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Learning phenomena

Reading gaining knowledge
Instruction

Observing discovering patterns
Experiencing

Experimenting understanding causality
Exploring

Practicing acquiring skills
Adapting

Growing development
Maturing

Evolving adaptation



Machine learning

Automating learning phenomena

Systems that improve with experience

Central question

How to achieve useful improvement within reasonable amount of
experience?

Answer
• Not by magic!
• Exist fundamental limits to learning
• Core trade-off

– amount/quality of experience
– prior knowledge/constraints



No such thing as “universal” learning

Human beings are

• heavily constrained
• extremely structured

in their
• learning
• perception
• cognition

It takes serious scientific investigation

to ascertain exactly what those constraints/structures are



























“time flies like an arrow”



Why the growing interest in machine learning?

Obviously

• data is everywhere
• data is increasingly captured
• data is increasingly comprehensive

• storage, communication, processing cheap & ubiquitous

Data is important

Machine learning provides an effective development methodology:

• when you cannot program a solution by hand
• but data is available

let the data determine the program



Machine learning is having an impact

language translation personalization automated driving
web search surveillance intrusion detection
spam filtering ad selection recommenders
speech recognition handwriting recognition text analysis
speaker recognition game playing non-player characters
face detection car braking information extraction
face recognition engine control product pricing

All major companies with large data sets have an interest



Lecture plan



Problem: Learning a function from data

Domain X Range Y
〈x1, y1〉
〈x2, y2〉

...
〈xt , yt〉

=⇒ Learner =⇒ h : X → Y

Idea
extrapolate y values over all x

Hope

predict well on unseen xs



Problem: Learning a function from data

One of the most studied problems in machine learning

Examples
image → person

acoustic signal → phonemes
transaction history → fraud warning

English sentence → French sentence

Complex data interpretation
Classification
Prediction/regression

Powerful idea
But how to do it?



To get started

Need
• Paired data, and representations for x , y , h
• Algorithm for computing h given 〈x1, y1〉, ..., 〈xt , yt〉

Initial strategy: “empirical error minimization”

• Fix hypothesis space H

• Fix prediction error function L(ŷ ; y) (also called a loss function)

Then given data 〈x1, y1〉, ..., 〈xt , yt〉, compute

ĥ = arg min
h∈H

1

t

t∑
i=1

L(h(xi ); yi )



Simple example

Learning a linear function

x = vector ∈ Rn

y = scalar ∈ R
hw(x) = w′x for some w ∈ Rn

H = {hw : w ∈ Rn}

Prediction error
Let’s choose, say, L(ŷ ; y) = |ŷ − y |

Given X , y, compute

ŵ = arg min
w

1

t

t∑
i=1

|Xi :w − yi |

Get predictor

x′ 7→ ŷ = x′ŵ



Learning a linear function

Note
The training problem in this example is a nonsmooth,
piecewise linear, convex minimization

100 1 2 3 4 5 6 7 8 9

14

0

2

4

6

8

10

12

X Axis

Y 
A

xi
s

min
w

ˆ̀(w) where ˆ̀(w) =
1

t

t∑
i=1

L(Xi :w; yi ) =
1

t

t∑
i=1

|Xi :w − yi |

Still easy to solve

E.g. with a linear program

min
w,δ

1
t δ

′1 subject to yi − δi ≤ Xi :w ≤ yi + δi



Learning a linear function

Given data Get best fit

y
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Question

Does it generalize?

• implicitly assuming independent identically distributed (iid)
training pairs; i.e. fixed PXY = PY|XPX

Still, even given iid:

• PY|X might not be well modeled by linear function

• Empirical error might be inaccurate: E [ˆ̀(ĥ)] ≤ E [`(ĥ)]
where `(ĥ) = E [L(ĥ(x); y)], expected test error;
i.e. minimum training loss underestimates test loss



Conclude that learning a linear function

Might be a good idea because

• compact representation
• efficient training
• efficient prediction

Might be a bad idea because

• linear too restrictive (underfits)
• linear not restrictive enough (overfits)



Preview

I will focus on linear function learning techniques

Unifies almost all current, tractable approaches to function learning

Much more powerful than you think

• generalize input representations via nonlinear features
• generalize output predictions via nonlinear transfers
• incorporate latent structure

All still allow efficient algorithms

(except latent structure—that’s still research)

Generalized linear modeling

Quickest way to:
• get up to speed on much of the field
• empower you to implement interesting, useful methods



Plan

Generalized linear modeling

Part 1: Generalized domain representations and regularization

today

Part 2: Generalized range representations and structure

tomorrow

Part 3: Latent representations and unsupervised training

(some current research)
Wednesday



Themes

Modeling

Flexible representations

Computation

Efficient training and prediction algorithms

Generalization
Capacity control—overfitting avoidance



Part 1: Generalized domain representations
and regularization

Dale Schuurmans

University of Alberta



Warm up: loss functions

What prediction loss function L(ŷ , y) to use?

Absolute loss (L1) |ŷ − y |

Squared loss (L2
2) (ŷ − y)2

Lpp loss (ŷ − y)p
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Loss functions

Convexity
` convex if `(ρw1 + (1− ρ)w2) ≤ ρ`(w1) + (1− ρ)`(w2)
for 0 ≤ ρ ≤ 1 ` at mean ≤ mean of `s

Properties

• ` convex, w local minima ⇒ w global minima
• nonnegative weighted sum of convex is convex
• max of convex is convex
• ` convex ⇒ `(Xw) convex in w
• Lpp loss convex if p ≥ 1 100 1 2 3 4 5 6 7 8 9
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Note
convex loss will generally result in tractable training problem
nonconvex loss will generally result in intractable training problem

(∗ we will see exceptions, but these will be somewhat special)



Loss functions

Smoothness
Lpp loss differentiable for p > 1
L1 loss not differentiable, but still convex

Properties

Nonsmooth optimization generally more expensive than smooth
But convexity still generally results in tractable training problems
(as we saw for L1 loss)

Other lecturers might explain algorithmic ideas behind efficient
smooth/nonsmooth minimization.



Loss functions

Robust loss
min(1, (ŷ − y)2)
“gives up” on outliers
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L1 more robust than L2
2

Lpp more robust than Lqq for p ≤ q

These are iid losses
L(ŷ; y) = 1

t

∑t
i=1 L(ŷi ; yi )

Non-iid losses
e.g., F-measure

Let us assume iid losses
Shorthand notation
ˆ̀(w) = L(Xw; y) = 1

t

∑t
i=1 L(Xi :w; yi )



Loss functions

Today in Part 1

Just assume we’ve picked a convex loss L(ŷ ; y) (say L1 or L2
2)

Tomorrow in Part 2
Will show how loss function can be derived from other
considerations

Wednesday in Part 3

Will show how robust loss can be expressed as a convex loss plus
latent outlier indicators



Generalizing the domain representation



Generalized domain representations

Simple idea: feature expansion

• expand representation x 7→ φ(x)
New features are (nonlinear) function of original features

x

ϕ1(x) ϕ2(x) ϕL(x)

“basis functions”, “features”, “feature functions”



Feature expansion

Expand training set X 7→ Φ X11 · · · X1n
...

...
Xt1 · · · Xtn

 7→
 φ1(X1:) · · · φL(X1:)

...
...

φ1(Xt:) · · · φL(Xt:)


Learn a linear function over extended features
(a nonlinear function of the original features)

Generalized predictor

After learning an extended L× 1 weight vector w
get a nonlinear predictor

x 7→ ŷ =
∑L

j=1 wjφj(x) = w′φ(x)



Example: polynomial basis

x

x1 x 2 xd...

Assume xi ∈ R (scalar)

Training data expansion

 x1
...
xt

 7→
 1 x1 x2

1 · · · xd1
...

...
1 xt x2

t · · · xdt


Training

Train (d + 1)× 1 vector of coefficients w using any desired loss

Learned predictor

x 7→ ŷ = w′φ(x) =
∑d

j=0 wjx
j



Example: polynomial basis
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Example: trigonometric basis

Assume xi ∈ R (scalar)

Training data expansion

 x1
...
xt

 7→
 φ1(x1) · · · φt(x1)

...
...

φ1(xt) · · · φt(xt)


Use t basis functions assuming t = 2n + 1 for some n

1 constant basis function φ1 = a0
2

n cosine basis functions φ1+j = cos(jx) for j = 1...n
n sine basis functions φn+1+j = sin(jx) for j = 1...n

If data points happen to be evenly spaced

xi − xi−1 = ∆ constant

Then columns of Φ are orthonormal and Φ square
Hence exact fit of y given by w∗ = Φ′y (discrete Fourier transform)



Example: basis splines

Assume xi ∈ R (scalar)

φ1(x) = 1
φ2(x) = x
φ3(x) = x2

φ4(x) = x3

φ5(x) = (x − x1)3
+ · · ·

φj(x) = (x − xj−4) +3 · · ·
φt(x) = (x − xt−4)+3
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Linear combination is piecewise cubic

x 7→ ŷ =
∑t

j=1 wjφj(x)
Predictor is continuous and has continuous 1st and 2nd derivatives



Example: multilayer neural network

Feedforward neural network with a fixed preprocessing layer

...

...

y

x1 x2 xn

ϕ1(x) ϕ2(x) ϕL(x)

E.g. φj(x) = sign(u′jw) for some uj

Given intermediate representation

Learn w, get predictor x 7→ ŷ =
∑L

j=1 wjφj(x)



Local basis functions

Local basis function
Choose a similarity function κ

φj(x) = κ(x, x̂j) at x̂j

κ ≥ 0, maximized at x = x̂j

κ(x, x̂j) decreasing in ‖x− x̂j‖
x̂j
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Fixing prototype centers x̂1, ..., x̂L
defines basis φ1, ..., φL

Expand training set

X 7→ Φ
Learn weights w over expanded feature representation



Example: radial basis functions (rbfs)

x̂j
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κ(x, x̂j) = exp(− 1
2σ2 ‖x− x̂j‖)

σ is a “width” parameter



Fully local methods

Locate a prototype center x̂i at every training point Xi :

X 7→

 κ(X1:,X1:) · · · κ(X1:,Xt:)
...

...
κ(Xt:,X1:) · · · κ(Xt:,Xt:)

 = K

Interpolation

For most local basis functions κ this enables interpolation
I.e. K is t × t square matrix

usually invertible (if training examples Xi : not duplicated)
⇒ can solve Kw = y for w

Example: for RBFs

K is symmetric, diagonally dominant, invertible



Example: k nearest neighbors

k nearest neighbor basis function depends on entire training set X

κ(x,Xj :) =

{
1 if x closer to Xj : than all but k points in X
0 otherwise

E.g. consider 2-nearest neighbors
x1 x2

x3 x4

K =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


Note
K is invertible provided each Xi : sufficiently connected
(and k not too large nor too small)



General feature representations

Can construct feature representations for arbitrary objects

E.g. strings, graphs, documents

Each feature
• just computes some aspect of the object that hopefully is
important for prediction
• map general objects into a feature vector representation

In practice

features are the main source of prior knowledge/constraints
—carefully engineered

E.g.
image processing — edge filters, line filters, SIFTs
document processing — bag of words, TF-IDF, n-grams
network processing — degree distribution, friend-of-friend dist’n



The elephant in the room



Dilemma

For a given problem, which features to use?

If PY|X not known
• why not try to be as expressive as possible?
• can represent any target function f : X → Y that way

Fundamental dilemma
underfitting versus overfitting



Dilemma

Example: polynomial fitting
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Dilemma

Example: polynomial fitting
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Overfitting versus underfitting

too many features risks overfitting
too few features risks underfitting

Strategies

Feature selection
• choose “right” set of basis functions

Regularization
• “smooth” functions by limiting size of weights



Overfitting versus underfitting

Regularization

“smoothing”
Limit slope of hypothesis function

min
w

L(Φw; y) + β‖w‖ where β ≥ 0 is a regularization parameter

Tradeoff between minimizing error and size of w

How to measure size of w?

L2
2 norm → leads to kernels

L1 norm → leads to sparsity



Euclidean regularization



Euclidean regularization

Penalize w by its (squared) Euclidean norm

min
w

L(Φw; y) +
β

2
‖w‖2

2

β > 0 a regularization parameter

The L2
2 regularizer is a convenient choice because

1
2‖w‖

2
2 is

• convex
• smooth
• simple (e.g. ∇w = w)

More importantly

Euclidean regularization leads to an amazing generalization
beyond finite dimensional feature vectors



Euclidean regularization

Example: polynomial fitting
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Important property of Euclidean regularization

Simple representer theorem

For any L and any increasing R, if

w∗ = arg min
w

L(Φw; y) + R(‖w‖2
2)

exists, then w∗ = Φ′a∗ for some a∗

Proof
Since w∗ = w∗0 + w∗1 for w∗1 ∈ rowspan(Φ) and w∗0 ⊥ rowspan(Φ)

w∗1 = Φ′a∗ for some a∗

Φw∗ = Φw∗0 + Φw∗1 = Φw∗1

‖w∗‖2
2 = ‖w∗0 + w∗1‖2

2 = ‖w∗0‖2
2 + ‖w∗1‖2

2
If w∗0 6= 0 then

L(Φw∗; y) + R(‖w∗‖2
2) = L(Φw∗1 ; y) + R(‖w∗0‖2

2 + ‖w∗1‖2
2)

> L(Φw∗1 ; y) + R(‖w∗1‖2
2) contradiction �



Important property of Euclidean regularization

Equivalent adjoint formulation

Can instead solve for example weights a, where w = Φ′a

Original training minw L(Φw; y) + β
2w
′w

Original prediction x 7→ ŷ = w∗′φ(x)

Adjoint training mina L(ΦΦ′a; y) + β
2a
′ΦΦ′a

Adjoint prediction x 7→ ŷ = a∗′Φφ(x)

Equivalent! by simple representer theorem

Key observation

Adjoint formulation does not require feature vectors
only inner products between feature vectors



Important property of Euclidean regularization

Equivalent kernel formulation

Assume a function κ(·, ·) that computes inner products
κ(Φi :,Φj :) = Φi :Φ

′
j :

Kernel training mina L(Ka; y) + β
2a
′Ka

where Kij = κ(Φi :,Φj :)
Kernel prediction x 7→ ŷ = a∗′k

where ki = κ(Φi :,φ(x)′)

Example

Polynomial feature vector

φ(x) =

(√(
d
0

)
,

√(
d
1

)
x ,

√(
d
2

)
x2, ...,

√(
d
d

)
xd
)

Corresponding kernel

κ(x1, x2) = (x1x2 + 1)d =
∑d

i=0

(
d
i

)
x i1x

i
2 = φ(x1)′φ(x2)

Direct computation can be arbitrarily more efficient



Kernels

Similarity measure on a set of objects X
vectors, strings, sentences, documents, trees, graphs

Instead of features, choose a kernel κ : X × X → R
symmetric: κ(x1, x2) = κ(x2, x1)
semidefinite:
for any finite set {x1, ..., xt} ⊂ X κ(x1, x1) · · · κ(x1, xt)

...
...

κ(xt , x1) · · · κ(xt , xt)

 � 0

Strictly generalizes finite dimensional feature vectors

Example

κ(x1, x2) = exp(− 1
2σ2 ‖x1 − x2‖2

2)
does not have finite dimensional feature representation



Kernels

Reproducing kernel Hilbert space

Given a symmetric, semidefinite operator κ : X × X → R
coherently defines a Hilbert space
• Basis given by features φx̂ for all x̂ ∈ X
• H0 = finite linear combinations of φx̂
• Define 〈

∑n
i=1 aiφx̂i ,

∑m
j=1 biφx̂j 〉H =

∑n
i=1

∑m
j=1 aibjκ(x̂i , x̂j)

• Define ‖
∑n

i=1 aiφx̂i‖H = 〈
∑n

i=1 aiφx̂i ,
∑n

i=1 aiφx̂i 〉
1/2
H

• H = completion of H0 under ‖ · ‖H

Representer theorem still holds

For any L and any increasing R

h∗ = arg min
h∈H

L(h(X ); y) + R(‖h‖H)

can be written h∗(·) =
t∑

i=1

a∗i φXi :
(·) =

t∑
i=1

a∗i κ(Xi :, ·) for some a∗



Feature selection



Feature selection

Problem
Choose a subset of feature functions to use
• i.e. choose a subset of {φ1, ..., φL}

Difficulty

• 2L subsets
• Intractable to enumerate
• Finding a bounded feature subset that minimizes training error

NP-hard in general

Idea
Use a convex relaxation of feature selection
• L1 regularization



L1 regularization

L1 regularized training problem

min
w

L(Φw; y) + β‖w‖1

β ≥ 0 regularization parameter

Properties

• Convex in w
• Nonsmooth
• Implicitly encourages sparsity (i.e. wj = 0 for some j)
• Provides a tractable relaxation of feature selection



L1 regularization

Why does L1 regularization yield sparse solutions?

‖w‖1 =
∑L

j=1 |wj |
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1 if wj > 0
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undef if wj = 0



L1 regularization

Subgradients

For a differentiable convex function `, always have
`(w) ≥ `(w0) + (w −w0)′∇`(w0)
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w0 w0

A subgradient at w0

is any d0 such that `(w) ≥ `(w0) + (w −w0)′d0

Theorem
If ` differentiable at w0 then d0 is unique and d0 = ∇`(w0).

What if ` not differentiable at w0?
Then d0 is not unique



L1 regularization

Implicit feature selection

Consider a descent step from a current w

∂
∂wj

= βsign(wj) +
∑t

i=1 L
′(Φi :w; yi )Φij if wj 6= 0

What if current value of wj = 0?
if |

∑t
i=1 L

′(Φi :w; yi )Φij | < β

wj stays at 0; that is, no local descent from wj = 0
else

can reduce the objective
by moving wj in direction of −

∑t
i=1 L

′(Φi :w; yi )Φij



L1 regularization

Efficiently solvable if L convex

min
w

L(Φw; y) + β‖w‖1

= min
w,ξ

L(Φw; y) + β1′ξ subject to ξ ≥ w, ξ ≥ −w

• convex objective (if L convex)
• linear constraints

E.g.

If L(ŷ ; y) = (ŷ − y)2 get a quadratic program
If L(ŷ ; y) = |ŷ − y | get a linear program



Problem

L1 regularization blocks the representer theorem!

How to combine kernels and feature selection?

Naive approach does not work:
β1‖w‖1 + β2‖w‖2

2

blocks representer theorem—no equivalent adjoint form
—hence no equivalent kernel form

Fortunately

It is possible to combine L1 and L2
2 keeping kernels,

but requires an indirect approach:

• introduce separate feature selection variables µ
• exploit Fenchel conjugate of L



Kernel selection



Kernel selection

Relating feature and kernel selection

Consider a feature representation Φ, a t × L matrix

Get kernel matrix

K = ΦΦ′ =
∑L

j=1 Φ:jΦ
′
:j =

∑L
j=1 Kj

I.e. each basis feature Φ:j corresponds to a rank 1 kernel matrix

Kj = Φ:jΦ
′
:j



Kernel selection

Introduce auxiliary feature/kernel selection variables

Let 1 ≥ µ ≥ 0 be a vector of selection weights

Consider Φ̃ = Φ∆(µ)1/2

(∆(µ) denotes putting µ on main diagonal of square matrix)

Get

K̃ = Φ̃Φ̃′ = Φ∆(µ)Φ′ =
∑L

j=1 µjΦ:jΦ
′
:j =

∑L
j=1 µjKj

Will use use µ to select features/kernels



Aside: Fenchel duality

Given a function `(w)

Define its Fenchel conjugate as

`∗(α) = sup
w

α′w − `(w)

Guaranteed to be convex in α (since max of linear is convex)

Strong duality property

If `(w) is a closed, convex function then `∗∗(w) = `(w)

That is
`(w) = sup

α
α′w − `∗(α)



Fenchel duality

Equivalent dual problem

Can get an equivalent reformulation of L2
2 regularized training

min
w

L(Φw; y) +
β

2
‖w‖2

2 primal problem

= max
α
−L∗(α; y)− 1

2β
α′Kα dual problem

where

L∗(α; y) = sup
ŷ

α′ŷ − L(ŷ; y) and K = ΦΦ′

Important

The representer theorem holds so expressible in terms of a kernel

(∗ some technical conditions apply on L)



Kernel selection

Putting the pieces together

Add an L1 regularizer on µ and jointly optimize

min
0≤µ≤1

min
w

L(Φ∆(µ)1/2w; y) +
β1

2
‖w‖2

2 + β21
′µ

= min
0≤µ≤1

max
α
−L∗(α; y)− 1

2β1

t∑
j=1

µjα
′Kjα + β21

′µ

The latter form is a concave-convex program—no local minima

Various computational strategies exist

equivalent convex reformulation of latter form above



Boosting



Boosting

Incremental training for large or infinite bases

Saw previously that kernels could be used to implicitly train with
large or infinite bases
But what if you have a large basis but not corresponding efficient
kernel?

Two classical examples of training with infinite bases:

• decision trees
• feedforward neural networks



Decision trees

Special generalized linear function xi0>v0

xi00>v00 xi01>v01

yes

yes yes

no

nono

y=p1 y=p2 y=p3 y=p4
Each path corresponds to a single feature

φ1(x) = 1(xi0>v0 and xi00
>v00) ∈ {0, 1}

φ2(x) = 1(xi0>v0 and xi00
≤v00) ∈ {0, 1}

φ3(x) = 1(xi0≤v0 and xi01
>v01) ∈ {0, 1}

φ3(x) = 1(xi0≤v0 and xi01
≤v01) ∈ {0, 1}

Same predictor can be represented by a generalized linear function

ŷ =


φ1(x)
φ2(x)
φ3(x)
φ4(x)


′ 

p1

p2

p3

p4





Decision trees

Linear predictor plus tree constraint over bases

• NP-hard to find best tree of bounded size
• Standard training algorithms are heuristics
• Linear predictor = weighted forest of decision trees
• Could just learn a linear predictor over same basis

Difficulty

• Set of bases is infinite
• How to learn a linear model in such a case?

(don’t have an equivalent kernel)



Multilayer neural network

Two-layer feedforward neural networks

...

...

y

x1 x2 xn

ϕ1(x) ϕ2(x) ϕL(x)

Difficulty

• Optimally training a 2-layer neural network is NP-hard
• Fixing # bases creates intractable feature selection problem
• Backpropagation training = local optimization heuristic

Can 2-layer neural network be trained efficiently?

• Idea: use L1 regularization instead of feature selection
• Set of bases is infinite



Boosting

Incremental strategy for training a linear model

over a large or even infinite feature set

Strategy

• Do not enumerate basis
• Grow basis one function at a time by greedy procedure

Maintain a sparse model

At stage k have selected k − 1 bases

hk−1(x) =
k−1∑
j=1

wjφj(x)



Boosting

Greedy coordinate descent

Let

`(w(k−1)) =
t∑

i=1

L(hk−1(xi ); yi )

=
t∑

i=1

L
( k−1∑

j=1

wjφj(xi ); yi

)
Score of a new candidate feature φk

∂`

∂wk

∣∣∣∣
w=w(k−1)

=
t∑

i=1

L′
( k−1∑

j=1

wjφj(xi ); yi

)
φk(xi )

= L′k−1φk



Boosting

Weak learning problem

Find steepest coordinate descent direction

min
φk∈Φ

L′k−1φk

Behaves like weighted misclassification error

If L′k−1φk ≥ 0, halt

Once φk selected, solve for wk by line search

min
wk

t∑
i=1

L(hk−1(xi ) + wkφk(xi ); yi )



Boosting

Convergence theorem

If
• L convex
• L′ is b-Lipschitz continuous:

‖L′(h)− L′(g)‖ ≤ b‖h − g‖ for some b <∞

• ‖φk‖ ≤ B for some B <∞
• Φ negation closed: φ ∈ Φ⇒ −φ ∈ Φ
• Weak learner is approximately optimal: ∃0 < γ ≤ 1 such that

L′k−1φk ≤ γL′k−1φ
∗
k for all k

Then
• hk converges to a global minimizer of L

(Mason et al. 2000)



Boosting

Adding regularization

Can use same strategy to converge to minimizer of

min
h∈span(Φ)

L(h(X ); y) + β‖w‖1

or

min
h∈span(Φ)

L(h(X ); y) +
β

2
‖w‖2

2

provided totally corrective weight update used.
That is, given φk , solve

min
w1,...,wk

t∑
i=1

L
( k−1∑

j=1

wjφj(xi ); yi

)
+ R([w1, ...,wk ])

I.e. jointly re-optimize wk with all previous weights



Boosting

Catch
Requires approximately optimal weak learner
(Warning: many papers sweep this little detail under the rug)

Good news
Tractable for some cases

• E.g. Φ = “decision stumps”, φ(x) = 1(xj<c) or 1(xj≥c)

Bad news
Intractable for almost all interesting bases

• E.g. Φ = “perceptrons” (linear threshold classifiers)
NP-hard, even to approximate (Höffgen & Simon 1992)



Boosting

Crazy idea: sample bases randomly!

Can still guarantee a near optimal hypothesis with high probability

Set up

Let H = {h(x) :
∫
w(θ)φθ(x)p(θ)dθ such that ‖w(θ)‖ ≤ c ∀θ}

Assume ‖φ‖ ≤ 1 for all φ ∈ Φ

Sample θ1, ..., θK ∼ p(θ)

Let Ĥ = {h(x) =
∑

j wjφθj (x) : |wj | ≤ c ∀j}

Theorem
For any h ∈ H with probability at least 1− δ
there exists some ĥ ∈ Ĥ such that

L(ĥ(X ); y) ≤ L(h(X ); y) +
bc√
Kt

(
1 +

√
8 log

1

δ

)



Part 2: Generalized output representations
and structure

Dale Schuurmans

University of Alberta



Output transformation



Output transformation

What if targets y special?
E.g. what if y nonnegative y ≥ 0

y probability y ∈ [0, 1]
y class indicator y ∈ {±1}

Would like predictions ŷ to respect same constraints

Cannot do this with linear predictors

Consider a new extension
Nonlinear output transformation f such that range(f ) = Y

Notation and terminology
ŷ = f (ẑ) where ẑ = x′w
ẑ = x′w “pre-prediction”
ŷ = f (ẑ) “post-prediction”



Nonlinear output transformation: Examples

Exponential

If y ≥ 0 use ŷ = f (ẑ) = exp(ẑ)
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Sigmoid

If y ∈ [0, 1] use ŷ = f (ẑ) = 1
1+exp(−ẑ)
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1/(1+exp(−x))

Sign

If y ∈ {±1} use ŷ = f (ẑ) = sign(ẑ)
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sign(x)

Transformations impose no constraint on ẑ = x′w
yet they produce ŷ in correct range
(∗ technically sign requires 0 to be mapped to ±1)



Nonlinear output transformation: Risk

Combining arbitrary f with L can create local minima

E.g.
L(ŷ ; y) = (ŷ − y)2

f (ẑ) = σ(ẑ) = (1 + exp(−ẑ))−1

Objective
∑

i (σ(Xi :w)− yi )
2 is not convex in w

Consider one training example

ŷ ! w x"( )=

y

!
1– ŷ( ) w x"=!

1– y( )

L! y ŷ,( )

!
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(Auer et al. NIPS-95)

Local minima can combine
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Nonlinear output transformation

Possible to create exponentially many local minima

t training examples can create (t/n)n local minima in n dimensions
—just local t/n training examples along each dimension
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From (Auer et al., NIPS-95)



Important idea: matching loss

Assume f is continuous, differentiable, and strictly increasing

Want to define L(ŷ ; y) so that L(f (ẑ); y) is convex in ẑ

Define matching loss by

L(f (ẑ); f (z)) =

∫ ẑ

z

f (θ)− f (z) dθ

= F (θ)|ẑz − f (z)θ|ẑz
= F (ẑ)− F (z)− f (z)(ẑ − z)

where F ′(z) = f (z); defines a Bregman divergence



Important idea: matching loss

Properties

F ′′(z) = f ′(z) > 0 since f strictly increasing

⇒ F strictly convex

⇒ F (ẑ) ≥ F (z) + f (z)(ẑ − z) (convex function lies above tangent)

⇒ L(f (ẑ); f (z)) ≥ 0 and L(f (ẑ); f (z)) = 0 iff ẑ = z
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Matching loss: examples

Identity transfer

f (z) = z , F (z) = z2/2, y = f (z) = z
Squared error
L(ŷ ; y) = (ŷ − y)2/2

Exponential transfer

f (z) = ez , F (z) = ez , y = f (z) = ez

Unnormalized entropy error
L(ŷ ; y) = y ln y

ŷ + ŷ − y

Sigmoid transfer

f (z) = σ(z) = 1/(1 + e−z), F (z) = ln(1 + ez), y = f (z) = σ(z)
Cross entropy error
L(ŷ ; y) = y ln y

ŷ + (1− y) ln 1−y
1−ŷ



Matching loss

Given suitable f
Can derive a matching loss that ensures convexity of L(f (Xw); y)

Retain everything from before

• efficient training
• basis expansions
• L22 regularization → kernels
• L1 regularization → sparsity



Major problem remains: Classification

If, say, y ∈ {±1} class indicator, use ŷ = sign(ẑ)
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sign(x)

Not continuous, differentiable, strictly increasing
Cannot use matching loss construction

Misclassification error

L(ŷ ; y) = 1(ŷ 6=y) =

{
0 if ŷ = y
1 if ŷ 6= y



Classification



Classification

Consider geometry of linear classifiers ŷ = sign(x′w)

w
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{x : x′w = 0}

Linear classifiers with offset ŷ = sign(x′w − b)

w
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u

{x : x′w − b = 0}
u = b

‖w‖22
w since u′w = b, u′w − b = 0



Classification

Question
Given training data X , y ∈ {±1}t can minimum misclassification
error w be computed efficiently?

Answer
Depends



Classification

Good news
Yes, if data is linearly separable

Linear program

min
w,b,ξ

1′ξ subject to ∆(y)(Xw − 1b) ≥ 1− ξ, ξ ≥ 0

Returns ξ = 0 if data linearly separable
Returns some ξi > 0 if data not linearly separable



Classification

Bad news
No, if data not linearly separable

NP-hard to solve

min
w

∑
i

1(sign(Xi :w−b) 6=yi ) in general

NP-hard even to approximate (Höffgen et al. 1995)



How to bypass intractability of learning linear classifiers?

Two standard approaches

1. Use a matching loss to approximate sign (e.g. tanh transfer)
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2. Use a surrogate loss for training, sign for test



Approximating classification with a surrogate loss

Idea
Use a different loss L̃ for training
than the loss L used for testing

Example

Train on L̃(ŷ ; y) = (ŷ − y)2

even though test on L(ŷ ; y) = 1(ŷ 6=y)

Obvious weakness
Regression losses like least squares penalize predictions
that are “too correct”



Tailored surrogate losses for classification

Margin losses

For a given target y and pre-prediction ẑ

Definition
The prediction margin is m = ẑy

Note
if ẑy = m > 0 then sign(ẑ) = y , zero misclassification
if ẑy = m ≤ 0 then sign(ẑ) 6= y , misclassification error 1

Definition
a margin loss is a decreasing (nonincreasing) function of the margin



Margin losses

Exponential margin loss

L̃(ẑ ; y) = e−ẑy
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Binomial deviance
L̃(ẑ ; y) = ln(1 + e−ẑy )
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Margin losses

Hinge loss (support vector machines)

L̃(ẑ ; y) = (1− ẑy)+ = max(0, 1− ẑy)
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Robust hinge loss (intractable training)

L̃(ẑ ; y) = 1− tanh(ẑy)
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Advantage:
outliers only have bounded influence
Problem: nonconvex, creates intractable training problem



Margin losses

Note
Convex margin loss can provide efficient upper bound minimization
for misclassification error

Retain all previous extensions

• efficient training
• basis expansion
• L22 regularization → kernels
• L1 regularization → sparsity



Multivariate prediction



Multivariate prediction

What if prediction targets y′ are vectors?

For linear predictors, use a weight matrix W

Given input x′, predict a vector

ŷ′ = x′W

1× k 1× n n × k

On training data, get prediction matrix

Ŷ = XW

t × k t × n n × k

W:j is the weight vector for jth output column
Wi : is vector of weights applied to ith feature

Try to approximate target matrix Y



Multivariate linear prediction

Need to define loss function between vectors
E.g. L(ŷ; y) =

∑
`(ŷ` − y`)

2

Given X , Y , compute

min
W

t∑
i=1

L(Xi :W ;Yi :)

= min
W

L(XW ;Y )

Note: using shorthand L(XW ;Y ) =
t∑

i=1

L(Xi :W ;Yi :)

Feature expansion

X 7→ Φ
• Doesn’t change anything, can still solve same way as before
• Will just use X and Φ interchangeably from now on



Multivariate prediction

Can recover all previous developments

• efficient training
• feature expansion
• L22 regularization → kernels
• L1 regularization → sparsity
• output transformations
• matching loss
• classification—surrogate margin loss



L2
2 regularization—kernels

min
W

L(XW ;Y ) +
β

2
tr(W ′W )

Still get representer theorem

Solution satisfies W ∗ = X ′A∗ for some A∗

Therefore still get kernels

min
W

L(XW ;Y ) +
β

2
tr(W ′W )

= min
A

L(XX ′A;Y ) +
β

2
tr(A′XX ′A)

= min
A

L(KA;Y ) +
β

2
tr(A′KA)

Note
We are actually regularizing using a matrix norm

Frobenius norm ‖W ‖2F =
∑

ij W
2
ij = tr(W ′W )

‖W ‖F =
√∑

ij W
2
ij =

√
tr(W ′W )



Brief background: Recall matrix trace

Definition
For a square matrix A, tr(A) =

∑
i Aii

Properties

tr(A) = tr(A′)

tr(aA) = atr(A)

tr(A + B) = tr(A) + tr(B)

tr(A′B) = tr(B ′A) =
∑

ij AijBij

tr(A′A) = tr(AA′) =
∑

ij A
2
ij

tr(ABC ) = tr(CAB) = tr(BCA)
d

dW tr(C ′W ) = C
d

dW tr(W ′AW ) = (A + A′)W



L1 regularization—sparsity?

We want sparsity in rows of W , not columns
(that is, we want feature selection, not output selection)
To achieve our goal need to select the right regularizer

Consider the following matrix norms
L1 norm ‖W ‖1 = maxj

∑
i |Wij |

L∞ norm ‖W ‖∞ = maxi
∑

j |Wij |
L2 norm ‖W ‖2 = σmax(W ) (maximum singular value)
trace norm ‖W ‖tr =

∑
j σj(W ) (sum of singular values)

2, 1 block norm ‖W ‖2,1 =
∑

i ‖Wi :‖
Frobenius norm ‖W ‖F =

√∑
ij W

2
ij =

√∑
j σj(W )2

Which, if any, of these yield the desired sparsity structure?



Matrix norm regularizers

Consider examples

U =

[
1 1
0 0

]
V =

[
1 0
1 0

]
W =

[
1 0
0 1

]
We want to favor a structure like U over V and W

U V W

L1 norm 1 2 1
L∞ norm 2 1 1

L2 norm
√

2
√

2 1

trace norm
√

2
√

2 2

2, 1 norm
√

2 2 2

Frobenius norm
√

2
√

2
√

2

Use 2, 1 norm for feature selection: favors null rows

Use trace norm for subspace selection: favors lower rank

All norms are convex in W



L1 regularization—sparsity?

To train for feature selection sparsity:

min
W

L(XW ,Y ) + β‖W ‖2,1

or min
W

L(XW ,Y ) +
β

2
‖W ‖22,1

To train for subspace selection:

min
W

L(XW ,Y ) + β‖W ‖tr

or min
W

L(XW ,Y ) +
β

2
‖W ‖2tr



When do we still get a representer theorem?

Obvious in vector case
Regularizer R a nondecreasing function of ‖w‖22 = w′w

But in matrix case?

Theorem (Argyriou et al. JMLR 2009)

Regularizer R yields representer theorem
iff

R is a matrix-nondecreasing function of W ′W

That is, R(W ) = T (W ′W ) for some function T
where T (A) ≥ T (B) for all A,B ∈ S+ such that A � B

Examples

‖W ‖F , ‖W ‖tr
Schatten p-norms: ‖W ‖p

M
= ‖σ(W )‖p



Multivariate output transformations



Multivariate output transformations

Use transformation f : Rk → Rk to map pre-predictions into range

ŷ′ = f(ẑ′)

Exponential

y ≥ 0 nonnegative, use f(ẑ) = exp(ẑ) componentwise

Softmax
y ≥ 0, 1′y = 1 probability vector, use f(ẑ) = exp(ẑ)

1′ exp(ẑ)

Indmax
y = 1c class indicator, use f(ẑ) = indmax(ẑ)

(all 0s except 1 in position of max of ẑ)



For nice output transformations can use matching loss

Choose
F : Rk → R such that F strongly convex and ∇F (ẑ) = f(ẑ)

Then define

L(ŷ′; y′) = L(f(ẑ′); f(z′))

= F (ẑ)− F (z)− f(z)′(ẑ− z)

Recall
Since F strongly convex we have: F (ẑ) ≥ F (z) + f(z)′(ẑ− z)
Hence L(ŷ′; y′) ≥ 0 and L(ŷ′; y′) = 0 iff f(ẑ) = f(z)

Bregman divergence on vectors

(Kivinen & Warmuth 2001)



Multivariate matching loss examples

Exponential

F (z) = 1′ exp(z), ∇F (z) = f(z) = exp(z) componentwise

Matching loss is unnormalized entropy

L(ŷ′; y′) = y′(ln y − ln ŷ) + 1′(y − ŷ)

Softmax
F (z) = ln(1′ exp(z)), ∇F (z) = f(z) = exp(z)

1′ exp(z)

Matching loss is cross entropy, or Kullback-Leibler divergence

L(ŷ′; y′) = y′(ln y − ln ŷ)



Multivariate classification

For classification need to use a surrogate loss

ŷ = indmax(ẑ) y = 1c class indicator vector

Multivariate margin loss

• Depends only on y′ẑ and ẑ

Example: multinomial deviance

L̃(ẑ; y) = ln(1′ exp(ẑ))− y′ẑ

Example: multiclass SVM loss

L̃(ẑ; y) = max(1− y + ẑ− 1y′ẑ)

Idea: If c correct class, try to push ẑc > ẑc ′ + 1 for c ′ 6= c



Multivariate classification

Example: multiclass SVM

min
W

β

2
‖W ‖2F +

t∑
i=1

max(1′ − Yi : + Xi :W − Xi :WY ′i :1
′)

= min
W ,ξ

β

2
‖W ‖2F + 1′ξ

subject to ξ1′ ≥ 11′ − Y + XW − δ(XWY ′)1′

where δ means extracting main diagonal into a vector
Get a quadratic program

Note
Representer theorem applies because regularizing by ‖W ‖2F

Classification
x′ 7→ ŷ′ = indmax(x′W )



Structured output prediction



Structured output prediction

Example: Optical character recognition

Map sequence of handwritten to recognized characters

The ncd qfple

Thc rcd apfle

The red apple

• Predicting character from handwriting is hard
• But: there are strong mutual constraints on the labels
• Idea: treat output as a joint label—try to capture constraints

Problem
Get an exponential number of joint labels



Structured output prediction

Assume structure
E.g. for output sequences assume a decomposition

w′φ(x, y) =
∑
`

w′ψ(x, y`, y`+1)

Total response for sequence = sum of responses over local parts

...y1 y2 y3 yN-1 yN

Can now use a “message passing” algorithm

To efficiently compute answers for exponential sums and
exponential maximizations



Computational problems
We would like to be able to efficiently compute

Sum over sequences∑
y

exp(w′φ(x, y)) =
∑
y

exp(
∑
`

w′ψ(x, y`, y`+1))

=
∑
y

∏
`

exp(w′ψ(x, y`, y`+1))

Max over sequences

max
y

w′φ(x, y) = max
y

∑
`

w′ψ(x, y`, y`+1)

ŷ = arg max
y

w′φ(x, y)

Exploit distributivity property

a ◦ (f (x1) ∗ f (x2)) = (a ◦ f (x1)) ∗ (a ◦ f (x2))

sum-product: ∗ = + ◦ = ×
max-sum: ∗ = max ◦ = +



Efficient computation

Example: max-sum

Note: maxx a + f (x) = a + maxx f (x)

Consider example

max
y5,y4,y3,y2,y1

f4(y4, y5) + f3(y3, y4) + f2(y2, y3) + f1(y1, y2)

= max
y5

max
y4

f4(y4, y5) + max
y3

f3(y3, y4) + max
y2

f2(y2, y3) + max
y1

f1(y1, y2)︸ ︷︷ ︸
m1(y2)︸ ︷︷ ︸

m2(y3)︸ ︷︷ ︸
m3(y4)︸ ︷︷ ︸

m4(y5)︸ ︷︷ ︸
m5

Reduced O(|Y|k) computation to O(k|Y|2)



Max-sum message passing

Viterbi algorithm

m1(y2) = max
y1

w′ψ(x, y1, y2)

...

m`(y`+1) = max
y`

w′ψ(x, y`, y`+1) + m`−1(y`)

...

mk−1(yk) = max
yk−1

w′ψ(x, yk−1, yk) + mk−2(yk−1)

m = max
yk

mk−1(yk)



Efficient computation

Example: sum-product

Note:
∑

x af (x) = a
∑

x f (x)

Consider example∑
y5,y4,y3,y2,y1

f4(y4, y5)f3(y3, y4)f2(y2, y3)f1(y1, y2)

=
∑
y5

∑
y4

f4(y4, y5)
∑
y3

f3(y3, y4)
∑
y2

f2(y2, y3)
∑
y1

f1(y1, y2)︸ ︷︷ ︸
m1(y2)︸ ︷︷ ︸

m2(y3)︸ ︷︷ ︸
m3(y4)︸ ︷︷ ︸

m4(y5)︸ ︷︷ ︸
m5

Reduced O(|Y|k) computation to O(k|Y|2)



Sum-product message passing

Forward-backward algorithm

m1(y2) =
∑
y1

w′ψ(x, y1, y2)

...

m`(y`+1) =
∑
y`

w′ψ(x, y`, y`+1)m`−1(y`)

...

mk−1(yk) =
∑
yk−1

w′ψ(x, yk−1, yk)mk−2(yk−1)

m =
∑
yk

mk−1(yk)



Conditional random fields

min
w

∑
i

ln
(∑

ỹ

∏
`

exp(w′ψ(xi , ỹ`, ỹ`+1)
)
−
∑
`

w′ψ(xi , yi`, yi`+1)

d

dw
=
∑
i,ỹ,`

ψ(xi , ỹ`, ỹ`+1)

∏
` exp(w′ψ(xi , ỹ`, ỹ`+1))

Z (w, xi )
−ψ(xi , yi`, yi`+1)

where
Z (w, xi ) =

∑
ỹ

∏
`

exp(w′ψ(xi , ỹ`, ỹ`+1))

Use the sum-product algorithm to efficiently compute
∑

y

∏
`

Classification
x′ 7→ ŷ′ = arg maxy

∑
`w
′ψ(x, y`, y`+1)

(Lafferty et al. 2001)



Maximum margin Markov networks

min
w

∑
i

max
ỹ

∑
`

δ(yi`yi`+1; ỹ`ỹ`+1) + w′(ψ(xi , ỹ`ỹ`+1)−ψ(xi , yi`yi`+1))

= min
w,ξ

1′ξ s.t. ξi ≥
∑
`

δ(yi`yi`+1; ỹ`ỹ`+1) + w′(ψ(xi , ỹ`ỹ`+1)−ψ(xi , yi`yi`+1))

= min
w,ξ

1′ξ s.t. ξi ≥
∑
`

C (w, xi , yi`yi`+1, ỹ`ỹ`+1) for all i and ỹ

Exponential number of constraints!
Encode messages from efficient max-sum with auxiliary variables

min
w,ξ,m

1′ξ s.t. ξi ≥ mik−1(ỹk)

mik−1(ỹk) ≥ C (w, xi , yik−1yik , ỹk−1ỹk) + mik−2(ỹk−1)
...
mi`(ỹ`+1) ≥ C (w, xi , yi`yi`+1, ỹ`ỹ`+1) + mi`−1(ỹ`)
...

Classification: same as for CRFs (Taskar et al. 2004a)



Extensions

These algorithms have been generalized to cases where:

y is a tree of fixed structure
y is a context-free parse
y is a graph matching
y is a planar graph

I.e. any structure where an efficient algorithm exists for∑
y

∏
`

max
y

∑
`

Has led to some nice advances in
natural language processing
speech processing
image processing



Conditional probability modeling



Conditional probability modeling

Up to now we have focused on point predictors

ŷ = x′w

ŷ = f (x′w)

ŷ = sign(x′w)

Now want a conditional distribution over y given x

p(y |x)

represents a point predictor and uncertainty about the prediction



Optimal point predictor
Given p(y |x) what is optimal point predictor?
Depends on the loss function

Example: squared error

L(ŷ ; y) = (ŷ − y)2

minŷ E [(ŷ − y)2|x] = minŷ
∫

(ŷ − y)2p(y |x) dy
d
dŷ = 0⇒ ŷ = E [y |x]

Example: matching loss

L(ŷ ; y) = F (f −1(ŷ))− F (f −1(y))− y(f −1(ŷ)− f −1(y))
Let ȳ = E [y |x] and consider

E [L(ŷ ; y)|x]− E [L(ŷ ; y)|x]

=E [F (f −1(ŷ))− F (f −1(ȳ))− ȳ(f −1(ŷ)− f −1(ȳ))|x]

=L(ŷ ; ȳ) ≥ 0

Minimized by setting ŷ = ȳ = E [y |x]



Optimal point predictor

Example: absolute error

L(ŷ ; y) = |ŷ − y |
minŷ E [|ŷ − y | |x] = minŷ

∫
|ŷ − y |p(y |x) dy

ŷ = conditional median of y given x
(Therefore cannot be a matching loss!)

Example: misclassification error

L(ŷ ; y) = 1(ŷ 6=y)

minŷ E [1(ŷ 6=y)|x] = minŷ P(ŷ 6= y |x)
ŷ = arg maxy P(y |x)

But with a full conditional model p(y |x)

we would also have uncertainty in the predictions
E.g. Var(y |x) or H(y |x)



Aside: Bregman divergences

Transfers and inverses

y = f (z) z = f −1(y)

ŷ = f (ẑ) ẑ = f −1(ŷ)

Convex potentials and conjugates

F ∗(y) = sup
z

y′z− F (z) = y′f −1(y)− F (f −1(y))

F (ẑ) = sup
ŷ

ŷ′ẑ− F ∗(ŷ) = ẑ′f (ẑ)− F ∗(f (ẑ))

Get equivalent divergences

DF (ẑ‖z) = F (ẑ)− F (z)− f (z)′(ẑ− z)

= F (ẑ)− ẑ′y + F ∗(y)

= F ∗(y)− F ∗(ŷ)− f −1(ŷ)(y − ŷ) = DF∗(y‖ŷ)



Aside: Bregman divergences

Nonlinear predictor

DF∗(y‖f (ẑ)) = DF (ẑ‖f −1(y))

Linear predictor

DF∗(y‖ŷ) = DF (f −1(ŷ)‖f −1(y))



Exponential family model

p(y|ẑ) = exp(y′ẑ− F (ẑ))p0(y)

F (ẑ) = log

∫
exp(y′ẑ)p0(y) dy

Note∫
p(y|ẑ) dy = 1 is assured by F (ẑ)

F (ẑ) convex (log-sum-exp is convex)

E [y|ẑ] = f (ẑ) = ŷ

Connection to Bregman divergences

Recall: DF (ẑ‖f −1(y)) = F (ẑ)− ẑ′y + F ∗(y) = DF∗(y‖f (ẑ))
So p(y|ẑ) = exp(y′ẑ− F (ẑ))p0(y)

= exp(−DF (ẑ‖f −1(y)) + F ∗(y))p0(y)



Bregman divergences and exponential families

Theorem
There is a bijection between regular Bregman divergences
and regular exponential family models

(Banerjee et al. JMLR 2005)



Training conditional probability models



Training conditional probability models

Maximum conditional likelihood

y1 y2 yt

X1: X2: Xt:

...

max
w

t∏
i=1

p(yi |Xi :w)

≡min
w
−

t∑
i=1

log p(yi |Xi :w)

= min
w

t∑
i=1

DF (Xi :w‖f −1(yi )) + const



Training conditional probability models

Maximum a posteriori estimation

y1 y2 yt

X1: X2: Xt:

w

...

max
w

p(w)
t∏

i=1

p(yi |Xi :w)

≡min
w
− log p(w)−

t∑
i=1

log p(yi |Xi :w)

= min
w

R(w) +
t∑

i=1

DF (Xi :w‖f −1(yi )) + const



Training conditional probability models

Bayes

y1 y2 yt

X1: X2: Xt:

w

...

x’

ŷ

training data test example

Do not just find single best w∗, instead marginalize over w

Predictive distribution

p(ŷ |x′,X , y)



Predictive distribution

p(ŷ |x′,X , y) =

∫
p(ŷ ,w|x′,X , y) dw

=

∫
p(ŷ |x′w)p(w|X , y) dw

=

∫
p(ŷ |x′w)

p(w)
∏t

i=1 p(yi |Xi :w)∫
p(w̃)

∏t
i=1 p(yi |Xi :w̃) dw̃

dw

Bayesian model averaging

E [ŷ |x′,X , y ] =

∫
E [ŷ |x′w]p(w|X , y) dw

=

∫
f (x′w)p(w|X , y) dw

weighted average prediction



Bayesian learning

Difficulty

The integrals are usually very hard to compute∫
f (x′w)p(w|X , y) dw∫

p(w̃)
t∏

i=1

p(yi |Xi :w̃) dw̃

Resort to MCMC techniques in general



Important special case: Gaussian process regression

Assume

y |x′w ∼ N(x′w; σ2)

w ∼ N(0; σ2

β I )

Assume w independent of x, σ2 and β known; given X , y

Want predictive distribution: ŷ |x′,X , y

1. Form

[
w
y

]∣∣∣∣X by combining w and y|X ,w to get joint

2. Form w|X , y by conditioning

3. Form

[
w
ŷ

]∣∣∣∣ x′,X , y by combining w|X , y and ŷ |x′,w to get joint

4. Recover ŷ |x′,X , y by marginalizing

All using standard closed form operations on Gaussians

(E.g. (Rasmussen & Williams 2006))



Gaussian process regression

Get closed form for predictive distribution:

ŷ |x′,X , y ∼ N(x′µw; σ2 + x′Σwx)

= N(x′X ′(K + βI )−1y; σ2 + σ2

β x
′(I − X ′(K + βI )−1X )x)

= N(k′(K + βI )−1y; σ2(1 + 1
βκ−

1
βk
′(K + βI )−1k)

where κ = x′x, k = Xx, K = XX ′

Optimal point predictor and variance

E [ŷ |x′,X , y] = k′(K + βI )−1y

Var(ŷ |x′,X , y) = σ2(1 +
1

β
κ− 1

β
k′(K + βI )−1k)

Same point predictor as L22 regularized least squares
But now get uncertainty in ŷ that is affected by x′



Gaussian process regression example

Samples from the posterior distribution

!!
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Part 3: Latent representations
and unsupervised training

Dale Schuurmans

University of Alberta



Outline

Reverse prediction

Unsupervised training

Robust training

Latent structure training

Relaxations and global solution methods
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