

Combined Regression and Ranking

D. Sculley Google Pittsburgh

- Many applications require models that give **both**:
 - o good regression performance and
 - o good ranking performance

Example: Predicting Star Ratings

Google

Example: Click Prediction

Google	football tickets	Search
0	About 55,900,000 results (0.20 seconds)	Advanced search
Everything News More	Football Tickets www.TicketLiquidator.com/Steelers Steelers Football Tickets - Cheap. Check Our Pr 10% Or More. TicketLiquidator.com is rated ***** on Google Products (31 reviews)	Sponsored links ices. Save
Any time Latest Past 3 weeks	Football Tickets www.StubHub.com/Football NFL & College Football Tickets. StubHub - Official Site. 50% Off Football Tickets www.TicketZoom.com Save up to \$50 - Use Code JUL36. Last Minute Deals. Save up	p to 50%.
Something different basketball tickets nfl tickets soccer tickets hockey tickets sports tickets	Football Tickets at StubHub! NFL Football Tickets, College Football Tickets - Buy and sell Football Tickets and other Sports Tickets at StubHub! W Fans Buy & Sell Tickets. www.stubhub.com > Sports tickets - Cached - Similar NFL Tickets - Football Tickets Largest inventory of NFL tickets online at Vividseats.com. Get ticket prices for all NFL te the NFL Playoffs and the Super Bowl. www.vividseats.com/nfl/ - Cached - Similar	Vhere ams,
	G	000

• Why not just use existing methods?

Standard Methods Can Fail Badly

• Rank-based models may do arbitrarily badly at regression

- Perfect regression implies perfect ranking, but...
- Even "good" regression can have bad ranking performance

• Novelty: optimize ranking and regression simultaneously

primary goal: try and get "best of both" performance
 do as well at ranking as a ranking-only method
 do as well at regression as a regression-only method

o secondary goal: improved regression through ranking?

• We'll build this up in pieces

Supervised Regression (birds eye view)

Goog	le scholar	regression		Search	Advanced Scholar Search Scholar Preferences
Scholar	Articles and patents	anytime	include citations	🗧 🔀 Crea	te email alert Results 1 - 10 of about 3,020,000.

- Goal: learn a model **w** that predicts a real valued target **y**
- Examples:
 - Least mean squares
 - Ridge Regression
 - o LASSO
- Often solved using empirical risk minimization

Supervised Regression (review)

$\min_{\mathbf{w}\in\mathbb{R}^m} L(\mathbf{w}, D) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$

Supervised Regression (review)

- Goal: learn a model w that puts unseen data in the correct preference order
- Several known methods:
 - RankSVM (Joachims, 2002)
 - Voted Perceptron variant (Elsas et al., 2008)
 - Boosting variants: AdaRank-MAP, AdaRank-NDCG (Xu and Li, 2007)
 - o Listwise approach (Cao et al., 2007)

$\min_{\mathbf{w}\in\mathbb{R}^m} L(\mathbf{w}, P) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$

Sι

Google su

supervised ranking

About 636,000 results (0.08 seconds)

🛃 Everything

Videos

More

All results Related searches

More search tools

[PDF] Supervised Rank Aggregation

File Format: PDF/Adobe Acrobat - Quick View by YT Liu - Cited by 27 - Related articles Supervised Rank Aggregation, in which learning is formalized an ... meta-searches show that Supervised Rank Aggregation can ... www2007.org/papers/paper286.pdf - Similar

Supervised rank aggregation

by YT Liu - 2007 - Cited by 27 - Related articles

We refer to the approach as **Supervised Rank** Aggregation. We set up a general framework for conducting **Supervised Rank** Aggregation, in which learning is ... portal.acm.org/citation.cfm?id=1242638 - Similar

Supervised ranking in open-domain text summarization main and main

by T Nomoto - 2002 - Cited by 3 - Related articles Supervised ranking in open-domain text summarization. Full text, Publisher Site , Pdf (142 KB). Source, Annual Meeting of the ACL archive ... portal.acm.org/citation.cfm?id=1073161

Show more results from portal.acm.org

[PDF] Supervised Ranking in Open-Domain Text Summarization

File Format: PDF/Adobe Acrobat - Quick View by T Nomoto - Cited by 3 - Related articles 2 Supervised Ranking with Probabilistic. Decision Tree. One technical problem associated with the use of a decision tree as a summarizer is that it is not ... www.ldc.upenn.edu/acl/P/P02/P02-1059.pdf

Candidate Pairs: pairs (a,b) of comparable examples with different ranks

Search

Advanced search

$\min_{\mathbf{w}\in\mathbb{R}^m} L(\mathbf{w}, P) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$

Warning: P is quadratic in |D|

• Joint optimization...

$\min_{\mathbf{w}\in\mathbb{R}^m} \alpha L(\mathbf{w}, D) + (1-\alpha)L(\mathbf{w}, P) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$

$\min_{\mathbf{w}\in\mathbb{R}^m} \alpha L(\mathbf{w}, D) + (1-\alpha)L(\mathbf{w}, P) + \frac{\lambda}{2} ||\mathbf{w}||_2^2$

Convexity Maintained

• What about dealing with size of P? This is quadratic in |D|.

Efficient Sampling from P

- We don't want to look at O(n^2) training pairs
- How to sample pairs from *P*?
- Fastest solution is to index the training data:
 O(log|Q| + log|Y|) in general
 O(1) for common scenarios
- When data is too large to index, can use rejection sampling

Solving CRR Efficiently

- Like other stochastic gradient descent algorithms, CRR is fast for large data
- RCV1 experiments

 780,000 training examples
 Less than 3 CPU sec's on normal laptop

Non-linear Models

- CRR optimization problem is defined using a linear model w
- If we want non-linearity, use a trick from Balcan and Blum:

• Pick a set of *k* reference examples *r*_1, ..., *r*_k

- Map each example *x* into a new feature space of dimension *k*
- Value for feature *i* in new space is *kernel*(*x*, *r*_i)
- Still efficient

Experimental Overview

• Data sets:

- RCV1 text classification
- o LETOR learning to rank benchmark data
- Click prediction data for sponsored search (private)

• Comparison methods:

- Regression-only, Ranking-only
- Parameters tuned with cross validation on training data or on separate validation data

Evaluation metrics:

- Mean Squared Error (MSE)
- AUC Loss (1 Area Under ROC Curve)
- Normalized Discounted Cumulative Gain (NDCG)
- Mean Average Precision (MAP)

RCV1 Setup

- Benchmark text mining data set
- Tested 40 per-topic tasks
- ~780k training examples
- ~23k test examples
- ~50k sparse features
- Some topics contain extreme minority class distributions, with only 0.02% "positive"
- Used logistic loss on {0, 1} targets

RCV1 Ranking Results

RCV1 Regression Results

RCV1 Results

- CRR achieves "best of both" metrics on 16 out of 40 tasks
 Within 0.001 of best on 19 additional tasks
 Always gives best performance on at least one of the two metrics
- Adding rank-based constraints can help regression:
 O CRR out-performs regression-only on MSE on 20 of 33 extreme minority class topics
 - \circ gives equal performance on remainder

Why Would Ranking Help Regression?

- Rank-based constraints are informative, especially when observations are rare
- Imagine you had two biased coins

 A comes up heads with probability 0.02
 B comes up heads with probability 0.03
- Knowing that coin C is between A and B is extremely helpful if we don't have much other data

LETOR Experiments

- LETOR: benchmark learning to rank data
- Tasks with multiple relevance levels: 1, 2, or 3 stars
- Used squared loss; regression predicts ordinal values

LETOR Ranking Results

LETOR Results

LETOR Regression Results

LETOR Results

Click Prediction Experiments

- Test data set of several million ads
- Labels of "clicked" and "not clicked"
- Very high dimensional feature space
- Logistic loss used

Click Prediction Results

Method	Mean Sq. Error	AUC Loss
Ranking-only	0.0935	0.1325
Regression-only	0.0840	0.1334
CRR	0.0840	0.1325

Click Prediction Results

Method	Mean Sq. Error	AUC Loss	
Ranking-only	0.0935	0.1325	
Regression-only	0.0840	0.1334	
CRR	0.0840	0.1325	
Improvements are statistically significant	11% better than ranking-only	0.8% better than regression- only	

• How sensitive is the tradeoff parameter alpha?

Looking at Tradeoff Parameter, alpha

Wrapping Up...

- Combined Ranking and Regression often gives "best of both" performance
- This algorithm uses pairwise method for rank-based component
- Simple, scalable, and robust
- Promising area for additional work

 consider joint optimizations including MAP or NDCG optimization for ranking component

Questions?

Open Source Code: http://code.google.com/p/sofia-ml

Email: dsculley@google.com

RCV1

		REGRESSION		RANKING		CRR	
TASK	% POSITIVE	AUC Loss	MSE	AUC Loss	MSE	AUC Loss	MSE
E141	0.05%	0.000	0.001	0.000	0.293	0.000	0.000
GOBIT	0.06%	0.002	0.001	0.001	0.162	0.002	0.001
E61	0.06%	0.002	0.001	0.001	0.320	0.001	0.001
GTOUR	0.10%	0.030	0.001	0.005	0.245	0.005	0.001
C331	0.13%	0.003	0.001	0.001	0.205	0.001	0.001
E143	0.15%	0.001	0.001	0.001	0.296	0.001	0.001
G152	0.15%	0.005	0.001	0.003	0.239	0.003	0.001
G155	0.16%	0.007	0.002	0.004	0.223	0.004	0.001
E411	0.17%	0.002	0.002	0.002	0.289	0.002	0.001
C313	0.18%	0.047	0.002	0.014	0.281	0.016	0.002
E311	0.19%	0.001	0.002	0.001	0.311	0.001	0.001
C32	0.19%	0.019	0.002	0.012	0.180	0.013	0.002
G157	0.19%	0.001	0.002	0.001	0.254	0.001	0.001
C16	0.21%	0.022	0.002	0.012	0.234	0.013	0.002
GWELF	0.22%	0.010	0.002	0.005	0.236	0.006	0.002
E513	0.23%	0.004	0.002	0.003	0.300	0.003	0.001
E14	0.28%	0.008	0.003	0.003	0.281	0.004	0.002
C173	0.33%	0.005	0.003	0.004	0.237	0.004	0.002
E121	0.41%	0.007	0.004	0.004	0.261	0.005	0.003
GENT	0.46%	0.014	0.004	0.008	0.126	0.008	0.004
C34	0.52%	0.018	0.005	0.011	0.231	0.012	0.004
GHEA	0.85%	0.007	0.008	0.005	0.140	0.006	0.006
C183	0.87%	0.013	0.008	0.009	0.275	0.010	0.006
GDEF	1.01%	0.015	0.009	0.009	0.208	0.009	0.007
C42	1.48%	0.009	0.010	0.006	0.242	0.007	0.008
E211	1.76%	0.013	0.011	0.010	0.245	0.010	0.009
E51	2.77%	0.025	0.019	0.019	0.280	0.021	0.016
M12	3.16%	0.010	0.015	0.008	0.288	0.009	0.014
C24	3.98%	0.031	0.027	0.025	0.157	0.026	0.024
GDIP	4.34%	0.019	0.023	0.017	0.188	0.018	0.022
M13	6.89%	0.007	0.018	0.007	0.221	0.007	0.018
GPOL	7.11%	0.021	0.031	0.020	0.175	0.021	0.031
C152	8.34%	0.026	0.036	0.023	0.178	0.024	0.035
C151	10.22%	0.010	0.024	0.009	0.188	0.009	0.025
M14	10.98%	0.005	0.021	0.004	0.115	0.004	0.022
ECAT	14.90%	0.033	0.054	0.030	0.188	0.031	0.053
C15	18.05%	0.013	0.036	0.013	0.132	0.013	0.037
MCAT	25.41%	0.011	0.039	0.010	0.113	0.010	0.043
GCAT	30.11%	0.012	0.043	0.012	0.062	0.012	0.046
CCAT	46.59%	0.022	0.067	0.022	0.073	0.022	0.070

oogle

Click Prediction Results

	AdSet1	
Method	AUC Loss	MSE
REGRESSION	0.133	0.084
Ranking	0.132	0.094
CRR	0.132	0.084

0.8% improvement in AUC loss with same MSE Difference is statistically significant