

Enabling Fine-Grained Channel Access in WLAN

<u>Kun Tan</u>⁺ Ji Fang[‡] Yuanyang Zhang[¶] Shouyuan Chen [§] Lixin Shi [§] Jiansong Zhang⁺ Yongguang Zhang⁺

[†]Microsoft Research Asia, Beijing, China

[‡] MSRA and Beijing Jiaotong University, Beijing, China
 [¶] MSRA and Beihang University
 [§] MSRA and Tsinghua University, Beijing, China

The Problem

How we can improve the access efficiency in high-speed wireless network?

IEEE 802.11n; 144.4Mbps

(20MHz channel; 2x2MIMO; 1500B frame size; aggregation disabled)

The Problem

How we can improve the access D:\tool>iperf -s -w 1M -i 1				
Server listening on TCP port 5001 TCP window size: 1.00 MByte				
[1224] local 192.168.0.19 port 5001 connected with 192.168.0.101 por	t 40827			
[ID] Interval Transfer Bandwidth [1224] 0.0- 1.0 sec 4.87 MButes 40.8 Mbits/sec				
[1224] 1.0- 2.0 sec 4.97 MBytes 41.7 Mbits/sec				
[1224] 2.0- 3.0 sec 5.24 MBytes 44.0 Mbits/sec				
[1224] 3.0- 4.0 sec 4.90 MBytes 41.1 Mbits/sec				
[1224] 4.0- 5.0 sec 5.17 MBytes 43.4 Mbits/sec				
[1224] 5.0- 6.0 sec 5.08 MBytes 42.6 Mbits/sec				
[1224] 6.0-7.0 sec 5.40 MBytes 45.3 Mbits/sec				
[1224] 7.0- 8.0 sec 6.16 MBytes 51.7 Mbits/sec				
[1224] 8.0- 9.0 sec 6.00 MBytes 50.4 Mbits/sec				
[1224] 9.0-10.0 sec 6.04 MBytes 50.7 Mbits/sec				
[1224] 0.0-10.0 sec 53.9 MBytes 45.2 Mbits/sec				

עטועודוב נוומוווופו, באבועווועוט,

1500B frame size; aggregation disabled)

Understanding the Overhead

CSMA MAC

- When PHY data rate increases high, the useful air time (t_{data}) reduces, but
- Coordination overhead remains almost constant

Existing MAC Limitations

- Always allocate whole channel to a single user at a time
 - Single carrier: too coarse when data rate is high and bandwidth is wide
 - Significant overhead with small data transmission

- Aggregation cannot solve the problem completely
 - Requires a large aggregation size (e.g. 23KB per frame for 80% efficiency at 300Mbps data rate
 - Increases latency adversary interaction w/ RT, interactive, Web traffic, etc.

Existing MAC Limitations

Always allocate whole channel to a single user at a time

Calls for a fine-grained channel access model!

problem completely

- Requires a large aggregation size (e.g. 23KB per frame for 80% efficiency at 300Mbps data rate
- Increases latency adversary interaction w/ RT, interactive, Web traffic, etc.

Fine-Grained Channel Access

- Basic idea
 - Divide the spectrum band into small fine-grained slices
 - Allow different nodes to contend and transmit on different slices
 - Amortize the coordination overhead among multiple users
- Direct reduce the channel width does not work
 - Guard-band creates significant overhead

- Based on OFDM
 - Overlapped subchannels, but
 - Cross-subchannel interference is zero
- Remove the need of guard-band

Challenges

 Loss of orthogonality among asynchronous nodes

- How to coordinate transmissions in random access networks like WLAN
- How to handle contentions
 - Conventional time-domain backoff becomes very inefficient

FICA Approach

- A new PHY architecture
 - Rely on carrier-sensing and broadcasting for synchronization
 - Adopt new symbol structure to accommodate the time misalignment
- A new MAC contention and backoff scheme
 Frequency-domain contention and backoff

Overview

- Divide wide-band channel into orthogonal subchannels
- M-RTS/M-CTS/DATA/ACK access sequence

FICA PHY Architecture

 Analyze the timing misalignment in WLAN with carrier-sensing and broadcasting

Carrier-sensing $t_{mis} < 11 \mu s$

Broadcasting $t_{mis} < 2\mu s$

FICA PHY Architecture (cont.)

 Design a proper cyclic-prefix to accommodate the timing misalignment

FICA PHY Architecture (cont.)

 Design a proper cyclic-prefix to accommodate the timing misalignment

 t_{mis} Symbol

Enlarged CP size to be longer than the misalignment

- Long CP for M-RTS coordinated with carrier sensing
- Short CP for M-CTS/DATA/ACK synchronized by previous broadcasting signals

FICA PHY Architecture (cont.)

 Design a proper cyclic-prefix to accommodate the timing misalignment

- Enlarged CP size to be longer than the misalignment
 - Long CP for M-RTS coordinated with carrier sensing
 - Short CP for M-CTS/DATA/ACK synchronized by previous broadcasting signals
- Extend symbol time accordingly to offset the CP overhead

PHY Design Details

OFDIVI Symbol Parameters		
Parameter	Value	
$\sim N_{\rm fft_data}$	256 points	
$t_{ m fft_data}$	$12.8\mu s$	
$N_{\rm fft_mrts}, N_{\rm fft_mcts}$	512 points	
$t_{\rm fft_mrts}, t_{\rm fft_mcts}$	$25.6 \ \mu s$	
t_{long_cp}	$11.8\mu s$	_
$t_{ m short}$ cp	$2.8\mu s$	
$t_{ m data_sym}$	$15.6 \ \mu s$	
$t_{ m mrts_sym}$	$37.4\mu s$	4
$t_{ m mcts_sym}$	$28.4\mu s$	4

OFDNA Cumele al Davase ata

Data subcarrier width: 78KHz Subchannel width: 1.33MHz (17 subcarriers) 20 MHz channel: 14 subchannels 40 MHz channel: 29 subchannels

Configuration	FICA (Mbps)	802.11n (Mbps)
20MHz channel	71.8	72.2
40MHz channel	145	150
0MHz channel, 2xMIMO	290	300
0MHz channel, 4xMIMO	580	600

More details are explained in the paper

Contention and Resolution

- Time domain backoff is inefficient
 - Very large symbol, e.g. 37.4 us for M-RTS → very large backoff slot
- Our solution: frequency-domain contention

Physical layer signaling: M-RTS/M-CTS

Frequency Domain Backoff

- Basic idea:
 - Reduce num. of subchannel to contend if collision
 - Increase num. of subchannel to contend if success
 - Analog to congestion control mechanisms

Update1: Reset to max	Update2: AIMD
if collision detected in any subchannel then	if $p\%$ subchannels have collisions and $(p > 0)$ then
$C_{\max} = \max(C_{\max}/2, 1);$	$C_{\max} = \max(C_{\max} \times (1 - p/100), 1);$
else	else
$C_{\max} = C_{\text{total}};$	$C_{\max} = min(C_{\max} + 1, C_{\text{total}});$
end if	end if

21

Implementation and Evaluation

- Prototype using the Sora software radio platform
 - Based on SoftWiFi implementation
- Hybrid-evaluation strategy
 - Prototype \rightarrow feasibility
 - How well timing synchronization can be done with CSMA?
 - How reliable to detect OOK in PHY signal symbols?
 - What is the decoding performance?
 - − Simulation → performance gain in large scale networks

Microsoft[®]

Research

Results – Signaling Reliability

Mixed traffic: 5 saturated

with delay sensitive traffic

Simulation – Performance Gain

- **Full aggregation** ۲
- 90 90 FICA RMAX FICA AIMD 80 FICA AIMD 80 Efficeiency (%) 70 FICA RMAX 802.11 20 802.11 10 10 0 More results are in More results aperl 0 5 15 10 10 30 40 0 20 50 # of delay-sensitive nor # of nodes

11n PHY: 600Mbps; FICA PHY: 580Mbps

Related Work

- OFDMA in tight synchronized network
- FARA implements downlink OFDMA in WLAN
- SMACK uses OFDM signaling to send ACK
- MCBC uses OFDM signaling for multi-round contention
- Multi-channel MAC designs
- Voice over IP in WLAN

Conclusions

- MAC efficiency is critical
- Fine-grained channel access is the key
 - Aggregation among different nodes
- FICA: first cross-layer design to enable finegrained channel random access
 - New PHY architecture based on OFDM
 - New frequency-domain contention and backoff

Thanks! Take you questions!

