either a
successful or an unsuccessful activation.

3. Update (Line 8): We refresh G based on (An,Fn) (Section 6).
One could also choose not to update G, and instead only run

an offline IM based on the prior knowledge. Our experimental
results show that the influence spread under our OIM framework
with proper updates is better than the one without any update. Next,
we investigate the design and implementation of Choose (Section 5)
and Update (Section 6).

5. CHOOSING SEEDS
We now study two approaches for selecting k seed nodes in the

Choose function of Algorithm 1: heuristic-based (Section 5.1) and
explore-exploit strategies (Section 5.2).

5.1 Heuristic-Based Strategies
We first discuss two simple ways for choosing seeds from the

uncertain influence graph G.
1. Random. This heuristic, which arbitrarily selects k seed nodes,

is based on the fairness principle, where every user has the same
chance to be activated.

2. MaxDegree. Given a node p in G, we define the out-degree
of p to be the number of outgoing edges of p with non-zero influence
probabilities. The out-degree of p can mean the number of friends
of the social network user represented by p, or their number of
followers. Intuitively, if p has a higher out-degree, it has a higher
chance of influencing other users. The MaxDegree heuristic simply
chooses the nodes with k highest out-degree values.

The main advantage of these two heuristics is that they are easy to
implement. However, they do not make use of influence probability
information effectively. In a social network, some users might be
more influential than others. It may thus be better to target users with
higher influence probabilities on their outgoing edges. The above
heuristics also do not consider the feedback information received
from the activated users, which can be useful to obtain the true
values of the influence probabilities. We will examine a better
seed-selection method next.

5.2 Explore-Exploit Strategies
The Explore-Exploit (EE) strategy chooses seed nodes based on

influence probabilities. Its main idea is to exploit, or execute an
offline IM algorithm, based on the influence information currently
available. Since this information may be uncertain, the seed nodes
suggested by exploit may not be the best ones. We alleviate this prob-
lem by using explore operations, in order to improve the knowledge
about influence probabilities. Solutions for effectively controlling

OIM Framework

Three ingredients:

• the model of the influence graph

• the explore-exploit strategy (Choose)

• after real-world feedback, update of the model
(Update)

Uncertain Influence Graph

Probabilistic graph model:

• instead of a probability p(i,j) on each edge (i,j), we
associate it with a distribution of probabilities

• by default, each edge is associated with a prior
probability distribution Beta(↵,�)

P (i, j) ⇠ Beta(↵ij ,�ij)

Choose Strategies
The uncertain graph model allows us to explore different
assumptions about the graph:

• exploit assumes that the influence probabilities are the
expected value of P(i,j)

• explore uses either other assumptions about the graph,
or uses heuristic strategies (random, max degree,
degree discount)

For each branch, the IM algorithm is a black box (CELF,
TIM, …) only the input influence graph is different

Choose: Confidence Bound
A classic approach to use other assumptions
about the influence graph is the Confidence
Bound (CB) algorithm:

• each edge distribution is “moved” by θ
standard deviations, and the IM algorithm is
executed

• allows to “explore” other “possible influence
graphs”

• exploit corresponds to the case where θ is 0

A probabilistic parameter ε allows the choice
between different θ values (including 0 for
exploit) — similar to ε-greedy

explore and exploit operations have been studied in the multi-armed
bandit (MAB) literature [22, 24]. These MAB solutions inspire our
development of the two seed-selection strategies, namely e-greedy
and Confidence-Bound (CB). Next, we present these two solutions
in detail.

1. e-greedy. In this strategy (Algorithm 2), a parameter e is used
to control when to explore and when to exploit. Specifically, with
probability 1� e , exploitation is carried out; otherwise, exploration
is performed.

Algorithm 2 e-greedy(G,k)

1: Input: uncertain influence graph G = (V,E,P), budget k
2: Output: seed nodes S with |S|= k
3: sample z from Bernoulli(e)
4: if z = 0 then S Explore(G,k)
5: else S Exploit(G,k)
6: return S

In Exploit, we execute an offline IM algorithm, given the graph
information we have obtained so far. Recall that we model the
influence probability pi j between nodes i and j as a probability
distribution Pi j. We use the mean of Pi j to represent pi j, i.e., pi j =

E[Pi j] =
ai j

ai j+bi j
. A graph with the same node structure but with the

pi j values on edges constitutes an influence graph G0, on which
the offline IM algorithm is executed. Notice that when e = 0, the
solution reduces to exploit-only, i.e., the IM algorithm is run on G0

only.
The main problem of Exploit is that estimating pi j by E[Pi j]

can be erroneous. For example, when Pi j is a highly uncertain
Beta distribution (e.g., the uniform distribution, B(1,1)), any value
in [0,1] can be the real influence probability. Let us consider a
node i that has, in reality, a high influence probability pi j on another
node j. Due to the large variance in Pi j , its value is underestimated.
This reduces the chance that Exploit chooses node i to activate;
consequently, the seed nodes selected may not be the best. The
Explore routine is designed to alleviate this problem. Rather than
equating pi j to E[Pi j], pi j is over-estimated by using Pi j’s standard
deviation, or si j , pi j = E[Pi j]+si j.

Then an offline IM algorithm on these new values of pi j is per-
formed. A node i that has a small chance to be chosen may now
have a higher probability to be selected. Our experiments show that
the use of Explore is especially useful during the first few trials
of the OIM solution, since the influence probability values during
that time may not be very accurate. From the feedback of activated
users, we can learn more about the influence probabilities of the
edges of i. We will discuss this in detail in Section 6.

This e-greedy algorithm has two problems. First, it is difficult
to set an appropriate e , which may have a large impact on its ef-
fectiveness. Second, increasing pi j by si j may not always be good.
Based on these observations, we next propose an improved version
of e-greedy.

2. Confidence-Bound (CB). The main idea of this strategy is to
use a real-valued parameter q to control the value of pi j:

pi j = E[Pi j]+qsi j. (5.1)

As shown in Algorithm 3, for every edge e from node i to j, we
compute its mean µi j, variance si j, and influence probability pi j
based on q (Lines 3-6). An offline IM algorithm is then run on G0,
the influence graph with the probabilities computed by Equation 5.1
(Lines 7-8). The set S of seed nodes is then returned (Line 9).

Algorithm 3 CB(G,k)

1: Input: uncertain influence graph G = (V,E,P), budget k
2: Output: seed nodes S with |S|= k
3: for e 2 E do
4: µi j

ai j
ai j+bi j

5: si j 1
(ai j+bi j)

·
r

ai jbi j
(ai j+bi j+1)

6: pi j µi j +qsi j

7: G0 G, with edge probabilities pi j,8(i, j) 2 E
8: S IM(G0,k)
9: return S

 Feedback

Global

Local

 in CB

Global Update
(Sec 6.2)

Local Update (Sec 6.1)

 Update
(Sec 6.3)

Update in the nth trial

Figure 2: Updating the influence graph and q with user feedback.

Setting q . The key issue of Algorithm 3 is how to determine
the value of q , so that the best S can be found. Observe that when
q = 0, pi j becomes µi j or E[Pi j], and CB reduces to Exploit of the
e-greedy algorithm. On the other hand, when q = 1, pi j becomes
E[Pi j] +si j, and CB is essentially Explore. Thus, e-greedy is a
special case of CB. However, CB does not restrict the value of q to
zero or one. Thus, CB is more flexible and general than e-greedy.

In general, when q > 0 is used, it means that CB considers the
influence probabilities given by µi j’s to be under-estimated, and it
attempts to improve the activation effect by using larger values of pi j .
On the contrary, if q < 0, the influence probabilities are considered
to be over-estimated, and CB reduces their values accordingly. As we
will discuss in Section 6.3, q can be automatically adjusted based
on the feedback returned by activated users. This is better than
e-greedy, where the value of e is hard to set. Note that we choose
to use a global q instead of a local one on each edge, to reduce the
number of parameters to be optimized and to improve efficiency.

6. MANAGING USER FEEDBACK
Recall from Algorithm 1 that after the seed nodes S are obtained

from Choose (Line 5), they are activated in the real world. We then
collect feedback from the users represented by these nodes (Lines 6–
7). The feedback describes which users are influenced, and whether
each activation is successful. For instances of such feedback traces,
take for example Twitter and other micro-bloggin platforms. In
these, the system can track actions such as likes and retweets which
are reasonable indicators of influence propagation. We now explain
how to use the feedback information to perform Update (Line 8),
which refreshes the values of influence probabilities and q used in
the CB algorithm.

Given a trial n in Algorithm 1, let An be the set of activated nodes
in that trial, and Fn be the set of activation results. Specifically,
Fn contains tuples in the form of (i, j,ai j), where i and j are users
between which an activation was attempted; ai j = 1 if the influence
was successful, and ai j = 0 otherwise. Note that (i, j) is an edge of

Choose: Confidence Bound
Advantages of CB:

• allows the update of ε
probabilities for a fixed
choice of θ values —
Exponentiated Gradient (EG)

• using CB with EG allows a
theoretical regret bound for a
given choice of (constant) θ
values

Algorithm 4 ExponentiatedGradient(~', �, G
n

, j,w)

1: Input: ~', probability distribution; �, accuracy parame-
ter; G

n

, the gain obtained; j, the index of latest used ✓
j

;
w, a vector of weights; N , the number of trials.

2: Output: ✓

3: �
q

ln(q/�)

qN

, ⌧ 4q�

3+�

, � ⌧

2q

4: for i = 1 to q do

5: w
i

 w
i

⇥ exp
⇣
�⇥ Gn⇥I[i=j]+�

'i

⌘

6: for i = 1 to q do
7: '

i

 (1� ⌧)⇥ wiPk
j=1 wj

+ ⌧ ⇥ 1

q

8: return sample from ~✓ according to ~' distribution

In [5], it is shown that, for a choice of constant ✓’s, Ex-
ponentiatedGradient can provide a regret bound on the
optimal sequence of chosen ✓ in the vector. In our case, the
experimental results also show that ExponentiatedGradient
is the best performing strategy.

7. INCREMENTAL SOLUTION FOR OIM
In our OIM framework, an IM algorithm is invoked once

in every trial to select seeds. However, the state-of-the-art
IM algorithms with good theoretical approximation bounds,
such as CELF, TIM, and TIM+, are generally costly to run,
especially for large graphs with high influence probabilities.
For instance, in our experiments in the DBLP dataset2,
which has around 2,000,000 edges, the best known algorithm
(TIM+) also takes around half an hour to select the nodes
for a trial. Since every run of OIM takes multiple trials,
the running time can be too high in practical terms. To
alleviate this issue, we explore in this section the possibility
to increase the scalability of the OIM framework, by re-using
computations between trials.
The first observation is that all the IM algorithms with

theoretical approximation bounds are sample based, and
follow the general sampling process illustrated in Figure 3(a).
Every time an algorithm requires a sample, it samples the
influence graph based on the edge influence probabilities and
stores it in a sample, say s. Moreover, their running time is
dominated by the cost of sampling the influence graph (the
thick arrow in Figure 3(a)). For example, more than 99% of
the computation of TIM+ is spent in sampling the random
reverse reachable sets in the influence graph [26].

Secondly, the size of the real-world feedback F
n

is relatively
small compared with the number of edges in a graph. For
instance, in DBLP with k = 1 and using TIM+, the average
|F

n

| is less than 1% of the total number of edges in the graph.
This makes intuitive sense. Since samples are generated
based on the influence graph, and the real-world feedback
only influences a small part of the graph, it would only
a↵ect few samples taken from the updated influence graph
in the next trial. This motivates us to explore methods
which can save the computational e↵ort, especially the e↵ort
in sampling, by reusing samples of previous trials, without
incurring much error.

7.1 Solution Framework
To explain our approach, we introduce a sample manager

(SM) which is responsible for the sampling procedure for the
2Detailed description of the dataset is given in Section 8.

sample-based IM algorithms. Generally speaking, when the
IM algorithm requires a sample of the influence graph, it
sends the request to SM, which will then return a sample to
it. To enable an incremental approach that reuses the com-
putational e↵ort, SM stores the samples from the previous
iterations in a sample pool. In the new trial, it attempts to
reuse the stored samples, if possible, instead of sampling the
influence graph again.

The principle of SM is illustrated in Figure 3(b). In a new
trial, when the sample-based IM algorithm requires a sample,
it sends requests to SM (Step 1). SM then randomly selects
a sample s, which has not been used in this trial, from the
sample pool (Step 2). After that, SM conducts two checks,
called local check and global check, on s, whose purpose is
to determine whether s is allowed to be reused after local
and global updates performed in previous rounds (Step 3).
If s passes these two checks, SM simply returns the sample
to the IM algorithm (Step 4); otherwise, SM generates a
new sample s0 based on the current influence graph (Step
5), and returns it to the IM algorithm (Step 6) as well as
replaces s by s0 in the sample pool (Step 7).
In the above framework, assuming that conducting the

local and global checks is much more e�cient than sampling
the influence graph and the ratio of reused samples is high,
SM has the potential to significantly reduce the running time
of the IM algorithm in the OIM framework.

Next, we demonstrate how this principle can be applied in
practice on the TIM+ algorithm. Please note that the same
principle can be easily applied to develop the incremental
approaches for other sample-based IM algorithms.

7.2 Case Study: TIM+
In this section, we demonstrate the case that TIM+ is exe-

cuted when an IM algorithm is called in OIM framework. For
example, in Explore, TIM+ is run with the input influence
graph obtained by taking the mean of the random variable as
the influence probability of the edge, i.e., p

ij

=
↵ij

↵ij+�ij
. We

next demonstrate how to develop the incremental approach
for TIM+ in Exploit with SM. The principle also applies for
Explore as well as CB. We focus on Exploit here and omit
details for others.

Briefly speaking, TIM+ generates a set of random reverse
reachable sets (or random RR sets) on the influence graph,
and estimates the expected spread of nodes, based on the
generated random RR sets. Here, an RR set for node v 2 V ,
denoted by R

v

, is a set of nodes which are: (1) generated on
an instance of a randomly sampled influence graph g (an edge
exists with a probability equal to its influence probability),
and (2) able to reach v in the sampled graph g. In other
words, 8i 2 R

v

, there exists a path from i to v in g. A random
RR set is then an RR set where v is selected uniformly at
random from V . We omit the formal definition of random RR
sets as well as their generation and refer interested readers
to [26] for details.

Let E(R
v

) be the set of all incoming edges for nodes in R
v

,
i.e., E(R

v

) = {(i, j)|(i, j) 2 E ^ j 2 R
v

}. The next lemma is
the foundation of the incremental approach for TIM+.

Lemma 1. Given node v 2 V , the occurrence probability of
an RR set (R

v

) keeps unchanged if the influence probabilities
for edges in E(R

v

) do not change.

Proof. Let ⇠
ij

be a random variable for the existence of
edge (i, j) 2 E. We have ⇠

ij

= 1 with probability of p
ij

, and

Real-World Feedback

Once a strategy has been chosen and a seed set
identified:

• we test S in the real-world (posting on Twitter, flyers
in a city,…)

• in round n, we get activation feedback composed
of activated nodes , and feedback set —
tuples for every affected edge

An Fn
(i, j, aij)

Update Step
Two approaches to Update:

• local update: each edge in the
feedback is updated in a
Bayesian manner

• global update: each edge in
the graph is updated using
methods such as maximum
likelihood or least squares
regression

• can also be combined

!Feedback

Global

Local

Local Update

Beta distribution is a conjugate prior of the Bernoulli
distribution — the update is straightforward:

• success

• failure

• same as counting the number of successful and
failed activations for each edge

aij = 1 =) Pij ⇠ Beta(↵ij + 1,�ij)

aij = 0 =) Pij ⇠ Beta(↵ij ,�ij + 1)

Global Update

Only using local update might be too sparse —
especially for low influence probabilities, can lead to
over reliance on the prior.

Solution: update also the prior for all edges, using all
the feedback history

Global Update
Ordinary Least Squares (LSE): update via least
squares estimation, from the formula of a spread of a
node:

which leads to

Let us first explain the reasoning when there is one seed
node (i.e., |S

n

| = 1), and we fix ↵ = 1. Let A
n

be the
set of successful activated nodes before the n-th trial (i.e.,
A

n

= [n�1

l=1

A
l

), and �
n

({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For S

n

= {s}, �
n

({s})
is:

�
n

({s}) = 1 +
X

(s,i)2E

i 62An

p
si

⇥ �
n

({i}) +
X

(s,i)2E

i2An

p
si

⇥ (�
n

({i})� 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities p

si

and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate �
n

({s}) by |A
n

| from the feedback obtained by
the influence campaign. We also estimate p

si

= ↵+hsi
↵+hsi+�+msi

,

i.e., the mean of B(↵
ij

, �
ij

). Note that h
si

+m
si

is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use t

s

to denote h
si

+m
si

8(s, i) 2 E. By
further estimating �

n

({i}) by an overall estimation �̂
n

and
set ↵ = 1, we obtain

|A
n

| = 1+
1

� + t
s

+ 1

0

@
X

(s,i)2E

(h
si

+ 1)�̂
n

�
X

(s,i)2E,i2An

(h
si

+ 1)

1

A .

Let o
s

be the outgoing degree of s, a
s

be the number of
(previously) activated neighbors of s (i.e., a

s

= |{i|(s, i) 2
E^i 2 A

n

}|), h
s

be the number of total successful activations
(or hits) on outgoing edges of s, and h

as

be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|A
n

|� 1)� = (1� |A
n

|)(t
s

+ 1) + (h
s

+ o
s

)�̂
n

� (h
as

+ a
s

).

We then rewrite it as the form of x
n

� = y
n

. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
�, �̂:

�̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values x
n

and y
n

. The same
principles apply when estimating ↵ and � simultaneously,
and we omit the details here.
We estimate �̂

n

by the average spread of the node from
the activation campaigns, i.e., �̂

n

=
P

n

l=1

|A
n

|/
P

n

l=1

|S
n

|.
Note that, when �̂

n

= 0, the equation for |A
n

| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |S
n

| > 1, which might
result in an equation at least quadratic in �, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing x

n

and y
n

by the sum over all s 2 S
n

.
We remark that the estimator above su↵ers from the re-

liance on the spread estimation �̂
n

. However, it is a good
option when we cannot access the full activation feedback
F

n

, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set A

n

). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in A

n

.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
F

n

given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters ↵ and �:

L(F
n

) =
Y

(i,j,aij)2Fn

p
aij
ij

(1� p
ij

)1�aij ,

L(F
n

| ↵,�) =
Y

(i,j,aij)2Fn

(↵+ h
ij

)aij (� +m
ij

)1�aij

↵+ � + h
ij

+m
ij

.

We need to find the parameters ↵ and � which maximize
the likelihood:

argmax
↵,�

L(F
n

| ↵,�).

To simplify calculations we take the maximum of the log
likelihood:

logL(F
n

| ↵,�) =
X

(i,j,aij)2Fn

a
ij

log(↵+ h
ij

)

+
X

(i,j,aij)2Fn

(1� a
ij

) log(� +m
ij

)

�
X

(i,j,aij)2Fn

log(↵+ � + h
ij

+m
ij

).

The optimal values are obtained by solving the equations
@ logL(Fn|↵,�)

@↵

= 0 and @ logL(Fn|↵,�)

@�

= 0 for ↵ and �, respec-
tively, which can be simplified as

X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

=
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

This equation can be solved numerically by setting ↵ and
solving �. In practice, we can fix ↵ = 1, and let f(�) be

f(�) =
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

�
X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

Since f(�) is a monotonically decreasing function of � (f 0(�) 6
0 8� > 1), we can solve f(�) = 0 by a binary search algo-
rithm with an error bound ⌘ (e.g., 10�6). And thus, the
global ↵ and � priors are updated accordingly.

6.3 Updating ~✓

We now explain how to dynamically update the value of ✓
used in the CB strategy (Section 5.2).

Let ~✓ = {✓
1

, ✓
2

, . . . , ✓
q

} be the q possible values of ✓. We
also let ~' = {'

1

,'
2

, . . . ,'
q

}, where '
j

is the probability of
using ✓

j

in CB. Initially, '
j

= 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as G

n

= |A
n

|/|V |, where |A
n

| is the real
influence spread observed in each round. We then determine
~✓ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of ✓

j

used
in this trial results in a high gain, the corresponding '

j

will
be increased by the algorithm, making ✓

j

more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, � and � are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~' by normal-
izing vector w with regularization factor ⌧ . All the values in
w are initialized with the value of 1.

Let us first explain the reasoning when there is one seed
node (i.e., |S

n

| = 1), and we fix ↵ = 1. Let A
n

be the
set of successful activated nodes before the n-th trial (i.e.,
A

n

= [n�1

l=1

A
l

), and �
n

({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For S

n

= {s}, �
n

({s})
is:

�
n

({s}) = 1 +
X

(s,i)2E

i 62An

p
si

⇥ �
n

({i}) +
X

(s,i)2E

i2An

p
si

⇥ (�
n

({i})� 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities p

si

and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate �
n

({s}) by |A
n

| from the feedback obtained by
the influence campaign. We also estimate p

si

= ↵+hsi
↵+hsi+�+msi

,

i.e., the mean of B(↵
ij

, �
ij

). Note that h
si

+m
si

is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use t

s

to denote h
si

+m
si

8(s, i) 2 E. By
further estimating �

n

({i}) by an overall estimation �̂
n

and
set ↵ = 1, we obtain

|A
n

| = 1+
1

� + t
s

+ 1

0

@
X

(s,i)2E

(h
si

+ 1)�̂
n

�
X

(s,i)2E,i2An

(h
si

+ 1)

1

A .

Let o
s

be the outgoing degree of s, a
s

be the number of
(previously) activated neighbors of s (i.e., a

s

= |{i|(s, i) 2
E^i 2 A

n

}|), h
s

be the number of total successful activations
(or hits) on outgoing edges of s, and h

as

be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|A
n

|� 1)� = (1� |A
n

|)(t
s

+ 1) + (h
s

+ o
s

)�̂
n

� (h
as

+ a
s

).

We then rewrite it as the form of x
n

� = y
n

. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
�, �̂:

�̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values x
n

and y
n

. The same
principles apply when estimating ↵ and � simultaneously,
and we omit the details here.
We estimate �̂

n

by the average spread of the node from
the activation campaigns, i.e., �̂

n

=
P

n

l=1

|A
n

|/
P

n

l=1

|S
n

|.
Note that, when �̂

n

= 0, the equation for |A
n

| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |S
n

| > 1, which might
result in an equation at least quadratic in �, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing x

n

and y
n

by the sum over all s 2 S
n

.
We remark that the estimator above su↵ers from the re-

liance on the spread estimation �̂
n

. However, it is a good
option when we cannot access the full activation feedback
F

n

, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set A

n

). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in A

n

.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
F

n

given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters ↵ and �:

L(F
n

) =
Y

(i,j,aij)2Fn

p
aij
ij

(1� p
ij

)1�aij ,

L(F
n

| ↵,�) =
Y

(i,j,aij)2Fn

(↵+ h
ij

)aij (� +m
ij

)1�aij

↵+ � + h
ij

+m
ij

.

We need to find the parameters ↵ and � which maximize
the likelihood:

argmax
↵,�

L(F
n

| ↵,�).

To simplify calculations we take the maximum of the log
likelihood:

logL(F
n

| ↵,�) =
X

(i,j,aij)2Fn

a
ij

log(↵+ h
ij

)

+
X

(i,j,aij)2Fn

(1� a
ij

) log(� +m
ij

)

�
X

(i,j,aij)2Fn

log(↵+ � + h
ij

+m
ij

).

The optimal values are obtained by solving the equations
@ logL(Fn|↵,�)

@↵

= 0 and @ logL(Fn|↵,�)

@�

= 0 for ↵ and �, respec-
tively, which can be simplified as

X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

=
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

This equation can be solved numerically by setting ↵ and
solving �. In practice, we can fix ↵ = 1, and let f(�) be

f(�) =
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

�
X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

Since f(�) is a monotonically decreasing function of � (f 0(�) 6
0 8� > 1), we can solve f(�) = 0 by a binary search algo-
rithm with an error bound ⌘ (e.g., 10�6). And thus, the
global ↵ and � priors are updated accordingly.

6.3 Updating ~✓

We now explain how to dynamically update the value of ✓
used in the CB strategy (Section 5.2).

Let ~✓ = {✓
1

, ✓
2

, . . . , ✓
q

} be the q possible values of ✓. We
also let ~' = {'

1

,'
2

, . . . ,'
q

}, where '
j

is the probability of
using ✓

j

in CB. Initially, '
j

= 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as G

n

= |A
n

|/|V |, where |A
n

| is the real
influence spread observed in each round. We then determine
~✓ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of ✓

j

used
in this trial results in a high gain, the corresponding '

j

will
be increased by the algorithm, making ✓

j

more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, � and � are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~' by normal-
izing vector w with regularization factor ⌧ . All the values in
w are initialized with the value of 1.

Let us first explain the reasoning when there is one seed
node (i.e., |S

n

| = 1), and we fix ↵ = 1. Let A
n

be the
set of successful activated nodes before the n-th trial (i.e.,
A

n

= [n�1

l=1

A
l

), and �
n

({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For S

n

= {s}, �
n

({s})
is:

�
n

({s}) = 1 +
X

(s,i)2E

i 62An

p
si

⇥ �
n

({i}) +
X

(s,i)2E

i2An

p
si

⇥ (�
n

({i})� 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities p

si

and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate �
n

({s}) by |A
n

| from the feedback obtained by
the influence campaign. We also estimate p

si

= ↵+hsi
↵+hsi+�+msi

,

i.e., the mean of B(↵
ij

, �
ij

). Note that h
si

+m
si

is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use t

s

to denote h
si

+m
si

8(s, i) 2 E. By
further estimating �

n

({i}) by an overall estimation �̂
n

and
set ↵ = 1, we obtain

|A
n

| = 1+
1

� + t
s

+ 1

0

@
X

(s,i)2E

(h
si

+ 1)�̂
n

�
X

(s,i)2E,i2An

(h
si

+ 1)

1

A .

Let o
s

be the outgoing degree of s, a
s

be the number of
(previously) activated neighbors of s (i.e., a

s

= |{i|(s, i) 2
E^i 2 A

n

}|), h
s

be the number of total successful activations
(or hits) on outgoing edges of s, and h

as

be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|A
n

|� 1)� = (1� |A
n

|)(t
s

+ 1) + (h
s

+ o
s

)�̂
n

� (h
as

+ a
s

).

We then rewrite it as the form of x
n

� = y
n

. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
�, �̂:

�̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values x
n

and y
n

. The same
principles apply when estimating ↵ and � simultaneously,
and we omit the details here.
We estimate �̂

n

by the average spread of the node from
the activation campaigns, i.e., �̂

n

=
P

n

l=1

|A
n

|/
P

n

l=1

|S
n

|.
Note that, when �̂

n

= 0, the equation for |A
n

| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |S
n

| > 1, which might
result in an equation at least quadratic in �, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing x

n

and y
n

by the sum over all s 2 S
n

.
We remark that the estimator above su↵ers from the re-

liance on the spread estimation �̂
n

. However, it is a good
option when we cannot access the full activation feedback
F

n

, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set A

n

). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in A

n

.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
F

n

given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters ↵ and �:

L(F
n

) =
Y

(i,j,aij)2Fn

p
aij
ij

(1� p
ij

)1�aij ,

L(F
n

| ↵,�) =
Y

(i,j,aij)2Fn

(↵+ h
ij

)aij (� +m
ij

)1�aij

↵+ � + h
ij

+m
ij

.

We need to find the parameters ↵ and � which maximize
the likelihood:

argmax
↵,�

L(F
n

| ↵,�).

To simplify calculations we take the maximum of the log
likelihood:

logL(F
n

| ↵,�) =
X

(i,j,aij)2Fn

a
ij

log(↵+ h
ij

)

+
X

(i,j,aij)2Fn

(1� a
ij

) log(� +m
ij

)

�
X

(i,j,aij)2Fn

log(↵+ � + h
ij

+m
ij

).

The optimal values are obtained by solving the equations
@ logL(Fn|↵,�)

@↵

= 0 and @ logL(Fn|↵,�)

@�

= 0 for ↵ and �, respec-
tively, which can be simplified as

X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

=
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

This equation can be solved numerically by setting ↵ and
solving �. In practice, we can fix ↵ = 1, and let f(�) be

f(�) =
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

�
X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

Since f(�) is a monotonically decreasing function of � (f 0(�) 6
0 8� > 1), we can solve f(�) = 0 by a binary search algo-
rithm with an error bound ⌘ (e.g., 10�6). And thus, the
global ↵ and � priors are updated accordingly.

6.3 Updating ~✓

We now explain how to dynamically update the value of ✓
used in the CB strategy (Section 5.2).

Let ~✓ = {✓
1

, ✓
2

, . . . , ✓
q

} be the q possible values of ✓. We
also let ~' = {'

1

,'
2

, . . . ,'
q

}, where '
j

is the probability of
using ✓

j

in CB. Initially, '
j

= 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as G

n

= |A
n

|/|V |, where |A
n

| is the real
influence spread observed in each round. We then determine
~✓ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of ✓

j

used
in this trial results in a high gain, the corresponding '

j

will
be increased by the algorithm, making ✓

j

more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, � and � are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~' by normal-
izing vector w with regularization factor ⌧ . All the values in
w are initialized with the value of 1.

Let us first explain the reasoning when there is one seed
node (i.e., |S

n

| = 1), and we fix ↵ = 1. Let A
n

be the
set of successful activated nodes before the n-th trial (i.e.,
A

n

= [n�1

l=1

A
l

), and �
n

({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For S

n

= {s}, �
n

({s})
is:

�
n

({s}) = 1 +
X

(s,i)2E

i 62An

p
si

⇥ �
n

({i}) +
X

(s,i)2E

i2An

p
si

⇥ (�
n

({i})� 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities p

si

and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate �
n

({s}) by |A
n

| from the feedback obtained by
the influence campaign. We also estimate p

si

= ↵+hsi
↵+hsi+�+msi

,

i.e., the mean of B(↵
ij

, �
ij

). Note that h
si

+m
si

is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use t

s

to denote h
si

+m
si

8(s, i) 2 E. By
further estimating �

n

({i}) by an overall estimation �̂
n

and
set ↵ = 1, we obtain

|A
n

| = 1+
1

� + t
s

+ 1

0

@
X

(s,i)2E

(h
si

+ 1)�̂
n

�
X

(s,i)2E,i2An

(h
si

+ 1)

1

A .

Let o
s

be the outgoing degree of s, a
s

be the number of
(previously) activated neighbors of s (i.e., a

s

= |{i|(s, i) 2
E^i 2 A

n

}|), h
s

be the number of total successful activations
(or hits) on outgoing edges of s, and h

as

be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|A
n

|� 1)� = (1� |A
n

|)(t
s

+ 1) + (h
s

+ o
s

)�̂
n

� (h
as

+ a
s

).

We then rewrite it as the form of x
n

� = y
n

. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
�, �̂:

�̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values x
n

and y
n

. The same
principles apply when estimating ↵ and � simultaneously,
and we omit the details here.
We estimate �̂

n

by the average spread of the node from
the activation campaigns, i.e., �̂

n

=
P

n

l=1

|A
n

|/
P

n

l=1

|S
n

|.
Note that, when �̂

n

= 0, the equation for |A
n

| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |S
n

| > 1, which might
result in an equation at least quadratic in �, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing x

n

and y
n

by the sum over all s 2 S
n

.
We remark that the estimator above su↵ers from the re-

liance on the spread estimation �̂
n

. However, it is a good
option when we cannot access the full activation feedback
F

n

, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set A

n

). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in A

n

.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
F

n

given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters ↵ and �:

L(F
n

) =
Y

(i,j,aij)2Fn

p
aij
ij

(1� p
ij

)1�aij ,

L(F
n

| ↵,�) =
Y

(i,j,aij)2Fn

(↵+ h
ij

)aij (� +m
ij

)1�aij

↵+ � + h
ij

+m
ij

.

We need to find the parameters ↵ and � which maximize
the likelihood:

argmax
↵,�

L(F
n

| ↵,�).

To simplify calculations we take the maximum of the log
likelihood:

logL(F
n

| ↵,�) =
X

(i,j,aij)2Fn

a
ij

log(↵+ h
ij

)

+
X

(i,j,aij)2Fn

(1� a
ij

) log(� +m
ij

)

�
X

(i,j,aij)2Fn

log(↵+ � + h
ij

+m
ij

).

The optimal values are obtained by solving the equations
@ logL(Fn|↵,�)

@↵

= 0 and @ logL(Fn|↵,�)

@�

= 0 for ↵ and �, respec-
tively, which can be simplified as

X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

=
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

This equation can be solved numerically by setting ↵ and
solving �. In practice, we can fix ↵ = 1, and let f(�) be

f(�) =
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

�
X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

Since f(�) is a monotonically decreasing function of � (f 0(�) 6
0 8� > 1), we can solve f(�) = 0 by a binary search algo-
rithm with an error bound ⌘ (e.g., 10�6). And thus, the
global ↵ and � priors are updated accordingly.

6.3 Updating ~✓

We now explain how to dynamically update the value of ✓
used in the CB strategy (Section 5.2).

Let ~✓ = {✓
1

, ✓
2

, . . . , ✓
q

} be the q possible values of ✓. We
also let ~' = {'

1

,'
2

, . . . ,'
q

}, where '
j

is the probability of
using ✓

j

in CB. Initially, '
j

= 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as G

n

= |A
n

|/|V |, where |A
n

| is the real
influence spread observed in each round. We then determine
~✓ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of ✓

j

used
in this trial results in a high gain, the corresponding '

j

will
be increased by the algorithm, making ✓

j

more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, � and � are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~' by normal-
izing vector w with regularization factor ⌧ . All the values in
w are initialized with the value of 1.

Global Update

Maximum Likelihood (MLE): assume edges are
independent:

and the parameters can be estimated from

Let us first explain the reasoning when there is one seed
node (i.e., |S

n

| = 1), and we fix ↵ = 1. Let A
n

be the
set of successful activated nodes before the n-th trial (i.e.,
A

n

= [n�1

l=1

A
l

), and �
n

({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For S

n

= {s}, �
n

({s})
is:

�
n

({s}) = 1 +
X

(s,i)2E

i 62An

p
si

⇥ �
n

({i}) +
X

(s,i)2E

i2An

p
si

⇥ (�
n

({i})� 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities p

si

and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate �
n

({s}) by |A
n

| from the feedback obtained by
the influence campaign. We also estimate p

si

= ↵+hsi
↵+hsi+�+msi

,

i.e., the mean of B(↵
ij

, �
ij

). Note that h
si

+m
si

is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use t

s

to denote h
si

+m
si

8(s, i) 2 E. By
further estimating �

n

({i}) by an overall estimation �̂
n

and
set ↵ = 1, we obtain

|A
n

| = 1+
1

� + t
s

+ 1

0

@
X

(s,i)2E

(h
si

+ 1)�̂
n

�
X

(s,i)2E,i2An

(h
si

+ 1)

1

A .

Let o
s

be the outgoing degree of s, a
s

be the number of
(previously) activated neighbors of s (i.e., a

s

= |{i|(s, i) 2
E^i 2 A

n

}|), h
s

be the number of total successful activations
(or hits) on outgoing edges of s, and h

as

be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|A
n

|� 1)� = (1� |A
n

|)(t
s

+ 1) + (h
s

+ o
s

)�̂
n

� (h
as

+ a
s

).

We then rewrite it as the form of x
n

� = y
n

. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
�, �̂:

�̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values x
n

and y
n

. The same
principles apply when estimating ↵ and � simultaneously,
and we omit the details here.
We estimate �̂

n

by the average spread of the node from
the activation campaigns, i.e., �̂

n

=
P

n

l=1

|A
n

|/
P

n

l=1

|S
n

|.
Note that, when �̂

n

= 0, the equation for |A
n

| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |S
n

| > 1, which might
result in an equation at least quadratic in �, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing x

n

and y
n

by the sum over all s 2 S
n

.
We remark that the estimator above su↵ers from the re-

liance on the spread estimation �̂
n

. However, it is a good
option when we cannot access the full activation feedback
F

n

, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set A

n

). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in A

n

.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
F

n

given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters ↵ and �:

L(F
n

) =
Y

(i,j,aij)2Fn

p
aij
ij

(1� p
ij

)1�aij ,

L(F
n

| ↵,�) =
Y

(i,j,aij)2Fn

(↵+ h
ij

)aij (� +m
ij

)1�aij

↵+ � + h
ij

+m
ij

.

We need to find the parameters ↵ and � which maximize
the likelihood:

argmax
↵,�

L(F
n

| ↵,�).

To simplify calculations we take the maximum of the log
likelihood:

logL(F
n

| ↵,�) =
X

(i,j,aij)2Fn

a
ij

log(↵+ h
ij

)

+
X

(i,j,aij)2Fn

(1� a
ij

) log(� +m
ij

)

�
X

(i,j,aij)2Fn

log(↵+ � + h
ij

+m
ij

).

The optimal values are obtained by solving the equations
@ logL(Fn|↵,�)

@↵

= 0 and @ logL(Fn|↵,�)

@�

= 0 for ↵ and �, respec-
tively, which can be simplified as

X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

=
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

This equation can be solved numerically by setting ↵ and
solving �. In practice, we can fix ↵ = 1, and let f(�) be

f(�) =
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

�
X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

Since f(�) is a monotonically decreasing function of � (f 0(�) 6
0 8� > 1), we can solve f(�) = 0 by a binary search algo-
rithm with an error bound ⌘ (e.g., 10�6). And thus, the
global ↵ and � priors are updated accordingly.

6.3 Updating ~✓

We now explain how to dynamically update the value of ✓
used in the CB strategy (Section 5.2).

Let ~✓ = {✓
1

, ✓
2

, . . . , ✓
q

} be the q possible values of ✓. We
also let ~' = {'

1

,'
2

, . . . ,'
q

}, where '
j

is the probability of
using ✓

j

in CB. Initially, '
j

= 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as G

n

= |A
n

|/|V |, where |A
n

| is the real
influence spread observed in each round. We then determine
~✓ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of ✓

j

used
in this trial results in a high gain, the corresponding '

j

will
be increased by the algorithm, making ✓

j

more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, � and � are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~' by normal-
izing vector w with regularization factor ⌧ . All the values in
w are initialized with the value of 1.

Let us first explain the reasoning when there is one seed
node (i.e., |S

n

| = 1), and we fix ↵ = 1. Let A
n

be the
set of successful activated nodes before the n-th trial (i.e.,
A

n

= [n�1

l=1

A
l

), and �
n

({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For S

n

= {s}, �
n

({s})
is:

�
n

({s}) = 1 +
X

(s,i)2E

i 62An

p
si

⇥ �
n

({i}) +
X

(s,i)2E

i2An

p
si

⇥ (�
n

({i})� 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities p

si

and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate �
n

({s}) by |A
n

| from the feedback obtained by
the influence campaign. We also estimate p

si

= ↵+hsi
↵+hsi+�+msi

,

i.e., the mean of B(↵
ij

, �
ij

). Note that h
si

+m
si

is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use t

s

to denote h
si

+m
si

8(s, i) 2 E. By
further estimating �

n

({i}) by an overall estimation �̂
n

and
set ↵ = 1, we obtain

|A
n

| = 1+
1

� + t
s

+ 1

0

@
X

(s,i)2E

(h
si

+ 1)�̂
n

�
X

(s,i)2E,i2An

(h
si

+ 1)

1

A .

Let o
s

be the outgoing degree of s, a
s

be the number of
(previously) activated neighbors of s (i.e., a

s

= |{i|(s, i) 2
E^i 2 A

n

}|), h
s

be the number of total successful activations
(or hits) on outgoing edges of s, and h

as

be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|A
n

|� 1)� = (1� |A
n

|)(t
s

+ 1) + (h
s

+ o
s

)�̂
n

� (h
as

+ a
s

).

We then rewrite it as the form of x
n

� = y
n

. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
�, �̂:

�̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values x
n

and y
n

. The same
principles apply when estimating ↵ and � simultaneously,
and we omit the details here.
We estimate �̂

n

by the average spread of the node from
the activation campaigns, i.e., �̂

n

=
P

n

l=1

|A
n

|/
P

n

l=1

|S
n

|.
Note that, when �̂

n

= 0, the equation for |A
n

| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |S
n

| > 1, which might
result in an equation at least quadratic in �, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing x

n

and y
n

by the sum over all s 2 S
n

.
We remark that the estimator above su↵ers from the re-

liance on the spread estimation �̂
n

. However, it is a good
option when we cannot access the full activation feedback
F

n

, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set A

n

). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in A

n

.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
F

n

given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters ↵ and �:

L(F
n

) =
Y

(i,j,aij)2Fn

p
aij
ij

(1� p
ij

)1�aij ,

L(F
n

| ↵,�) =
Y

(i,j,aij)2Fn

(↵+ h
ij

)aij (� +m
ij

)1�aij

↵+ � + h
ij

+m
ij

.

We need to find the parameters ↵ and � which maximize
the likelihood:

argmax
↵,�

L(F
n

| ↵,�).

To simplify calculations we take the maximum of the log
likelihood:

logL(F
n

| ↵,�) =
X

(i,j,aij)2Fn

a
ij

log(↵+ h
ij

)

+
X

(i,j,aij)2Fn

(1� a
ij

) log(� +m
ij

)

�
X

(i,j,aij)2Fn

log(↵+ � + h
ij

+m
ij

).

The optimal values are obtained by solving the equations
@ logL(Fn|↵,�)

@↵

= 0 and @ logL(Fn|↵,�)

@�

= 0 for ↵ and �, respec-
tively, which can be simplified as

X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

=
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

This equation can be solved numerically by setting ↵ and
solving �. In practice, we can fix ↵ = 1, and let f(�) be

f(�) =
X

(i,j,aij)2Fn,aij=0

1
� +m

ij

�
X

(i,j,aij)2Fn,aij=1

1
↵+ h

ij

Since f(�) is a monotonically decreasing function of � (f 0(�) 6
0 8� > 1), we can solve f(�) = 0 by a binary search algo-
rithm with an error bound ⌘ (e.g., 10�6). And thus, the
global ↵ and � priors are updated accordingly.

6.3 Updating ~✓

We now explain how to dynamically update the value of ✓
used in the CB strategy (Section 5.2).

Let ~✓ = {✓
1

, ✓
2

, . . . , ✓
q

} be the q possible values of ✓. We
also let ~' = {'

1

,'
2

, . . . ,'
q

}, where '
j

is the probability of
using ✓

j

in CB. Initially, '
j

= 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as G

n

= |A
n

|/|V |, where |A
n

| is the real
influence spread observed in each round. We then determine
~✓ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of ✓

j

used
in this trial results in a high gain, the corresponding '

j

will
be increased by the algorithm, making ✓

j

more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, � and � are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~' by normal-
izing vector w with regularization factor ⌧ . All the values in
w are initialized with the value of 1.

Sampling Optimization
Even advanced algorithms rely on sampling for
influence estimation — costly over multiple rounds

• incremental optimization approach — reuse of
samples between rounds in little-affected parts of
the graph

Sample Pool

u

Node Activated
History

Sample-based
IM

Sample Pool
Local Check
Global Check

①

② ③ ⑤

④

⑦

⑥Pass

Fail

Sample Manager (SM)

Sample-based
IM

1

2

3

4

Influence Graph

(a) Non-incremental (b) Incremental

time-consuming

sample pool

node activated history

(c) Data in SM

Figure 3: Sample-based IM algorithms.

⇠
ij

= 0 with probability of 1� p
ij

. Pr(R
v

) is the probability
that the following two events happen: (i) 8i 2 R

v

, there
exists a path from i to v, i.e., 9j 2 R

v

s.t. ⇠
ij

= 1; and
(ii) 8i 62 R

v

, there exists no path from i to v, i.e., 8j 2 R
v

,
⇠
ij

= 0. And therefore, Pr(R
v

) is some function of p
ij

where
(i, j) 2 E(R

v

). Hence, if p
ij

(8(i, j) 2 E(R
v

)) is unchanged,
Pr(R

v

) keeps unchanged, too.

Let us consider SM introduced in Section 7.1. The samples
stored in SM for TIM+ are the random RR sets described
above. After each round, local and global graph updates may
be performed according to the real world feedback. Suppose
the current trial is n, for a randomly selected s (or R

v

) from
the sample pool, we have to conduct local and global checks
for it. Lemma 1 gives an intuition on how these checks can
be performed for these checks. Pr(R

v

) remains the same (or
only deviates a bit) if the updates have no e↵ect (or only
some minor e↵ects) on the influence probabilities for edges
in E(R

v

).
Before we detail the local and global checks, let us first

define the age of a sample s and the age of a node u. The
age of s is the trial when s was sampled, and the age of a
node u is the latest trial when the real world test attempted
to activate u (regardless of the activation’s success).

Local check. Let R
v

’s age to be t, and E
local

be the
set of edges that exist in the feedbacks from the t-th trial
to the (n � 1)-th trial, i.e., E

local

= {(i, j)|9q(t 6 q 6 n �
1) s.t. (i, j) 2 F

q

}. Local updates only a↵ect edges that are
included in the real world feedback, and so, E

local

\E(R
v

) = ;
indicates that influence probabilities for edges in E(R

v

) in
the n-th trial are the same as the ones in the t-th trial. Hence,
R

v

is not a↵ected by local updates. In other words,

(E
local

\ E(R
v

) = ;)) (R
v

passes local check) .

We use the sample and node ages for an e�cient local
check as follows.

Lemma 2 (Local Check). If for all u 2 R
v

, u’s age
is smaller than R

v

’s age, we have E
local

\ E(R
v

) = ;.

Proof. Recall that u’s age, denoted l, is the latest trial
that the real world test tried to activate it. We have,
(l < t)) (8(i, u) 2 E, (i, u, a

iu

) 62 F
q

(t 6 q 6 n � 1)).
Lemma 2 is then a direct consequence by considering the
definition of E

local

.

According to Lemma 2, we store the sample as well as its
age in the sample pool, and we also store the node’s age in
a node activated history (refer to Figure 3(c)). Then, the
time complexity to do local check is O(|R

v

|) as the age’s
information can be accessed in constant time.

Global check. After global update is performed, the
global ↵ and � priors may be changed. Since they are shared

by all edges, changes on global priors lead to changes on
all edges’ influence probabilities. However, we observe that
they will converge as we get more activation feedback from
the real world. Intuitively, if the influence probabilities for
edges in E(R

v

) only deviate a bit, there is only minor e↵ect
on the random RR sets. Note that, only samples which
pass local check will be then evaluated by the global check.
And so, if the global priors when the sample s (or R

v

) was
generated are close to the current global priors, the influence
probabilities for edges in E(R

v

) do not change much.
Let ↵t and �t be the priors at trial t, and the current priors

are ↵ and �. We use a threshold ⌧ to measure whether two
priors are close, moreover, whether global check is passed.
✓����

↵t

↵t + �t

� ↵

↵+ �

���� < ⌧

◆
) (R

v

passes global check) .

Hence, in SM, we also store the priors when the sample was
generated in the sample pool (Figure 3(c)). And therefore,
the global check is conducted in constant time O(1).
Discussions. The total time complexity of conducting

local and global checks on a sample R
v

is O(|R
v

|). As
mentioned in [26], the complexity of generating a sample R

v

is of the order of the total in-degree for nodes in R
v

, i.e.,
O(|E(R

v

)|). Let d be the average in-degree for a node, we
have |E(R

v

)| = d ⇥ |R
v

| on average. This indicates that
conducting checks for a sample is about d times faster than
generating a new sample. Hence, the incremental approach
for TIM+ with SM can significantly save computation e↵ort
if the ratio of re-used samples is high.

Note that if CB is employed, ✓ may also be updated accord-
ing to the real-world feedback. We design a similar mech-
anism with global check, called ✓ check, to verify whether
R

v

is allowed to be re-use. Let ✓t be the ✓ when R
v

was
generated and �t be the standard deviation for global prior.
We have

���✓t�t � ✓�
�� < ⌧

�
) (R

v

passes ✓ check) .

In the next section, we show our experimental results to
verify our OIM framework.

8. EXPERIMENTAL EVALUATION
We now present the results. Section 8.1 describes the

experiment settings. In Sections 8.2 and 8.3 we discuss our
results on di↵erent datasets.

8.1 Setup
We developed a “real-world simulator” to mimic the user

feedback process of Figure 1. This simulator first uses a real
social network to obtain a graph G. It then associates an
influence probability to each edge in G, where p

ij

= 1/d
j

,
with d

j

the in-degree of node j. This setting of influence

Results: effectiveness of
explore-exploit strategies

0 10 20 30 40 500

1,000

2,000

3,000

Trial (NETPHY, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

2,000

4,000

6,000

Trial (NETPHY, k = 10)
In

flu
en

ce
Sp

re
ad

Exploit e-greedy CB

Figure 4: Explore–exploit strategies

0 10 20 30 40 500

200

400

600

800

1,000

Trial (NETPHY, k = 1)

In
flu

en
ce

Sp
re

ad

(a) Different updates

0 50 100 150 200

600

800

1,000

1,200

Beta (NETPHY, k = 1)

In
flu

en
ce

Sp
re

ad

(b) Effect of priors

CB+MLE CB+LSE CB+LOC CB+NO

Figure 5: Comparing different updating methods

find that CB performs close to Real, and its discount on the spread
decreases with N. For example, when k = 5, the discount decreases
from 30% at N = 10 to 13% at N = 50. This indicates that, with
more real-world feedback, the learned graph for CB is closer to the
real graph, and thus, leads to a closer result to Real.

Explore–Exploit Strategies. We compare three versions of the
EE strategies for different k in Figure 4. We observe that Exploit
is the worst, since it may suffer from the wrong prediction of the
influence probabilities and does not explore other potential high
influencing nodes. CB is the best, especially, for small k. When
k = 5,N = 50, CB is about 20% and 32% better than e-greedy and
Exploit, respectively. The reason is that for a smaller k, fewer
feedback tuples are returned in one trial, which makes the learned
influence graph converge to the real graph slower. Hence, the effect
of exploration is strengthened, which is more favorable to CB. We
have also conducted experiments for e-greedy by varying e . We
observe that its performance is sensitive to e and e = 0.1 is the best
one in our results, but it is still worse than CB in all cases.

Updating the uncertain influence graph. In Figure 5a, we com-
pare different updating methods for the uncertain influence graph.
Although NO makes use of the prior knowledge about the influence
graph to select seeds, it still performs worse than other update op-
tions. LOC is slightly better, but still worse than MLE and LSE, since
it does not employ any global update and it suffers from the sparse-
ness of the activations. MLE is the best (about 25% better than LSE

and 40% better than LOC), which is consistent with the fact that MLE
makes use of the full feedback to update the graph while LSE only
utilizes the set of successfully activated nodes.

We also test the updating methods with different priors (Figure 5b)
to check whether they are sensitive to the prior. We observe that
while LOC and NO fluctuate a lot with different priors, MLE and LSE’s
performance is very stable. In fact, during different runs of MLE and
LSE with different priors, the global b values all converge to around
27. This supports the fact that the global updating techniques are

0 10 20 30 40 500

2,000

4,000

6,000

8,000

Trial (NETPHY, k = 1)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

(a) Time v.s. N

0 10 20 30 40 500

2,000

4,000

6,000

8,000

k (NETPHY, Budget = 50)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

(b) Time v.s. k

Random MaxDegree CB CB-INC

Figure 6: Cumulative running time

crucial when we do not have good prior information. Even an inexact
choice of prior will be generally fixed, minimizing the impact on
performance.

Efficiency. In Figure 6a, we illustrate the cumulative running
time for running N trials for different algorithms. Random and
MaxDegree are most efficient as they do not rely on any influence
evaluation. With the help of incremental approach, CB-INC runs sig-
nificantly faster than CB, and for the case where N > 10, it achieves
about 10 times speedup. For instance, at N = 50, CB-INC reduces
the running time by 88%, compared to CB. This is intuitive, as in the
first few trials the graph is more uncertain, and the updates affect the
samples a lot. However, when N > 10, we observe that the global
priors become more stable, leading to a high ratio of re-using sam-
ples (e.g., the ratio is about 80% to 99% when N > 10). Moreover,
the average in-degree of NETPHY is 12.46, making the time of
generating a new sample about an order of magnitude slower than
re-using a sample. These two factors together make CB-INC have a
much more efficient performance than CB.

We then show the efficiency results by fixing Budget = 50 and
varying k in Figure 6b. The running time of MaxDegree and Random
is stable for various k, while CB and CB-INC show a decline on
efficiency when k decreases. This is because a smaller k indicates
that more trials are required to invest all budget, and so, TIM+
should be executed more often, for a general decrease in efficiency.
Another observation is that the improvement of CB-INC over CB
increases with k. This further strengthens the utility of using CB-

INC in practice. Figure 6b and Figure 3a together show a tradeoff
of setting k: a smaller k leads to a better performance in spread
but worse performance in efficiency. We suggest to set a small k to
ensure the algorithm’s better performance in spread. The value of k
will depend on how much total time that the user can afford.

Effect of t . We also verify the effect of t in the incremental
approach by varying t from 0.01 to 0.03 and fixing k = 1,Budget =
50. We compare them with CB, the non-incremental algorithm. First,
a smaller t gives better results in terms of influence spread. For
instance, it leads to 3%, 5%, 15% discount in spread compared with
CB for t = 0.01,0.02,0.03, respectively. However, a smaller t leads
to a slowdown in efficiency since it has a stricter requirement in
global check. For example, the running time for t = 0.01 is about
28% slower than the one for t = 0.02 and 38% worse than the one
for t = 0.03.

Discussion. The OIM framework is highly effective in maximiz-
ing influence when the real influence probabilities are unknown. In
this framework, MLE is the best updating method. Moreover, CB
and CB-INC consistently outperform other algorithms. By using
CB-INC, we can also significantly improve the efficiency of CB, with
only a small discount in influence spread.

Results: effectiveness of
update methods

0 10 20 30 40 500

1,000

2,000

3,000

Trial (NETPHY, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

2,000

4,000

6,000

Trial (NETPHY, k = 10)

In
flu

en
ce

Sp
re

ad

Exploit e-greedy CB

Figure 4: Explore–exploit strategies

0 10 20 30 40 500

200

400

600

800

1,000

Trial (NETPHY, k = 1)

In
flu

en
ce

Sp
re

ad

(a) Different updates

0 50 100 150 200

600

800

1,000

1,200

Beta (NETPHY, k = 1)
In

flu
en

ce
Sp

re
ad

(b) Effect of priors

CB+MLE CB+LSE CB+LOC CB+NO

Figure 5: Comparing different updating methods

find that CB performs close to Real, and its discount on the spread
decreases with N. For example, when k = 5, the discount decreases
from 30% at N = 10 to 13% at N = 50. This indicates that, with
more real-world feedback, the learned graph for CB is closer to the
real graph, and thus, leads to a closer result to Real.

Explore–Exploit Strategies. We compare three versions of the
EE strategies for different k in Figure 4. We observe that Exploit
is the worst, since it may suffer from the wrong prediction of the
influence probabilities and does not explore other potential high
influencing nodes. CB is the best, especially, for small k. When
k = 5,N = 50, CB is about 20% and 32% better than e-greedy and
Exploit, respectively. The reason is that for a smaller k, fewer
feedback tuples are returned in one trial, which makes the learned
influence graph converge to the real graph slower. Hence, the effect
of exploration is strengthened, which is more favorable to CB. We
have also conducted experiments for e-greedy by varying e . We
observe that its performance is sensitive to e and e = 0.1 is the best
one in our results, but it is still worse than CB in all cases.

Updating the uncertain influence graph. In Figure 5a, we com-
pare different updating methods for the uncertain influence graph.
Although NO makes use of the prior knowledge about the influence
graph to select seeds, it still performs worse than other update op-
tions. LOC is slightly better, but still worse than MLE and LSE, since
it does not employ any global update and it suffers from the sparse-
ness of the activations. MLE is the best (about 25% better than LSE

and 40% better than LOC), which is consistent with the fact that MLE
makes use of the full feedback to update the graph while LSE only
utilizes the set of successfully activated nodes.

We also test the updating methods with different priors (Figure 5b)
to check whether they are sensitive to the prior. We observe that
while LOC and NO fluctuate a lot with different priors, MLE and LSE’s
performance is very stable. In fact, during different runs of MLE and
LSE with different priors, the global b values all converge to around
27. This supports the fact that the global updating techniques are

0 10 20 30 40 500

2,000

4,000

6,000

8,000

Trial (NETPHY, k = 1)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

(a) Time v.s. N

0 10 20 30 40 500

2,000

4,000

6,000

8,000

k (NETPHY, Budget = 50)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

(b) Time v.s. k

Random MaxDegree CB CB-INC

Figure 6: Cumulative running time

crucial when we do not have good prior information. Even an inexact
choice of prior will be generally fixed, minimizing the impact on
performance.

Efficiency. In Figure 6a, we illustrate the cumulative running
time for running N trials for different algorithms. Random and
MaxDegree are most efficient as they do not rely on any influence
evaluation. With the help of incremental approach, CB-INC runs sig-
nificantly faster than CB, and for the case where N > 10, it achieves
about 10 times speedup. For instance, at N = 50, CB-INC reduces
the running time by 88%, compared to CB. This is intuitive, as in the
first few trials the graph is more uncertain, and the updates affect the
samples a lot. However, when N > 10, we observe that the global
priors become more stable, leading to a high ratio of re-using sam-
ples (e.g., the ratio is about 80% to 99% when N > 10). Moreover,
the average in-degree of NETPHY is 12.46, making the time of
generating a new sample about an order of magnitude slower than
re-using a sample. These two factors together make CB-INC have a
much more efficient performance than CB.

We then show the efficiency results by fixing Budget = 50 and
varying k in Figure 6b. The running time of MaxDegree and Random
is stable for various k, while CB and CB-INC show a decline on
efficiency when k decreases. This is because a smaller k indicates
that more trials are required to invest all budget, and so, TIM+
should be executed more often, for a general decrease in efficiency.
Another observation is that the improvement of CB-INC over CB
increases with k. This further strengthens the utility of using CB-

INC in practice. Figure 6b and Figure 3a together show a tradeoff
of setting k: a smaller k leads to a better performance in spread
but worse performance in efficiency. We suggest to set a small k to
ensure the algorithm’s better performance in spread. The value of k
will depend on how much total time that the user can afford.

Effect of t . We also verify the effect of t in the incremental
approach by varying t from 0.01 to 0.03 and fixing k = 1,Budget =
50. We compare them with CB, the non-incremental algorithm. First,
a smaller t gives better results in terms of influence spread. For
instance, it leads to 3%, 5%, 15% discount in spread compared with
CB for t = 0.01,0.02,0.03, respectively. However, a smaller t leads
to a slowdown in efficiency since it has a stricter requirement in
global check. For example, the running time for t = 0.01 is about
28% slower than the one for t = 0.02 and 38% worse than the one
for t = 0.03.

Discussion. The OIM framework is highly effective in maximiz-
ing influence when the real influence probabilities are unknown. In
this framework, MLE is the best updating method. Moreover, CB
and CB-INC consistently outperform other algorithms. By using
CB-INC, we can also significantly improve the efficiency of CB, with
only a small discount in influence spread.

23

Results: effectiveness
versus heuristics

0 10 20 30 40 500

1,000

2,000

3,000

Trial (NETHEPT, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

0.5

1

1.5

2
·104

Trial (DBLP, k = 5)
In

flu
en

ce
Sp

re
ad

Real Random MaxDegree CB CB-INC

Figure 7: Effectiveness on other datasets

0 10 20 30 40 500

200

400

600

800

1,000

Trial (NETHEPT, k = 1)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

0 10 20 30 40 500

2

4

6

·104

Trial (DBLP, k = 1)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

Random MaxDegree CB CB-INC

Figure 8: Efficiency on other datasets

8.2 Results for NetHEPT and DBLP
Figure 7 and Figure 8 show representative results for NETHEPT

and DBLP. These results are consistent with the ones for NETPHY,
where CB and CB-INC are close to the oracle (Real), and better
than heuristic-based algorithms in maximizing influence spread. For
efficiency, CB-INC significantly reduces the running time of CB,
especially for a large dataset DBLP. For instance, at k = 1,N = 50,
CB-INC saves 16 hours compared with CB which costs 19 hours in
total to get the result for DBLP.

9. CONCLUSIONS
In this paper, we examine how to perform influence maximization

when influence probabilities may not be known in advance. We
develop a new solution, where IM is performed in multiple trials,
and we have proposed explore–exploit strategies for this problem.
We showed experimentally that explore–exploit based on the uncer-
tainty in the graph performs well. We also proposed novel methods
to update the knowledge of the graph based on the feedback received
from the real world, and showed experimentally that they are effec-
tive in longer campaigns. Even when the influence probabilities are
not known in advance, the influence spread of our solution is close
to the spread using the real influence graph, especially when the
number of trials increases.

In the future, we will examine the scenario where budgets are
different in each trial. We will extend our solution to handle other
complex situations (e.g., the change of influence probability val-
ues over time), consider IM methods (e.g., [28], [2]) that utilize
community and topic information, and other influence propagation
models, such as linear threshold or credit distribution [12, 14, 26].
Another direction is to increase the scalability of our methods; this
may require distributed algorithm, such as distributed sampling.

Acknowledgments. Siyu Lei, Silviu Maniu, Luyi Mo, and Reynold
Cheng were supported by University of Hong Kong (201311159095
and 201411159171). We thank the reviewers for their comments.

10. REFERENCES
[1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the

multi-armed bandit problem. In COLT, 2012.
[2] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online

topic-aware influence maximization queries. In EDBT, 2014.
[3] P. Auer. Using confidence bounds for exploitation-exploration

trade-offs. JMLR, 3:397–422, 2003.
[4] C. Borgs, M. Bratbar, J. Chayes, and B. Lucier. Maximizing social

influence in nearly optimal time. In SODA, 2014.
[5] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.

Cambridge University Press, 2006.
[6] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In KDD,
2010.

[7] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in
social networks. In KDD, 2009.

[8] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit:
General framework and applications. In ICML, 2013.

[9] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in
social networks under the linear threshold model. In ICDM, 2010.

[10] P. Domingos and M. Richardson. Mining the network value of
customers. In KDD, 2001.

[11] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence
probabilities in social networks. In WSDM, 2010.

[12] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach to
social influence maximization. PVLDB, 5(1), 2011.

[13] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: Optimizing the
greedy algorithm for influence maximization in social networks. In
WWW, 2011.

[14] J. Huang, X.-Q. Cheng, H.-W. Shen, T. Zhou, and X. Jin. Exploring
social influence via posterior effect of word-of-mouth
recommendations. In WSDM, 2012.

[15] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust influence
maximization in social networks. In ICDM, 2012.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In KDD, 2003.

[17] J. Kim, S.-K. Kim, and H. Yu. Scalable and parallelizable processing
of influence maximization for large-scale social networks? In ICDE,
2013.

[18] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart. Online influence
maximization (extended version). arXiv:1056.01188, 2015.

[19] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In KDD,
2007.

[20] M. J. Lovett, R. Peres, and R. Shachar. On brands and word of mouth.
J. Marketing Research, 50(4), 2013.

[21] W. Lu, F. Bonchi, A. Goyal, and L. V. Lakshmanan. The bang for the
buck: Fair competitive viral marketing from the host perspective.
KDD, 2013.

[22] S. Richard and A. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[23] M. Richardson and P. Domingos. Mining knowledge-sharing sites for
viral marketing. In KDD 2002.

[24] H. Robbins. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc., 58(5), 1952.

[25] K. Saito, R. Nakano, and M. Kimura. Prediction of information
diffusion probabilities for independent cascade model. In KES, 2008.

[26] Y. Singer. How to win friends and influence people, truthfully:
influence maximization mechanisms for social networks. In WSDM,
2012.

[27] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal
time complexity meets practical efficiency. In SIGMOD, 2014.

[28] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks.
In KDD, 2010.

Results: efficiency of sample
reuse

0 10 20 30 40 500

1,000

2,000

3,000

Trial (NETHEPT, k = 5)

In
flu

en
ce

Sp
re

ad

0 10 20 30 40 500

0.5

1

1.5

2
·104

Trial (DBLP, k = 5)

In
flu

en
ce

Sp
re

ad

Real Random MaxDegree CB CB-INC

Figure 7: Effectiveness on other datasets

0 10 20 30 40 500

200

400

600

800

1,000

Trial (NETHEPT, k = 1)

R
un

ni
ng

Ti
m

e
(in

se
co

nd
s)

0 10 20 30 40 500

2

4

6

·104

Trial (DBLP, k = 1)
R

un
ni

ng
Ti

m
e

(in
se

co
nd

s)

Random MaxDegree CB CB-INC

Figure 8: Efficiency on other datasets

8.2 Results for NetHEPT and DBLP
Figure 7 and Figure 8 show representative results for NETHEPT

and DBLP. These results are consistent with the ones for NETPHY,
where CB and CB-INC are close to the oracle (Real), and better
than heuristic-based algorithms in maximizing influence spread. For
efficiency, CB-INC significantly reduces the running time of CB,
especially for a large dataset DBLP. For instance, at k = 1,N = 50,
CB-INC saves 16 hours compared with CB which costs 19 hours in
total to get the result for DBLP.

9. CONCLUSIONS
In this paper, we examine how to perform influence maximization

when influence probabilities may not be known in advance. We
develop a new solution, where IM is performed in multiple trials,
and we have proposed explore–exploit strategies for this problem.
We showed experimentally that explore–exploit based on the uncer-
tainty in the graph performs well. We also proposed novel methods
to update the knowledge of the graph based on the feedback received
from the real world, and showed experimentally that they are effec-
tive in longer campaigns. Even when the influence probabilities are
not known in advance, the influence spread of our solution is close
to the spread using the real influence graph, especially when the
number of trials increases.

In the future, we will examine the scenario where budgets are
different in each trial. We will extend our solution to handle other
complex situations (e.g., the change of influence probability val-
ues over time), consider IM methods (e.g., [28], [2]) that utilize
community and topic information, and other influence propagation
models, such as linear threshold or credit distribution [12, 14, 26].
Another direction is to increase the scalability of our methods; this
may require distributed algorithm, such as distributed sampling.

Acknowledgments. Siyu Lei, Silviu Maniu, Luyi Mo, and Reynold
Cheng were supported by University of Hong Kong (201311159095
and 201411159171). We thank the reviewers for their comments.

10. REFERENCES
[1] S. Agrawal and N. Goyal. Analysis of thompson sampling for the

multi-armed bandit problem. In COLT, 2012.
[2] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online

topic-aware influence maximization queries. In EDBT, 2014.
[3] P. Auer. Using confidence bounds for exploitation-exploration

trade-offs. JMLR, 3:397–422, 2003.
[4] C. Borgs, M. Bratbar, J. Chayes, and B. Lucier. Maximizing social

influence in nearly optimal time. In SODA, 2014.
[5] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.

Cambridge University Press, 2006.
[6] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In KDD,
2010.

[7] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in
social networks. In KDD, 2009.

[8] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit:
General framework and applications. In ICML, 2013.

[9] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in
social networks under the linear threshold model. In ICDM, 2010.

[10] P. Domingos and M. Richardson. Mining the network value of
customers. In KDD, 2001.

[11] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence
probabilities in social networks. In WSDM, 2010.

[12] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach to
social influence maximization. PVLDB, 5(1), 2011.

[13] A. Goyal, W. Lu, and L. V. Lakshmanan. Celf++: Optimizing the
greedy algorithm for influence maximization in social networks. In
WWW, 2011.

[14] J. Huang, X.-Q. Cheng, H.-W. Shen, T. Zhou, and X. Jin. Exploring
social influence via posterior effect of word-of-mouth
recommendations. In WSDM, 2012.

[15] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust influence
maximization in social networks. In ICDM, 2012.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of
influence through a social network. In KDD, 2003.

[17] J. Kim, S.-K. Kim, and H. Yu. Scalable and parallelizable processing
of influence maximization for large-scale social networks? In ICDE,
2013.

[18] S. Lei, S. Maniu, L. Mo, R. Cheng, and P. Senellart. Online influence
maximization (extended version). arXiv:1056.01188, 2015.

[19] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance. Cost-effective outbreak detection in networks. In KDD,
2007.

[20] M. J. Lovett, R. Peres, and R. Shachar. On brands and word of mouth.
J. Marketing Research, 50(4), 2013.

[21] W. Lu, F. Bonchi, A. Goyal, and L. V. Lakshmanan. The bang for the
buck: Fair competitive viral marketing from the host perspective.
KDD, 2013.

[22] S. Richard and A. Barto. Reinforcement Learning: An Introduction.
MIT Press, 1998.

[23] M. Richardson and P. Domingos. Mining knowledge-sharing sites for
viral marketing. In KDD 2002.

[24] H. Robbins. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc., 58(5), 1952.

[25] K. Saito, R. Nakano, and M. Kimura. Prediction of information
diffusion probabilities for independent cascade model. In KES, 2008.

[26] Y. Singer. How to win friends and influence people, truthfully:
influence maximization mechanisms for social networks. In WSDM,
2012.

[27] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal
time complexity meets practical efficiency. In SIGMOD, 2014.

[28] Y. Wang, G. Cong, G. Song, and K. Xie. Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks.
In KDD, 2010.

Research Perspectives
• scalability is still a big issue in influence

maximisation — even more so in the online setting

• adapting the framework to other influence models
(threshold, credit distribution)

• learning also the influence model — do not rely on
“synthetic” models such as independent cascade
and threshold

