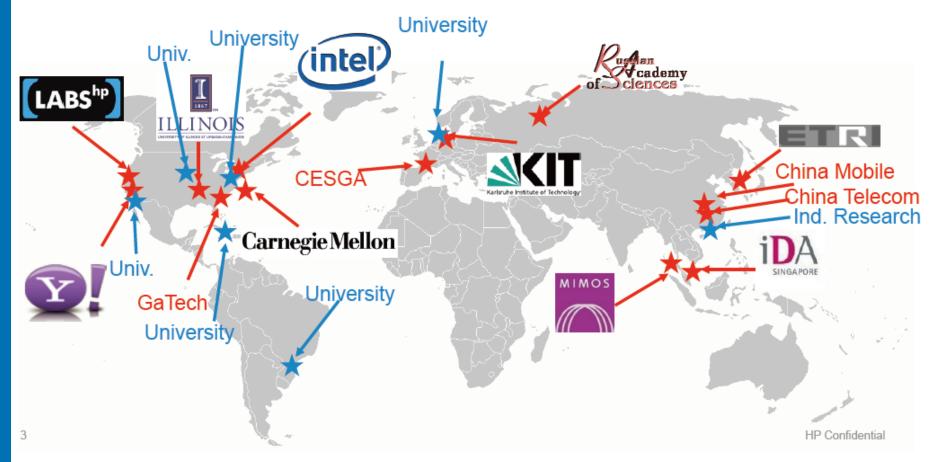
Open Cirrus Overview

Presentation at the 6th Open Cirrus Summit Atlanta, GA, October 12, 2011

Dejan Milojicic Senior Research Manager and Researcher Managing Director, Open Cirrus Hewlett-Packard Laboratories dejan.milojicic@hp.com

Anne and the second and the second se

© 2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice


Outline

- Old slide set on Open Cirrus with some analysis
- More recent research examples
- Lessons learned
- If we were to do it all over again today...?
- Summary
- What Next

Open Cirrus[™] Cloud Computing Testbed

Shared: research, applications, infrastructure (11K cores), data sets
Global services: sign on, monitoring, store. Open source stack (prs, tashi, hadoop)
Sponsored by HP, Intel, and Yahoo! (with additional support from NSF)

• 15 sites currently, target of around 20 in the next two years.

Open Cirrus

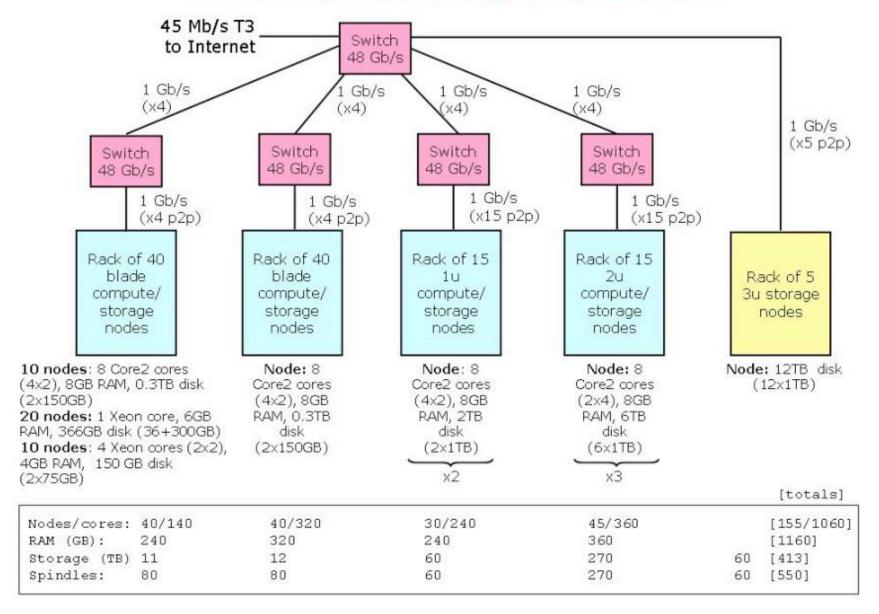
Objectives

 Create an ecosystem for Cloud services modeling 	+
 Foster systems research around cloud computing 	++
 Expose research community to enterprise level requirements 	+
 Provide realistic traces of cloud workloads 	
 Vendor-neutral open-source stacks and APIs for the cloud 	

How are we unique	++
 Support for systems research and applications research 	+
 Federation of heterogeneous datacenters 	_
 Interesting data sets 	

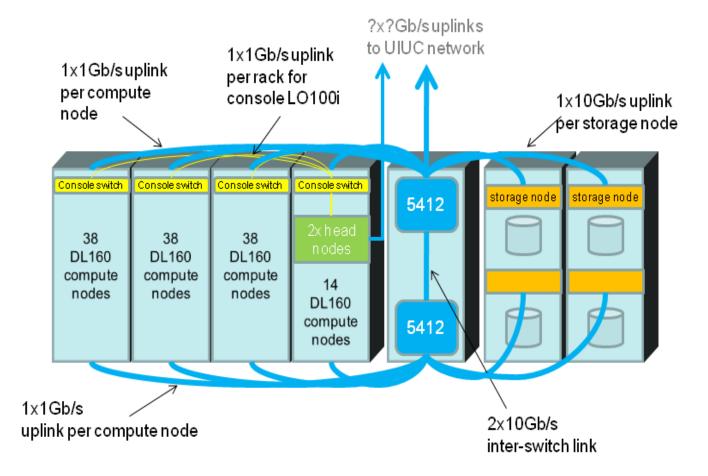
Process

- Central Management Office, oversees Open Cirrus
- Governance model
 - Research team
 - Technical Team
 - New site additions
 - Support (legal (export, privacy), IT, etc.)
- Each site
 - Runs its own research and technical teams,
 - Contributes individual technologies
 - Operates some of the global services
- E.g. HP Site supports: Portal and PRS


Home About Us Resources Services Contact Forums

Open Cirrus (TM) Home Search this site: Outline New forum topics Request Access Edit Track Search Hi Everyone Requesting Access to OpenCirrus Participating in Open Cirrus! marthalyons Why is Open Cirrus unique The resources provided through the OpenCirrus Cloud Computing Testbed My account and interesting to the are a finite resource and are intended to be used for research purposes CoE Collaboration Space systems community? only. Admin Forums Why are we building Open Consequently, OpenCirrus computing resources are allocated to research O Workflow summary Cirrus? projects that must be approved by one or more of the OpenCirrus Centers of Create content Welcome!!!! Some facts Excellence. Project proposals are submitted by a Principal Investigator who about Open Cirrus! Recent posts is typically a university faculty member, senior staff member, or industrial more Feed aggregator researcher/technologist. Once a project is approved the Principal Administer Investigator is able to identify additional team members who should be Who's online granted access as part of the project. This organization is similar to the Log out arrangement for PlanetLab and nearly identical to the one used for Emulab. There are currently 1 user and 0 guests online. Project Proposal Process Online users The process for proposing a project is relatively straightforward. o marthalvons 1. First, the Principal Investigator (PI) should select one of the OpenCirrus Centers of Excellence to serve as the Home Site for a project. 2. The PI should email a brief description of the project to the Project Coordinator at the Home Site. This description should include at least (1) the research goals of the projects, (2) a high-level description of the OpenCirrus resources that would be involved, and (3) the expected project start/end dates. See a sample here. The research coordinators for each site are listed below: HP Labs Site - Martha Lyons, martha.lyons@hp.com Intel Pittsburgh Research Site - Michael Kozach, email@intel.com Yahoo! Research - Thomas Kwan, email@yahoo.com O UIUC -KIT -Singapore IDA -

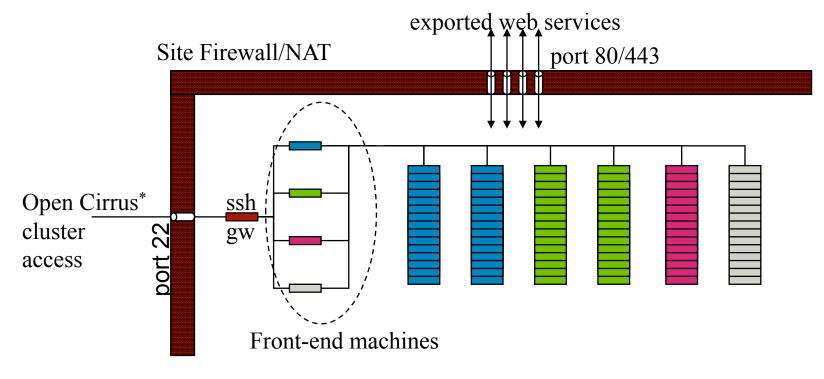
HP Labs Cirrus Cluster topology



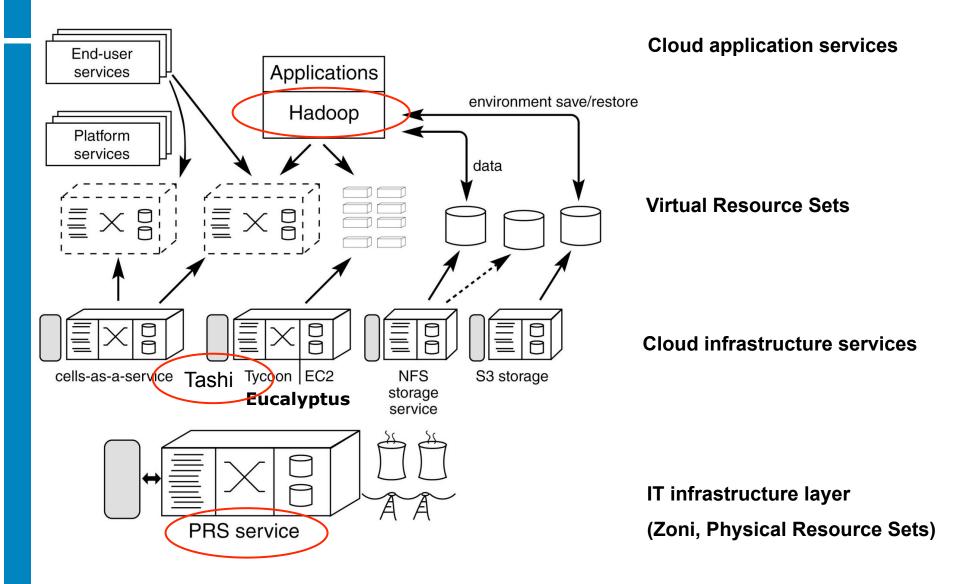
Intel Research BigData Cluster

UIUC cluster network topology

- . Console switches: connect to 1 port/head node
- . Links to external UIUC network connect either to both head nodes, or to both core switches
- Each storage node has 1x10Gb/s to each core switch
- · Each compute node has 1x1Gb/s link to each core switch
- · Core switches have 2x10Gb/s inter-switch links between them


9

Open Cirrus Sites


	Characteristics									
Site	Site #Cores #Servers		Public partition	Memory Size	Storage Size	Spindles	Network	Focus		
HP	1,024	256	178	3.3TB	632TB	1152	10G internal 1Gb/s x-rack	Hadoop, Cells, PRS, scheduling		
IDA	2,400	300	100	4.8TB	43TB+ 16TB SAN	600	1Gb/s	Apps based on Hadoop, Pig		
Intel	1060	155	145	1.16TB	353TB local 60TB attach	550	1Gb/s	Tashi, PRS, MPI, Hadoop		
KIT	2048	256	128	10TB	1PB	192	1Gb/s	Apps with high throughput		
UIUC	1024	128	64	2TB	~500TB	288	1Gb/s	Datasets, cloud infrastructure		
Yahoo	3200	480	400	2.4TB	1.2PB	1600	1Gb/s	Hadoop on demand		

Access Model

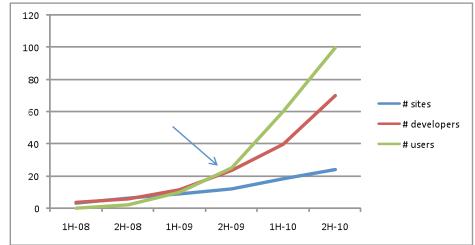
- At a minimum, sites must expose a ssh gateway
- Sites may also provide additional external connections
 - Some provision for web services is highly recommended
- Sites may also be divided into resource pools by service
 - Some services may require a front-end machine (e.g. hadoop)

Open Cirrus Software Stack

How do users get access to Open Cirrus sites?

- Project PIs apply to each site separately
- Contact email addresses on the Open Cirrus portal

- <u>http://opencirrus.org</u>


- Each Open Cirrus site decides which users and projects get access to its site
- A global sign on for all sites
 - Users are able to login to each OpenCirrus site for which they are authorized using the same login and password.

What kinds of research projects are Open Cirrus sites looking for?

- Open Cirrus[™] is seeking research in the following areas (different centers will weight these differently)
 - Datacenter federation
 - Datacenter management
 - Web services
 - Data-intensive applications and systems
 - Hadoop map-reduce applications
- The following kinds of projects are of less interest
 - Traditional HPC application development
 - Production applications that just need lots of cycles
 - Closed source system development

Metrics of Success

- Community
- Technology used

- # Sites, Projects, (Vibrant) Users
- Research Productivity (Shared Cost of Research), # papers published
 - Cross-collaboration (Portal traffic)
 - # New open source components
 - Global presence
 - Technical
 - Utilization of Open Cirrus, TCO
 - Ease of use (e.g. provision 50% of OC nodes in < 30sec)
 - Federation transparency/adoption
 - Reliability

+

+

+

++

+

+

Open Cirrus v. Other Testbeds

	Testbeds									
	Open Cirrus	IBM/Google	TeraGrid	PlanetLab	EmuLab	Open Cloud Consortium	Amazon EC2	LANL/NSF cluster		
Type of research	Systems & applications	l applications l l systems		Systems	interoperab. across clouds using open APIs	Commer. use	Systems			
Approach	Federation of heterog. data centers	A cluster supported by Google and IBM	Multi-site hetero clusters super comp.	A few 100 nodes hosted by research instit.	A single-site cluster with flexible control	Multi-site heterogeneous clusters	Raw access to virtual machines	Re-use of LANL's retiring clusters		
Participants	HP, Intel, IDA, KIT, UIUC, Yahoo!	IBM, Google, Stanford, U.Washington, MIT	5	Many univ & organizations	University of Utah	4 centers –	Amazon	CMU, LANL, NSF		
Distribution	15 sites	1 site	11 partners in US	> 700 nodes world-wide	>300 nodes univ@Utah	480 cores, distributed in four locations		1000s of older, still useful nodes at 1 site		

Open Cirrus Research Summary

HP	Intel	
• Mercado	• Everyday Sensing and	
 Policy Aware Data Mgmt 	Perception	
 Wikipedia Mining & tagging 	SLIPstream/Sprout	Cloud
SPARQL Query over Hadoop	Parallel Machine Learning	application
(UTD)	NeuroSys	frameworks and
 N-tier App Benchmark (GaTech) 	Computational Health	services
	• FastBeat (w/France Telecom)	
		Cloud
 Economic Cloud Stack 	 Tashi (with CMU, Yahoo) 	infrastructure services
Parallel Data Series		
• OpenNet	• PRS (with HP)	IT infrastructure layer
Exascale Data Center		J

OpenNet on OpenCirrus

- OpenNet
 - Programmable, open layer-2 network
 - Features for
 - Robust, adaptive routing over redundant layer-2 networks
 - VM machine migration without dropping connections
 - In-situ network monitoring
 - Quality-of-Service guarantees
 - Installed on OpenCirrus cluster at HP Fall 2009
- OpenNet on OpenCirrus
 - Full bisection bandwidth
 - Virtual machine migration
 - Platform for high energy efficiency in the Data Center
 - Based on SPAIN (HP Labs), PortLand (UC San Diego)
 - Joint project between HP Labs, UC San Diego (funded by HP Open Innovation Program)

OpenCirrus on GENI

- GENI: Global Environment for Network Innovations
 - Major National Science Foundation program to provide a national-scale experimental facility for computer science researchers
 - Currently entering Spiral Two prototyping phase
- OpenCirrus on GENI
 - Give access to GENI researchers to the OpenCirrus platform (PlanetLab Control Framework for OpenCirrus)
 - Give OpenCirrus users access to GENI resources
- Key technological challenges
 - Mutual authentication between PlanetLab Control and OpenCirrus
 - Exchange of authorization and access functions
 - Resource allocation
- Status
 - Joint proposal to GENI Project Office by HP Labs (Kevin Lai, Rick McGeer) and UC San Diego (Alex Snoeren, Amin Vahdat)
 - Accepted by GENI Project Office (GPO) for Spiral Two Funding
 - Part of GPO proposal to NSF for Spiral Two (decision early Sept)

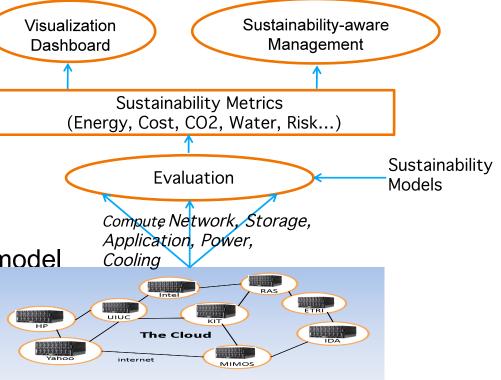
SPARQL Query over Hadoop for Very Large RDF Datasets

Trust XML

- Provide a semantic web framework using Hadoop which scales for large RDF data sets.
 - Use the Lehigh University Benchmark (LUBM) data (provides 14 queries) to measure SPARQL queries implemented over Map/Reduce framework provided by Hadoop.
 - Goal: to find the best possible way to query the data (SPARQL) by Map/Reduce programming.

N-tier Application Benchmark & Evaluation over Open Cirrus

- Generate, deploy, and run N-tier application benchmarks (including non-stationary workloads)
- RUBBOS
- Collect data on standard and custom N-tier application benchmarks such as RUBiS (e-commerce) and RUBBoS (bulletin board) over a wide range of settings and configurations (both hardware and software)
 - Collect, analyze, and evaluate performance data using statistical software tools.
 - Apply the experimental evaluation results to cloud management applications such as configuration planning and adaptive reconfiguration


Cloud Sustainability Dashboard (CSD)

Open Cirrus	Economical (\$)					Ecological				Social		
Site	IT	cooling	ntwk	support	econo. overall	CO ₂ (tonnes-eq)	water (mill. Gal)	Resource Use (GJ-eq)	ecolog. overall	State of devt.	Risk of instability	social overall
Site 1	\$0.72	\$0.35	\$0.16	\$0.43		6.0	2.6	83		High	Low	
Site 2	\$1.27	\$0.59	\$0.21	\$1.11		6.8	3.3	96		High	Very Low	
Site 3	\$1.05	\$0.47	\$0.12	\$1.07		5.9	2.3	81		High	Low	
Site 4	\$0.75	\$0.35	\$0.12	\$0.61		6.1	2.7	85		High	Very Low	
Site 5	\$0.27	\$0.13	\$0.05	\$0.09		4.3	2.4	59		Low	High	
Site 6	\$1.82	\$0.77	\$0.11	\$1.17		10.2	4.3	142		High	Low	
Site 7	\$1.23	\$0.54	\$0.11	\$0.98		15.0	4.4	192		High	Low	
Site 8	\$0.55	\$0.26	\$0.10	\$0.16		6.9	2.6	95		Med.	Low	
Site 9	\$1.01	\$0.44	\$0.10	\$0.83		5.3	2.5	74		High	Very Low	
Bricks-and- Mortar (US)	\$0.58	\$0.70	\$0.12	\$0.83		9.0	2.1	127		High	Very Low	

CSD Summary

- A systematic approach for representing and assessing sustainability of Clouds
 - Derived from a comprehensive model (economical, ecological, social)
- Automated, real-time Cloud
 Sustainability Dashboard
 - Express, assess and display run-time sustainability of Cloud & Cloud services
 - Preference-based customization
- Opportunities for integration with different enterprise tools

Data Center or Cloud

Lessons Learned

- Entered 4th year, growing, 15 members, 6 summits, IEEE Computer paper
- 16 HPL projects across different Labs, similar in other institutions
- Of them, 4 directly OpenCirrus related, most remaining Cloud related
- Sujata Banerjee, "Our NSDI paper would not have happened without Open Cirrus"
- Rick McGeer, "We couldn't have done demo at GEC-8 without Open Cirrus"
- Prakash Reddy, "BookPrep prepared 1M books on Open Cirrus on demand"
- Jerry Liu "Open Cirrus enabled us to build performance models for Article Clipper"
- ++ A lot of external excitement, people "get it," want to join, use it, associate with it
- + Exhaustive use by individual sites, excellent setting for external collaboration
- Feels like a research project but not resourced like one

– Getting hardware without development resources stifles progress (HP, UIUC, IDA)

Summary

- Successful as a community
- Ahead of the time as a Cloud Stack
- Contributions internally, less so across organizations
- Created a lot of IP and enabled a lot of research
- Invitation to Open Cirrus Summits

 5th Summit in Moscow (June), 6th Summit in Atlanta (October)
 IEEE Co-sponsored, papers will appear in IEEE Digital Library

•7th Summit in Beijing, China, June 21-22, 2012

•8th Summit in Palo Alto, CA, collocated with ICAC, Fall 2012