

#### Human Hand Motion Analysis with Multisensory Information

*Zhaojie Ju University of Portsmouth* 



#### **Contents**

- Multiple-sensor Hand Motion Capture System
- Correlations of Finger Trajectories, Contact Force and the EMG signals
- Motion Recognition via EMG signals EMG: Electromyogram (肌电信号)
- Conclusion and Future Work



#### Multiple-sensor Hand Motion Capture System

•Motion capturing module: use different sensors to transfer the sensory information into digital signal recognisable to computers.

•**Preprocessing module:** synchronise and filter the original digital data and segment them into individual tasks.

•Knowledge base module: stores the human hand motion primitives, manipulation scenarios and correlations among the different sensory information.

•Identification module: use clustering and machine learning methods to train the motion models and recognise the new or testing sensory information.

•Desired trajectory generation module: generate the desired trajectories based on the human analysis framework for different applications.

•Applications: Robotic hands, Prosthetic hands, Animation Hands, Human-Computer Interaction and so



on.



## **System Configuration**

•Cyber glove: resistive bending sensors for 22 joint-angle measurements. 0.5 degree resolution and 150Hz sampling rate.

•FingerTPS: pressure sensors for 6 fingertips and palm. Resolution is 0.01lbs and sampling rate is 40 Hz

•**Trigno Wireless Sensors:** 16 channels with 48 accelerometer channels. Resolution is 16 bit and the max sampling rate is 4000Hz





# **Synchronisation**





# Motion Segmentation

•Intermediate state: a flat hand with no strength.

•Start point: when the angle changes away from the intermediate state.

•End point: when the angle changes to the intermediate state.

•'Five-quick-grasp': when one type of the motions is finished.

• **Four-quick-grasp':** when a fault motion is performed.







# **Data Capturing**

•Electrodes location were selected according to the **musculoskeletal** system and confirmed by muscle specific contractions.

•Visualization on a computer screen guarantees stronger signals of the electrode locations.





### **Data Capturing**



#### Grasps or in-hand manipulation

- 1) Grasp and lift a book using five fingers with the thumb abduction.
- 2) Grasp and lift a can full of rice using thumb, index finger and middle finger only.
- 3) Grasp and lift a can full of rice using five fingers with the thumb abduction.
- 4) Grasp and lift a big ball using five fingers.
- 5) Grasp and lift a disc container using thumb and index finger only.
- 6) Uncap and cap a marker pen using thumb, index finger and middle finger.
- 7) Open and close a pen box using five fingers.
- 8) Pick up a pencil using five fingers, flip it and place it on the table.
- 9) Hold and lift a dumbbell.
- 10) Grasp and lift a cup using thumb, index finger and middle finger.



# **Correlations of the Sensory Information**

**Spearman's rho** is a non-parametric measure of statistical dependence between two variables, and it assesses how well the relationship between two variables can be described using a monotonic function.

The **copula** of a random vector can capture the properties of the joint distribution which are invariant under transformations of the univariate margins.



## **Correlations of the Sensory Information**

 Let C<sub>n</sub> and c<sub>n</sub> denote, respectively, the Empirical Copula and Empirical Copula frequency function for the sample {(x<sub>k</sub>, y<sub>k</sub>)<sup>n</sup><sub>k=1</sub>}. If ρ denotes the sample version of Spearman's rho, then

$$\rho = \frac{12}{n^2 - 1} \sum_{i=1}^n \sum_{j=1}^n \left[ C_n \left( \frac{i}{n} \cdot \frac{j}{n} \right) - \frac{i}{n} \cdot \frac{j}{n} \right]$$

• Spearman's rho is used to measure two variables' association. According to the definition and theorem, we can estimate one-to-one correlations between variables using Empirical Copula based on Spearman's rho.



#### **Experiment Results**







### **Relation of the Muscle Contraction and the Finger Tip Force**

|   | thumb | index | middle | ring  | little | palm  |
|---|-------|-------|--------|-------|--------|-------|
| 1 | .32   | .26   | .28    | .56   | .62    | 14    |
|   | (.08) | (.09) | (.10)  | (.07) | (.09)  | (.06) |
| 2 | .34   | .41   | .56    | .16   | .17    | .16   |
|   | (.09) | (.08) | (.06)  | (.07) | (.07)  | (.08) |
| 3 | .73   | .45   | .32    | .22   | .33    | 12    |
|   | (.09) | (.10) | (.09)  | (.06) | (.11)  | (.06) |
| 4 | .33   | .45   | .42    | .21   | .32    | .02   |
|   | (.09) | (.07) | (.06)  | (.05) | (.07)  | (.11) |
| 5 | .15   | 42    | 46     | 16    | 25     | .09   |
|   | (.10) | (.08) | (.08)  | (.07) | (.10)  | (.09) |



### **Relation of Muscle Contraction and the Finger Angle Trajectories**

|   | , , , , , , , , , , , , , , , , , , , | Thumb Finge            | r                      |                        |                       | Index Finger           |                        |                        | Middle Finger          |                        |                       |
|---|---------------------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|
|   | 1                                     | 2                      | 3                      | 4                      | 5                     | 6                      | 7                      | 8                      | 9                      | 10                     | 11                    |
| 1 | .14 (.06)                             | .23 (.07)              | 31 (.06)               | 25 (.04)               | .11 (.06)             | 10 (.06)               | .17 (.04)              | .24 (.04)              | .25 (.06)              | .39 (.06)              | .29 (.07)             |
| 2 | .42 (.09)                             | 34 (.07)               | .04 (.06)              | 32 (.07)               | .55 (.10)             | .41 (.05)              | .49 (.05)              | .21 (.04)              | .81 (.09)              | .48 (.07)              | .47 (.08)             |
| 3 | .73 (.04)                             | .68 (.12)              | .71 (.07)              | 52 (.04)               | .33 (.03)             | .55 (.10)              | .48 (.09)              | .05 (.03)              | .43 (.07)              | .39 (.08)              | .31 (.04)             |
| 4 | .00 (.05)                             | .17 (.07)              | .28 (.08)              | .11 (.06)              | .68 (.05)             | .45 (.06)              | .36 (.08)              | .44 (.05)              | .52 (.09)              | .44 (.05)              | .31 (.04)             |
| 5 | 19 (.11)                              | .13 (.07)              | 10 (.08)               | 12 (.09)               | 42 (.11)              | 31 (.05)               | 25 (.06)               | 13 (.07)               | 43 (.09)               | 21 (.10)               | 14 (.12)              |
|   |                                       | Ring Finger            |                        |                        |                       |                        | Little Finger          |                        |                        |                        |                       |
|   | 12                                    | 13                     | 14                     | 15                     | 16                    | 17                     | 18                     | 19                     | 20                     | 21                     | 22                    |
| 1 | 18 (.06)                              | .63 (.06)              | .51 (.06)              | .40 (.06)              | .23 (.05)             | .83 (.06)              | .49 (.06)              | .48 (.07)              | .22 (.04)              | 06 (.08)               | 37 (.08)              |
| 2 | .32 (.08)                             | 07 (.06)               | 37 (.09)               | 38 (.05)               | .26 (.06)             | 21 (.08)               | 36 (.09)               | 25 (.07)               | 17 (.05)               | 11 (.08)               | 43 (.07)              |
|   |                                       |                        |                        |                        |                       | · · ·                  | · · ·                  |                        |                        | · · ·                  |                       |
| 3 | .53 (.05)                             | .18 (.08)              | .43 (.03)              | .51 (.05)              | .51 (.05)             | .21 (.06)              | .48 (.03)              | .52 (.08)              | .31 (.07)              | .19 (.10)              | .10 (.10)             |
| 3 | <b>.53 (.05)</b><br>.21 (.06)         | .18 (.08)<br>.30 (.08) | .43 (.03)<br>.01 (.05) | .51 (.05)<br>.19 (.05) | .51 (.05)<br>06 (.06) | .21 (.06)<br>.32 (.09) | .48 (.03)<br>.16 (.05) | .52 (.08)<br>.25 (.07) | .31 (.07)<br>.24 (.08) | .19 (.10)<br>.28 (.08) | .10 (.10)<br>16 (.06) |



# Motion Recognition via EMG Intention

- Feature Root Mean Square
- Fuzzy Gaussian Mixture Models
- Comparative Experimental Results



# Motion Recognition via EMG Intention

Root Mean Square(RMS), modeled as amplitude modulated Gaussian random process, relates to the constant force and non-fatiguing contraction. Suppose the EMG signal is f(t), where  $1 \le t \le N$ , N is the number of the sample points, then the RMS is given by

$$f_{rms}(t) = \sqrt{\frac{1}{2w+1} \sum_{i=t-w}^{t+w} f^2(i)}$$

where 2w+1 denotes the length of the signal window :





## **Fuzzy Gaussian Mixture Models**





#### **Bent Gaussian Distribution**





# EM Algorithm for FGMMs

Compute "expected" classes of all data points for each class:

$$d_{it} = \frac{1}{\alpha_i p_i(x_t | \theta_i)}$$
$$u_{it} = \left[\sum_{j=1}^k \left(\frac{d_{it}}{d_{jt}}\right)^{\frac{2}{m-1}}\right]^{-1}$$

Fuzzy C-means

Compute maximum likelihood given the data's class membership distributions:

$$\mu_{i}^{new} = \frac{\sum_{t=1}^{n} u_{it}^{m} x_{t}}{\sum_{t=1}^{n} u_{it}^{m}} + (Q_{i}^{new})^{-1} \underbrace{[0, b, 0, \cdots, 0]^{T}}_{d} + T_{i}^{new}$$

$$\Sigma_{ie}^{new} = \frac{\sum_{t=1}^{n} u_{it}^{m} \bar{L}_{te}^{(i)}}{\sum_{t=1}^{n} u_{it}^{m}} \quad (e=1,2)$$

$$\Sigma_{i(3-d)}^{new} = \frac{\sum_{t=1}^{n} u_{it}^{m} (x_{t} - \mu_{i}^{new})_{(3-d)} (x_{t} - \mu_{i}^{new})_{(3-d)}^{T}}{\sum_{t=1}^{n} u_{it}^{m}}$$

#### University of Portsmouth

Intelligent Systems & Biomedical Robotics Group





# FGMM Training and Modeling





# Motion Recognition Methods

• Gaussian Mixture Models (GMMs) and FGMMs The parameter for GMM/FGMM is the number of the component ranging from 2 to 20 with increments of one and is selected with their best performance.

#### • Support Vector Machine

Parameters for SVM are the kernel parameter ranging from 1 to 10 with increments of one and penalty cost whose range is from 1 to 501 with increments of 50.

These parameters are selected with their best performance.



#### **Experiment Results**

|           | ŗ      | ]     | FG     | MŇ     | A (9   | 92.    | 75%    | ⁄ <sub>0</sub> ) | Ū      | 10             |
|-----------|--------|-------|--------|--------|--------|--------|--------|------------------|--------|----------------|
|           | Motion | Mojon | Motion | Motion | Mojons | Mojons | Mojion | Mojon            | Mojong | Motion         |
| Motion_10 | - 0.00 | 0.00  | 0.00   | 0.00   | 0.00   | 0.04   | 0.00   | 0.00             | 0.00   | 0.96           |
| Motion_9  | - 0.00 | 0.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00             | 1.00   | 0.00 -         |
| Motion_8  | - 0.00 | 0.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.03   | 0.97             | 0.00   | 0.00 -         |
| Motion_7  | - 0.00 | 0.00  | 0.00   | 0.00   | 0.00   | 0.05   | 0.90   | 0.01             | 0.04   | 0.00 -         |
| Motion_6  | - 0.00 | 0.00  | 0.00   | 0.00   | 0.01   | 0.97   | 0.00   | 0.01             | 0.00   | 0.00 -         |
| Motion_5  | - 0.00 | 0.00  | 0.00   | 0.05   | 0.95   | 0.00   | 0.00   | 0.00             | 0.00   | <b>0.0</b> 0 - |
| Motion_4  | - 0.00 | 0.01  | 0.05   | 0.81   | 0.00   | 0.00   | 0.09   | 0.03             | 0.01   | 0.00 -         |
| Motion_3  | - 0.00 | 0.00  | 0.93   | 0.04   | 0.00   | 0.00   | 0.03   | 0.01             | 0.00   | <b>0.0</b> 0 - |
| Motion_2  | - 0.00 | 0.80  | 0.01   | 0.19   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00 -         |
| Motion_1  | 0.97   | 0.00  | 0.00   | 0.03   | 0.00   | 0.00   | 0.00   | 0.00             | 0.00   | 0.00 -         |
|           |        |       |        | 1      |        | 1      | 1      | 1                | 1      | 1              |

| Motion_1  | 0.94   | 0.00     | 0.00  | 0.04           | 0.00  | 0.00   | 0.00 | 0.03   | 0.00   | 0.00 - |
|-----------|--------|----------|-------|----------------|-------|--------|------|--------|--------|--------|
| Motion_2  | - 0.00 | 0.82     | 0.00  | 0.17           | 0.00  | 0.00   | 0.00 | 0.00   | 0.00   | 0.00 - |
| Motion_3  | - 0.03 | 0.01     | 0.86  | 0.05           | 0.01  | 0.01   | 0.01 | 0.01   | 0.00   | 0.00 - |
| Motion_4  | - 0.00 | 0.15     | 0.03  | 0.70           | 0.00  | 0.00   | 0.09 | 0.03   | 0.01   | 0.00 - |
| Motion_5  | - 0.00 | 0.00     | 0.00  | 0.01           | 0.93  | 0.03   | 0.01 | 0.00   | 0.03   | 0.00 - |
| Motion_6  | - 0.00 | 0.03     | 0.00  | 0.00           | 0.00  | 0.95   | 0.00 | 0.00   | 0.03   | 0.00 - |
| Motion_7  | - 0.04 | 0.01     | 0.05  | 0.01           | 0.00  | 0.06   | 0.76 | 0.01   | 0.04   | 0.01 - |
| Motion_8  | - 0.00 | 0.00     | 0.00  | 0.00           | 0.00  | 0.00   | 0.01 | 0.94   | 0.05   | 0.00 - |
| Motion_9  | - 0.00 | 0.00     | 0.00  | 0.00           | 0.00  | 0.00   | 0.00 | 0.00   | 1.00   | 0.00 - |
| Motion_10 | - 0.00 | 0.00     | 0.00  | 0.01           | 0.01  | 0.05   | 0.01 | 0.00   | 0.00   | 0.91   |
|           | Motion | Motion   | Mojio | Mojio<br>TT ZN | Moion | Motion |      | Motion | Motion | Motion |
| _         | 7      | -2<br>-2 | 2     | N N            | /1 (% | 58.%   | 139  | 0) °   | ø<br>  | 70     |
| Motion_1  | 0.93   | 0.00     | 0.00  | 0.03           | 0.00  | 0.01   | 0.00 | 0.00   | 0.04   | 0.00   |
|           |        |          |       |                |       |        |      |        |        | ·      |

| GMM (87.25%) |        |        |         |        |         |        |       |         |        |        |
|--------------|--------|--------|---------|--------|---------|--------|-------|---------|--------|--------|
|              | Motion | Mojonz | Mojions | MOIONS | Motions | Moions | Mojon | Motions | Motion | Motion |
| Motion_10    | - 0.00 | 0.00   | 0.00    | 0.03   | 0.00    | 0.00   | 0.01  | 0.04    | 0.00   | 0.93   |
| Motion_9     | - 0.00 | 0.00   | 0.00    | 0.00   | 0.00    | 0.00   | 0.03  | 0.00    | 0.97   | 0.00 - |
| Motion_8     | - 0.00 | 0.00   | 0.00    | 0.00   | 0.00    | 0.00   | 0.03  | 0.94    | 0.04   | 0.00 - |
| Motion_7     | - 0.00 | 0.04   | 0.03    | 0.03   | 0.00    | 0.05   | 0.75  | 0.04    | 0.05   | 0.03 - |
| Motion_6     | - 0.00 | 0.01   | 0.00    | 0.00   | 0.03    | 0.94   | 0.00  | 0.01    | 0.01   | 0.00 - |
| Motion_5     | - 0.00 | 0.00   | 0.03    | 0.03   | 0.89    | 0.01   | 0.00  | 0.00    | 0.01   | 0.04 - |
| Motion_4     | - 0.04 | 0.16   | 0.09    | 0.63   | 0.00    | 0.00   | 0.05  | 0.04    | 0.00   | 0.00 - |
| Motion_3     | - 0.01 | 0.04   | 0.91    | 0.01   | 0.00    | 0.01   | 0.01  | 0.00    | 0.00   | 0.00 - |
| Motion_2     | - 0.00 | 0.85   | 0.00    | 0.13   | 0.00    | 0.03   | 0.00  | 0.00    | 0.00   | 0.00 - |
|              | 0.95   | 0.00   | 0.00    | 0.03   | 0.00    | 0.01   | 0.00  | 0.00    | 0.04   | 0.00   |







Recognition results with means and variances of different subjects using different methods



#### **Experiment Results**



Box plot results for the different classifiers for all subjects



#### **Control Prosthetic Hand**





#### Conclusion

- An integrated framework with multiple sensory information for analysing human hand motions has been proposed.
- Motion capturing module, signal preprocessing module, knowledge base module and intention recognition module have all been investigated.
- This platform has potential applications in robotics, biomedical engineering, PbD and HCI.
- Future work will be targeted to apply this framework into automatically controlling prosthetic hands such as the ilimb hand from the Touch Bionics.



# Thanks for your time!