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ABSTRACT
Social networks are commonly used for marketing purposes.
For example, free samples of a product can be given to a
few influential social network users (or “seed nodes”), with
the hope that they will convince their friends to buy it. One
way to formalize marketers’ objective is through influence
maximization (or IM), whose goal is to find the best seed
nodes to activate under a fixed budget, so that the number
of people who get influenced in the end is maximized. Recent
solutions to IM rely on the influence probability that a user
influences another one. However, this probability information
may be unavailable or incomplete.

In this paper, we study IM in the absence of complete infor-
mation on influence probability. We call this problem Online
Influence Maximization (OIM) since we learn influence prob-
abilities at the same time we run influence campaigns. To
solve OIM, we propose a multiple-trial approach, where (1)
some seed nodes are selected based on existing influence
information; (2) an influence campaign is started with these
seed nodes; and (3) users’ feedback is used to update influ-
ence information. We adopt the Explore–Exploit strategy,
which can select seed nodes using either the current influence
probability estimation (exploit), or the confidence bound on
the estimation (explore). Any existing IM algorithm can be
used in this framework. We also develop an incremental algo-
rithm that can significantly reduce the overhead of handling
users’ feedback information. Our experiments show that our
solution is more effective than traditional IM methods on
the partial information.

1. INTRODUCTION
In recent years, there has been a lot of interest about how

social network users can affect or influence others (via the
so-called word-of-mouth effect). This phenomenon has been
found to be useful for marketing purposes. For example,
many companies have advertised their products or brands
on social networks by launching influence campaigns, giving
free products to a few influential individuals (seed nodes),
with the hope that they can promote the products to their
friends [19]. The objective is to identify a set of most influ-
ential people, in order to attain the best marketing effect.

∗Work mainly done while the author was affiliated with
University of Hong Kong.
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Figure 1: The OIM framework.

This problem of influence maximization (IM) has attracted
a lot of research interest [6, 7, 9, 10,22].

Given a promotion budget, the goal of IM is to select the
best seed nodes from an influence graph. An influence graph
is essentially a graph with influence probabilities among nodes
representing social network users. In the independent cascade
model, for example, a graph edge e from user a to b with
influence probability p implies that a has a chance p to
affect the behavior of b (e.g., a convinces b to buy a movie
ticket) [16]. Given an influence graph, IM aims to find k
seed nodes, whose expected number of influenced nodes, or
influence spread, is maximized. Marketing efforts can then
be focused on the k nodes (or persons). In the IM literature,
these seed nodes are said to be activated [6, 7, 9, 10,22].

While existing IM algorithms effectively obtain the most
influential seed nodes, they assume that the influence proba-
bility value between each pair of nodes is known. However,
this assumption may not hold. Consider a marketing firm
starting in a new city with some knowledge of the social
network of the users in the city. The company, however,
does not know how influence propagates among these users.
Unless the influence probability information is known, the
marketing firm cannot run an IM algorithm and decide the
target users. To obtain these values, action logs, which record
the social network user’s past activities, can be used [12].
This information may not be readily available.

Is it possible to perform IM on a social network, even if the
information about influence probabilities is absent or incom-
plete? We call this problem Online Influence Maximization
(OIM), as we aim at discovering influence probabilities at
the same time we are performing influence campaigns. (We
say that an IM algorithm is offline, if it assumes that the
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influence probability between every node pair is known in
advance.) In the absence of complete influence probability
information, making the best marketing effort out of a lim-
ited promotion budget can be challenging. To tackle this
problem, we propose a solution based on influencing seed
nodes in multiple rounds. In each round, we select some
seed nodes to activate (e.g., advertising a product to a few
selected users). The feedback of these users is then used
to decide the seed nodes to be activated in the next round.
The information about influence probabilities in the social
network is learnt and refined during these campaigns.

Figure 1 illustrates our OIM framework. It contains multi-
ple successive influence campaigns, or trials. A trial should
fulfill one of two objectives: (1) to advertise to promising
nodes; and (2) to improve the knowledge about influence
probabilities. A trial consists of two phases: selection and
action. In the selection phase, an uncertain influence graph
is maintained. This graph models the uncertainty of influ-
ence probabilities among social network users, in terms of
a probability distribution. A seed selection strategy, based
on an existing IM solution, is then executed on this graph
to produce up to k seed nodes. In the action phase, the
selected seed nodes are activated in the real world (e.g., send-
ing the advertisement message to chosen users). The actions
of these users, or feedback (e.g., whether the message is fur-
ther spread), is then used to update the uncertain influence
graph. The iteration goes on, until the marketing budget is
exhausted. In this paper, we focus on the two crucial compo-
nents of the selection phase: (1) seed selection strategy; and
(2) techniques for updating the uncertain influence graph.
1. Seed selection strategy. To choose seed nodes in a
trial, a simple way is to make use of existing IM algorithms.
Due to the lack of knowledge about influence probabilities,
this approach may not be the best. We thus develop an
Explore–Exploit strategy (or EE), which performs IM based
on existing influence probability information:

• [Exploit] Select k seed nodes for getting the most reward-
ing influence spread from the influence graph, derived from
the uncertain influence graph. Any state-of-the-art IM algo-
rithms (e.g., CELF [18], DD [7], TIM and TIM+ [26]) can
be used; or
• [Explore] Select k seed nodes based on some strategy (e.g.,
through estimating the confidence bound of the influence
probability) to improve the knowledge about the influence
graph.

In this paper, we study strategies for exploit and explore.
With suitable use of strategies, EE performs better than
running an existing IM algorithm on the uncertain influence
graph alone.

In our OIM solution, N trials are carried out. In each trial,
an existing IM algorithm may be executed. If N is large, the
performance of our algorithm can be affected. The problem
is aggravated if the underlying uncertain influence graph is
big. For state-of-the-art IM algorithms (e.g., CELF [18] and
TIM+ [26]), this running time is dominated by the cost of
sampling the influence graph. For example, in TIM+, the
sampling effort costs more than 99% of the computation
time. We design an efficient solution, based on the intuition
that users’ feedback often only affects a small portion of the
influence graph. If samples of the previous iterations are
stored, it is possible to reuse them, instead of sampling the
influence graph again. We examine conditions allowing a

sampled graph to be effectively reused in a new trial. We
propose an incremental algorithm, and present related data
structures for facilitating efficient evaluation of our solution.
This algorithm can support any sample-based IM algorithm
running on independent cascade models. We demonstrate
how to use TIM+ in this paper.
2. Updating the uncertain influence graph. As dis-
cussed before, our seed selection strategy is executed on the
uncertain influence graph (Figure 1). It is important that
this graph accurately reflects the current knowledge about
the influence among different users, so that the seed selec-
tion strategy can make the best decision. We investigate
algorithms for updating this graph based on the feedback of
activated users (e.g., whether they spread out an advertise-
ment message). We examine two variants, which update the
influence graph locally and globally. A local update refreshes
the parameters of the influence probability distribution be-
tween two graph nodes, while a global update is applied
to the parameters of the influence probability information
that applies to the whole uncertain influence graph. These
algorithms are developed based on classical machine learn-
ing methods (e.g, Least Squares Estimation and Maximum
Likelihood).

Our solutions can be adopted by social marketers who
aim to promote their products, in cases when the underly-
ing probabilities of the influence graph are unknown. Our
approach can utilize any state-of-the-art IM algorithm. We
also examine how to update the uncertain influence graph
effectively by machine learning methods. We develop an in-
cremental algorithm to improve the efficiency of our solution.
Our experiments demonstrate that our proposed methods
can effectively and efficiently maximize influence spread.

2. RELATED WORK
Influence Maximization (IM). Kempe et al. [16] first

proposed the study of IM in social networks. They showed
that finding the set of seed nodes that maximizes influence
is NP-hard, and showed that the greedy algorithm has a con-
stant approximation guarantee. However, this solution is not
very fast, because thousands of samples are often required,
and each sampling operation has a complexity linear to the
graph size. To improve the efficiency of IM solutions, sev-
eral heuristics were developed, namely Degree Discount [7],
PMIA [6], IPA [17], and IRIE [15]. Although these heuristics
are fast, their accuracy is not theoretically guaranteed. Im-
proved aproximation algorithms with theoretical guarantees
include CELF [18], CELF++ [13], and NewGreedy [7]. More
recently, Borgs et al. proposed an algorithm based on reverse
influence sampling, and showed that it is runtime-optimal
with accuracy guarantees [4]. The scalability of this solu-
tion was enhanced by Tang et al., who developed TIM and
TIM+ [26] to further reduce the number of samples needed.

There are also other works that address different variants
of the IM problem: (1) incorporating community [27] and
topic [2] information in the propagation process; (2) compe-
tition of different parties for influence [20]; and (3) use of
other influence propagation models such as linear threshold
or credit distribution [11,14,25].

Learning influence probabilities. Saito et al. [24] mod-
eled the problem of obtaining influence probabilities as an
instance of likelihood maximization, and developed an ex-
pectation maximization algorithm to solve it. Given a social
network and an action log (e.g., user u performs action a at



Table 1: Symbols used in this paper.

symbol description

G influence graph
V set of users (nodes) of G
E set of edges of G
pij influence probability from i to j (fixed value)
Pij influence probability from i to j (random variable)
N number of trials
k budget for each trial
S set of seed nodes

σ(S) expected influence spread
(α, β) global prior for the beta distribution
An set of successfully activated nodes in trial n
Fn real world activation feedback in trial n

(hij ,mij) number of successful and unsuccessful
activations of the edge from i to j

time t), Goyal et al. [12] developed static and time-dependent
models to compute influence probabilities between a pair of
social network users. These methods require the action log
information of all the users involved to be known in advance;
however, this information may not be available. Our frame-
work does not require all action logs to be available. Instead,
we select seed nodes in multiple advertising campaigns, so
that influence maximization can be done faster. We then use
users’ feedback in each campaign to learn and refine influence
probabilities.

Multi-armed bandits (MAB). The EE strategy in the
seed selection phase of our solution is inspired by the ε-
greedy algorithm, which was originally developed to solve
the multi-armed bandit problem (MAB) [23]. In the ε-greedy
algorithm [21], ε controls the trade-off between exploitation
and exploration. Specifically, with probability 1 - ε, an action
is executed based on the current knowledge (i.e., exploit);
with probability ε, another action is performed (i.e., explore).
This framework is adopted as a baseline in our solution.

[8] studies combinatorial MAB algorithms, and in par-
ticular the CUCB algorithm, which uses upper confidence
bounds [3] for choosing between explore and exploit. A sce-
nario akin to the OIM problem is illustrated and it is shown
that CUCB achieves a bound on the regret. However, CUCB is
not applicable due to two factors. First, the activated nodes
are counted multiple times leading to redundant activations
and choices. Second, and most practically important, the
approximation bound depends on an initialization step in
which each arm (in this scenario, seed node) is tested to get
an activation feedback; this is not practically feasible in cases
when activation budgets are limited. Another algorithm
closely related to our framework is Thompson Sampling [1],
where each independent arm is simulated by a Beta distri-
bution of successes and failures. In our scenario, the arms
are the parameters of the algorithms, and defining success
and failure in a result of an influence maximization is not
trivial.

3. INFLUENCE MAXIMIZATION: REVIEW
We now provide a review of the IM problem and its solu-

tions. This forms the basis of the OIM problem to be studied
in this paper. Table 1 shows the notation used.

Let G = (V,E, p) be an influence graph, where v ∈ V are
users or nodes, and e ∈ E are the links or edges between them.
Each edge e = (i, j) between users i and j is associated with
an influence probability pij ∈ [0, 1]. This value represents the

probability that user j is activated by user i at time t+ 1,
given that user i is activated at time t. We also suppose that
time flows in discrete, equal steps. In the IM literature, pij
is given for every i and j. Obtaining pij requires the use of
action logs [12] which may not be available. In this paper,
we investigate how to perform IM without knowing pij in
advance.

In the independent cascade model, at a given timestamp t,
every node is in either active (influenced) or inactive state,
and the state of each node can be changed from inactive to
active, but not vice-versa. When a node i becomes active in
step t, the influence is independently propagated at t+1 from
node i to its currently inactive neighbors with probability pij .
Node i is given one chance to activate its inactive neighbor.
The process terminates when no more activations are possible.
A node can be independently activated by any of its (active)
incoming neighbors. Suppose that the activation process
started from a set S of nodes. We call the expected number
of activated nodes of S the expected influence spread, denoted
σ(S). Formally:

Definition 1. Given a weighted graph G = (V,E, p), let
infl be the immediate influence operator, which is the random
process that extends a set of nodes X ⊆ V into a set of
immediately influenced nodes infl(X), as follows:

Pr(v ∈ infl(X)) =

{
1 if v ∈ X;

1−
∏

(u,v)∈E
u∈X

(1− puv) otherwise.

Given a seed set S ⊆ V , we define the set of influenced nodes
I(S) ⊆ V as the random variable that is the fixpoint I∞(S)
of the following inflationary random process:

I0(S) = ∅;
I1(S) = S;

In+2(S) = In+1(S) ∪ infl(In+1(S)\In(S)) for n > 0.

The influence spread σ(S) is E[|I(S)|].

Based on the above definition, [16] defines the influence
maximization problem (IM) as follows.

Problem 1. Given a weighted graph G = (V,E, p) and
a number 1 6 k 6 |V |, the influence maximization (IM)
problem finds a set S ⊆ V such that σ(S) is maximal subject
to |S| = k.

As discussed in [16], evaluating the influence spread is difficult.
Even when the spread values are known, obtaining an exact
solution for the IM problem is computationally intractable.
Next we outline the existing IM algorithms for this problem.

IM algorithms. A typical IM algorithm evaluates the
score of a node based on some metric, and inserts the k best
nodes, which have the highest scores, into S. For example,
the degree discount (DD) heuristic [7] selects the nodes with
highest degree as S. Another classical example is greedy :
at each step, the next best node, or the one that provides
the largest marginal increase for σ, is inserted into S. This
is repeated until |S| = k. The greedy algorithm provides
an (1− 1/e)-approximate solution for the IM problem. To
compute the influence spread efficiently, sampling-based al-
gorithms with theoretical guarantees were developed. For
example, CELF [18] evaluates the expected spread of nodes
with the seed nodes, and select the nodes with the largest
marginal spread; TIM [26] counts the frequencies of the nodes



appearing in the reversed reachable sets, and chooses the
nodes with the highest frequencies; TIM+ [26] is an extension
of TIM for large influence graphs.

We say that the above IM algorithms are offline, since
they are executed on the influence graph once, assuming
knowledge of pij for every i and j. If these values are not
known, these algorithms cannot be executed. This problem
can be addressed by online IM algorithms, as we will discuss
next.

4. MAXIMIZING INFLUENCE ONLINE
The goal of the online influence maximization (or OIM)

is to perform IM without knowing influence probabilities in
advance. Given a number N of advertising campaigns (or
trials), and an advertising budget of k units per trial, we
would like to select up to k seed nodes in each trial. These
chosen nodes are then advertised or activated, and their
feedback is used to decide the seed nodes in the next trial.
Let us formulate the OIM problem below.

Problem 2. Given a weighted graph G = (V,E, p) with
unknown probabilities puv, and a budget consisting of N
trials with 1 6 k 6 |V | activated nodes per trial, the online
influence maximization (OIM) problem is to find for each
1 6 n 6 N a set Sn of nodes, with |Sn| 6 k, such that

E
[∣∣∣⋃16n6N I(Sn)

∣∣∣] is maximal.

Note that the IM problem, discussed in Section 3, is a
special case of the OIM problem (by setting N = 1). Since
solving the IM problem is computationally difficult, finding
a solution for the OIM is also challenging. We propose
a solution that consists of multiple trials. In each trial,
a selection (for choosing appropriate seed nodes) and an
action (for activating the seed nodes chosen) is performed
(Figure 1). The seed selection makes use of one of the offline
IM algorithms discussed in Section 3.1

We next present the uncertain influence graph, which cap-
tures the uncertainty of influence probabilities (Section 4.1).
We then discuss our solution based on this graph in Sec-
tion 4.2.

4.1 The Uncertain Influence Graph
We assume that a social network, which describes the

relationships among social network users, is given. However,
the exact influence probability on each edge is not known. We
model this by using the uncertain influence graph, in which
the influence probabilities of each edges are captured by
probability density functions, or pdf (Figure 1). The pdf can
be refined based on the feedback returned from a trial. Since
influence activations are binary random variable, we capture
the uncertainty over the influence as a Beta distribution.
Specifically, the random variable of the influence probability
from node i to node j, Pij is modeled as a Beta distribution
having probability density function:

fPij (x) =
xαij−1(1− x)βij−1

B(αij , βij)
,

where B(αij , βij) is the Beta function, acting as a nor-
malization constant to ensure that the total probability
mass is 1, and αij and βij are the distribution param-
eters. For the Beta distribution, E[Pij ] =

αij

αij+βij
and

1In this paper we assume that the advertising budget k is
fixed for each trial.

σ2[Pij ] =
αijβij

(αij+βij)2(αij+βij+1)
. An advantage of using the

Beta distribution is that it is a conjugate prior for Bernoulli
distributions, or more generally, binomial distributions. This
allows us to compute the posterior distributions easily when
new evidence is provided. Section 6 explains this in more
detail.

At the time of the first trial, we assume no prior informa-
tion about the influence graph, except global α and β pa-
rameters, shared by all edges, i.e., Pij ∼ B(α, β) ∀(i, j) ∈ E.
These global α and β parameters represent our global prior
belief of the uncertain influence graph. In the absence of any
better prior, we can set α = β = 1, with B(1, 1) being the
uniform distribution.

Our model can be extended to handle various prior infor-
mation about the influence graph. For example, if we have
individual prior knowledge (αij , βij) about an edge, we can
set Pij as Pij ∼ B(αij , βij). When we have access to only
the mean and variance of the influence of an edge, we can
derive αij and βij from the formulas of E[Pij ] and σ2[Pij ]
given above. For the situation in which some action logs
involving the social network users are available, algorithms
for learning the influence probabilities from these logs [11,12]
can be first applied, and the estimated influence probabilities
can then be used as prior knowledge for the graph.

4.2 The OIM Framework

Algorithm 1 Framework(G, k, N)

1: Input: # trials N , budget k, uncertain influence graph
G

2: Output: seed nodes Sn(n = 1 . . . N), activation results
A

3: A← ∅
4: for n = 1 to N do
5: Sn ← Choose(G, k)
6: (An, Fn)← RealWorld(Sn)
7: A← A ∪An
8: Update(G,Fn)

9: return {Sn|n = 1 . . . N}, A

Algorithm 1 depicts the solution framework of the OIM
problem. In this algorithm, N trials are executed. Each
trial involves selecting seed nodes, activating them, and
consolidating feedback from them. In each trial n (where
n = 1, . . . , N), the following operations are performed on the
uncertain influence graph G:

1. Choose (Line 5): A seed set Sn is chosen from G,
by using an offline IM algorithm, and strategies for
handling the uncertainty of G (Section 5).

2. RealWorld (Lines 6–7): The selected seeds set is tested
in the real world (e.g., sending advertisement messages
to selected users in the social network). The feedback
information from these users is then obtained. This is
a tuple (An, Fn) comprised of: (i) the set of activated
nodes An, and (ii) the set of edge activation attempts
Fn, which is a list of edges having either a successful
or an unsuccessful activation.

3. Update (Line 8): We refresh G based on (An, Fn) (Sec-
tion 6).

One could also choose not to update G, and instead only
run an offline IM based on the prior knowledge. Our ex-
perimental results show that the influence spread under our
OIM framework with proper updates is better than the one



without any update. Next, we investigate the design and im-
plementation of Choose (Section 5) and Update (Section 6).

5. CHOOSING SEEDS
We now study two approaches for selecting k seed nodes

in the Choose function of Algorithm 1: heuristic-based (Sec-
tion 5.1) and explore-exploit strategies (Section 5.2).

5.1 Heuristic-Based Strategies
We first discuss two simple ways for choosing seeds from

the uncertain influence graph G.
1. Random. This heuristic, which arbitrarily selects k seed

nodes, is based on the fairness principle, where every user
has the same chance to be activated.

2. MaxDegree. Given a node p in G, we define the out-
degree of p to be the number of outgoing edges of p with
non-zero influence probabilities. The out-degree of p can mean
the number of friends of the social network user represented
by p, or their number of followers. Intuitively, if p has a
higher out-degree, it has a higher chance of influencing other
users. The MaxDegree heuristic simply chooses the nodes
with k highest out-degree values.

The main advantage of these two heuristics is that they
are easy to implement. However, they do not make use
of influence probability information effectively. In a social
network, some users might be more influential than others.
It may thus be better to target users with higher influence
probabilities on their outgoing edges. The above heuristics
also do not consider the feedback information received from
the activated users, which can be useful to obtain the true
values of the influence probabilities. We will examine a better
seed-selection method next.

5.2 Explore-Exploit Strategies
The Explore-Exploit (EE) strategy chooses seed nodes

based on influence probabilities. Its main idea is to exploit,
or execute an offline IM algorithm, based on the influence
information currently available. Since this information may
be uncertain, the seed nodes suggested by exploit may not
be the best ones. We alleviate this problem by using explore
operations, in order to improve the knowledge about influence
probabilities. Solutions for effectively controlling explore
and exploit operations have been studied in the multi-armed
bandit (MAB) literature [21,23]. These MAB solutions inspire
our development of the two seed-selection strategies, namely
ε-greedy and Confidence-Bound (CB). Next, we present these
two solutions in detail.

1. ε-greedy. In this strategy (Algorithm 2), a parameter
ε is used to control when to explore and when to exploit.
Specifically, with probability 1 − ε, exploitation is carried
out; otherwise, exploration is performed.

Algorithm 2 ε-greedy(G, k)

1: Input: uncertain influence graph G = (V,E, P ), budget
k

2: Output: seed nodes S with |S| = k
3: sample z from Bernoulli(ε)
4: if z = 0 then S ← Explore(G, k)
5: else S ← Exploit(G, k)

6: return S

In Exploit, we execute an offline IM algorithm, given the
graph information we have obtained so far. Recall that we
model the influence probability pij between nodes i and j
as a probability distribution Pij . We use the mean of Pij to
represent pij , i.e.,

pij = E[Pij ] =
αij

αij + βij
.

A graph with the same node structure but with the pij values
on edges constitutes an influence graph G′, on which the
offline IM algorithm is executed. Notice that when ε = 0,
the solution reduces to exploit-only, i.e., the IM algorithm is
run on G′ only.

The main problem of Exploit is that estimating pij by
E[Pij ] can be erroneous. For example, when Pij is a highly
uncertain Beta distribution (e.g., the uniform distribution,
B(1, 1)), any value in [0, 1] can be the real influence proba-
bility. Let us consider a node i that has, in reality, a high
influence probability pij on another node j. Due to the large
variance in Pij , its value is underestimated. This reduces the
chance that Exploit chooses node i to activate; consequently,
the seed nodes selected may not be the best. The Explore

routine is designed to alleviate this problem. Rather than
equating pij to E[Pij ], pij is over-estimated by using Pij ’s
standard deviation, or σij :

pij = E[Pij ] + σij

=
1

αij + βij

(
αij +

√
αijβij

αij + βij + 1

)
.

Then an offline IM algorithm on these new values of pij is
performed. A node i that has a small chance to be chosen
may now have a higher probability to be selected. Our
experiments show that the use of Explore is especially useful
during the first few trials of the OIM solution, since the
influence probability values during that time may not be
very accurate. From the feedback of activated users, we can
learn more about the influence probabilities of the edges of i.
We will discuss this in detail in Section 6.

This ε-greedy algorithm has two problems. First, it is
difficult to set an appropriate ε, which may have a large
impact on its effectiveness. Second, increasing pij by σij may
not always be good. Based on these observations, we next
propose an improved version of ε-greedy.

2. Confidence-Bound (CB). The main idea of this strat-
egy is to use a real-valued parameter θ to control the value
of pij :

pij = E[Pij ] + θσij . (5.1)

As shown in Algorithm 3, for every edge e from node i to j, we
compute its mean µij , variance σij , and influence probability
pij based on θ (Lines 3-6). An offline IM algorithm is then run
on G′, the influence graph with the probabilities computed
by Equation 5.1 (Lines 7-8). The set S of seed nodes is then
returned (Line 9).

Setting θ. The key issue of Algorithm 3 is how to deter-
mine the value of θ, so that the best S can be found. Observe
that when θ = 0, pij becomes µij or E[Pij ], and CB reduces
to Exploit of the ε-greedy algorithm. On the other hand,
when θ = 1, pij becomes E[Pij ] + σij , and CB is essentially
Explore. Thus, ε-greedy is a special case of CB. However, CB
does not restrict the value of θ to zero or one. Thus, CB is
more flexible and general than ε-greedy.



Algorithm 3 CB(G, k)

1: Input: uncertain influence graph G = (V,E, P ), budget
k

2: Output: seed nodes S with |S| = k
3: for e ∈ E do
4: µij ← αij

αij+βij

5: σij ← 1
(αij+βij)

·
√

αijβij
(αij+βij+1)

6: pij ← µij + θσij

7: G′ ← G, with edge probabilities pij , ∀(i, j) ∈ E
8: S ← IM(G′, k)
9: return S

 Feedback  

Global   

Local   

 in CB 

Global Update 
(Sec 6.2) 

Local Update  (Sec 6.1) 

 Update 

(Sec 6.3) 

Update in the nth trial 

Figure 2: Updating the influence graph and θ with user
feedback.

In general, when θ > 0 is used, it means that CB consid-
ers the influence probabilities given by µij ’s to be under-
estimated, and it attempts to improve the activation effect
by using larger values of pij . On the contrary, if θ < 0, the
influence probabilities are considered to be over-estimated,
and CB reduces their values accordingly. As we will discuss
in Section 6.3, θ can be automatically adjusted based on the
feedback returned by activated users. This is better than
ε-greedy, where the value of ε is hard to set. Note that we
choose to use a global θ instead of a local one on each edge,
to reduce the number of parameters to be optimized and to
improve efficiency.

6. MANAGING USER FEEDBACK
Recall from Algorithm 1 that after the seed nodes S are

obtained from Choose (Line 5), they are activated in the real
world. We then collect feedback from the users represented by
these nodes (Lines 6–7). The feedback describes which users
are influenced, and whether each activation is successful. For
instances of such feedback traces, take for example Twitter
and other micro-bloggin platforms. In these, the system can
track actions such as likes and retweets which are reasonable
indicators of influence propagation. We now explain how to
use the feedback information to perform Update (Line 8),
which refreshes the values of influence probabilities and θ
used in the CB algorithm.

Given a trial n in Algorithm 1, let An be the set of activated
nodes in that trial, and Fn be the set of activation results.
Specifically, Fn contains tuples in the form of (i, j, aij), where
i and j are users between which an activation was attempted;
aij = 1 if the influence was successful, and aij = 0 otherwise.
Note that (i, j) is an edge of the influence graph G. Also, Fn
might not contain all edges of G, since an activation might
not reach every user in G.

Three kinds of updates can be performed based on An and

Fn:
1. Local (Section 6.1): Update the influence probability’s
distribution (i.e., B(αij , βij)) if the edge (i.e., activation from
i to j) was attempted;
2. Global (Section 6.2): Update the global prior informa-
tion α and β, which are shared by all edges of G; and
3. θ (Section 6.3): Update the value of θ used in CB, if it
is used as a seed selection strategy in Choose.

Figure 2 illustrates these three kinds of updates in the n-th
trial. In the next sections, we discuss how to conduct these
updates in detail. We remark that these update methods
do not affect Random and MaxDegree, since they do not use
these updated values.

6.1 Updating Local ~α and ~β

As we mentioned before, the influence probability be-
tween any two adjacent nodes i and j is modeled as a
Beta distribution with parameters αij and βij , denoted as
Pij ∼ B(αij , βij). Since the Beta distribution is a conjugate
prior for the Bernoulli distribution, then, given feedback
(i, j, aij) in Fn (seen as a Bernoulli trial), we can update the
distribution as follows:

1. If aij = 1, i.e., the activation from node i to node j
was successful: Pij ∼ B(αij + 1, βij);

2. If aij = 0, i.e., the activation from node i to node j
failed: Pij ∼ B(αij , βij + 1).

In the beginning, we have no prior information about
the distribution except the global α and β, i.e., αij = α
and βij = β. After n trials and activations, we have thus
collected n pieces of feedback information. Let hij (mij) be
the number of successful (failed) activations for edge (i, j).
We have

αij = α+ hij , βij = β +mij .

Hence, this local update is equivalent to maintaining a distri-
bution B(α+hij , β+mij), i.e., the distributions on the edges
simply count the number of successful and failed activations
passing through that edge, smoothed by the prior B(α, β).

Note that this update process corresponds exactly to the
MLE approach taken by [12] to learn influence probabilities
from action logs, with a smoothing prior added. The im-
portant difference is that [12] only conducts this estimation
for edges where there is evidence, i.e., local updates. If the
evidence is sparse, this can lead to a sub-optimal, and over-
fitting, influence graph. Global update of Beta priors, which
go beyond the local feedback, can yield a better influence
graph.

6.2 Updating Global ~α and ~β

Local updates to the random variable Pij allows the edge
influence probability distribution to be updated directly. In
the first few trials, however, the real influence spread is sparse
and limited, and most of the edges will not be reached by
an activation. Therefore, the influence of choosing a good
prior will weigh heavily on how Choose performs. Once some
evidence is gathered, this prior can be refined by taking into
account the feedback in a global sense, over all trials up to
the current one. Next, we present two methods of updating
the global α and β priors based on the feedback.

Least Squares Estimation. The first solution is to find the
best fit for the α and β priors according to the real spread
that we obtained from the real world test at each trial.



Let us first explain the reasoning when there is one seed
node (i.e., |Sn| = 1), and we fix α = 1. Let An be the
set of successful activated nodes before the n-th trial (i.e.,
An = ∪n−1

l=1 Al), and σn({i}) be the expected number of
additional activated nodes (or expected additional spread)
from the seed node i in the n-th trial. For Sn = {s}, σn({s})
is:

σn({s}) = 1 +
∑

(s,i)∈E
i6∈An

psi × σn({i}) +
∑

(s,i)∈E
i∈An

psi × (σn({i})− 1),

which is the sum of the outgoing spreads weighted by the
outgoing probabilities psi and discounted by 1 for nodes
already activated along an outgoing edge.

We estimate σn({s}) by |An| from the feedback obtained by

the influence campaign. We also estimate psi = α+hsi
α+hsi+β+msi

,

i.e., the mean of B(αij , βij). Note that hsi +msi is the total
number of attempts from node s to i, which is the same
for neighbors of s because every activation through s tries
to activate all outgoing nodes in the independent cascade
model. Thus, we use ts to denote hsi +msi ∀(s, i) ∈ E. By
further estimating σn({i}) by an overall estimation σ̂n and
set α = 1, we obtain

|An| = 1+
1

β + ts + 1

 ∑
(s,i)∈E

(hsi + 1)σ̂n −
∑

(s,i)∈E,i∈An

(hsi + 1)

 .

Let os be the outgoing degree of s, as be the number of
(previously) activated neighbors of s (i.e., as = |{i|(s, i) ∈
E∧i ∈ An}|), hs be the number of total successful activations
(or hits) on outgoing edges of s, and has be the number of
total hits on edges leading to activated neighbors. The above
equation is simplified to

(|An| − 1)β = (1− |An|)(ts + 1) + (hs + os)σ̂n − (has + as).

We then rewrite it as the form of xnβ = yn. Since this
equation also applies to activations in all trials up to the
current one, we use the least square estimator for linear
regression without an intercept term to get an estimator for
β, β̂:

β̂ = (~x · ~y) / (~x · ~x),

where ~x and ~y are the vectors of values xn and yn. The same
principles apply when estimating α and β simultaneously,
and we omit the details here.

We estimate σ̂n by the average spread of the node from
the activation campaigns, i.e., σ̂n =

∑n
l=1 |An|/

∑n
l=1 |Sn|.

Note that, when σ̂n = 0, the equation for |An| is exactly
the degree discount estimator from the IM literature [7], and
represents a lower bound on the spread from a node.

A further complication occurs when |Sn| > 1, which might
result in an equation at least quadratic in β, due to the
influence probability equations of nodes which are neighbors
of more than one seed node. In this work, we simplify the
estimation by assuming full independence among seed nodes,
and hence replacing xn and yn by the sum over all s ∈ Sn.

We remark that the estimator above suffers from the re-
liance on the spread estimation σ̂n. However, it is a good
option when we cannot access the full activation feedback
Fn, but instead, do have the access to the set of successful
activated nodes in each trial (i.e., the set An). This may
happen in an alternate problem setting when one cannot get
all the feedback information from the activated users in An.

Maximum Likelihood Estimation. Given the feedback from
each trial n, we can compute the likelihood of the feedback
Fn given the probabilities of each edge in the feedback tu-
ples, by assuming they are activated independently. The
likelihood depends on the successful activations (hits) and
failed activations (misses) of each edges and the global prior
parameters α and β:

L(Fn) =
∏

(i,j,aij)∈Fn

p
aij
ij (1− pij)1−aij ,

L(Fn | α, β) =
∏

(i,j,aij)∈Fn

(α+ hij)
aij (β +mij)

1−aij

α+ β + hij +mij
.

We need to find the parameters α and β which maximize
the likelihood:

arg max
α,β

L(Fn | α, β).

To simplify calculations we take the maximum of the log
likelihood:

logL(Fn | α, β) =
∑

(i,j,aij)∈Fn

aij log(α+ hij)

+
∑

(i,j,aij)∈Fn

(1− aij) log(β +mij)

−
∑

(i,j,aij)∈Fn

log(α+ β + hij +mij).

The optimal values are obtained by solving the equations
∂ logL(Fn|α,β)

∂α
= 0 and ∂ logL(Fn|α,β)

∂β
= 0 for α and β, respec-

tively, which can be simplified as∑
(i,j,aij)∈Fn,aij=1

1

α+ hij
=

∑
(i,j,aij)∈Fn,aij=0

1

β +mij

This equation can be solved numerically by setting α and
solving β. In practice, we can fix α = 1, and let f(β) be

f(β) =
∑

(i,j,aij)∈Fn,aij=0

1

β +mij
−

∑
(i,j,aij)∈Fn,aij=1

1

α+ hij

Since f(β) is a monotonically decreasing function of β (f ′(β) 6
0 ∀β > 1), we can solve f(β) = 0 by a binary search algo-
rithm with an error bound η (e.g., 10−6). And thus, the
global α and β priors are updated accordingly.

6.3 Updating ~θ

We now explain how to dynamically update the value of θ
used in the CB strategy (Section 5.2).

Let ~θ = {θ1, θ2, . . . , θq} be the q possible values of θ. We
also let ~ϕ = {ϕ1, ϕ2, . . . , ϕq}, where ϕj is the probability of
using θj in CB. Initially, ϕj = 1/q for j = 1, . . . , q, and its
value is updated based on the gain obtained in each trial.
The gain is defined as Gn = |An|/|V |, where |An| is the real
influence spread observed in each round. We then determine
~θ by using the exponentiated gradient algorithm [5]. The
rationale of using this solution is that if the value of θj used
in this trial results in a high gain, the corresponding ϕj will
be increased by the algorithm, making θj more likely to be
chosen in the next trial. Algorithm 4 gives the details.

Here, γ and λ are smoothing factors used to update weights,
and I[z] is the indicator function. We compute ~ϕ by normal-
izing vector w with regularization factor τ . All the values in
w are initialized with the value of 1.



Algorithm 4 ExponentiatedGradient(~ϕ, δ,Gn, j,w)

1: Input: ~ϕ, probability distribution; δ, accuracy parame-
ter; Gn, the gain obtained; j, the index of latest used θj ;
w, a vector of weights; N , the number of trials.

2: Output: θ

3: γ ←
√

ln(q/δ)
qN

, τ ← 4qγ
3+γ

, λ← τ
2q

4: for i = 1 to q do

5: wi ← wi × exp
(
λ× Gn×I[i=j]+γ

ϕi

)
6: for i = 1 to q do
7: ϕi ← (1− τ)× wi∑k

j=1 wj
+ τ × 1

q

8: return sample from ~θ according to ~ϕ distribution

In [5], it is shown that, for a choice of constant θ’s, Ex-
ponentiatedGradient can provide a regret bound on the
optimal sequence of chosen θ in the vector. In our case, the
experimental results also show that ExponentiatedGradient
is the best performing strategy.

7. INCREMENTAL SOLUTION FOR OIM
In our OIM framework, an IM algorithm is invoked once

in every trial to select seeds. However, the state-of-the-art
IM algorithms with good theoretical approximation bounds,
such as CELF, TIM, and TIM+, are generally costly to run,
especially for large graphs with high influence probabilities.
For instance, in our experiments in the DBLP dataset2,
which has around 2,000,000 edges, the best known algorithm
(TIM+) also takes around half an hour to select the nodes
for a trial. Since every run of OIM takes multiple trials,
the running time can be too high in practical terms. To
alleviate this issue, we explore in this section the possibility
to increase the scalability of the OIM framework, by re-using
computations between trials.

The first observation is that all the IM algorithms with
theoretical approximation bounds are sample based, and
follow the general sampling process illustrated in Figure 3(a).
Every time an algorithm requires a sample, it samples the
influence graph based on the edge influence probabilities and
stores it in a sample, say s. Moreover, their running time is
dominated by the cost of sampling the influence graph (the
thick arrow in Figure 3(a)). For example, more than 99% of
the computation of TIM+ is spent in sampling the random
reverse reachable sets in the influence graph [26].

Secondly, the size of the real-world feedback Fn is relatively
small compared with the number of edges in a graph. For
instance, in DBLP with k = 1 and using TIM+, the average
|Fn| is less than 1% of the total number of edges in the graph.
This makes intuitive sense. Since samples are generated
based on the influence graph, and the real-world feedback
only influences a small part of the graph, it would only
affect few samples taken from the updated influence graph
in the next trial. This motivates us to explore methods
which can save the computational effort, especially the effort
in sampling, by reusing samples of previous trials, without
incurring much error.

7.1 Solution Framework
To explain our approach, we introduce a sample manager

(SM) which is responsible for the sampling procedure for the

2Detailed description of the dataset is given in Section 8.

sample-based IM algorithms. Generally speaking, when the
IM algorithm requires a sample of the influence graph, it
sends the request to SM, which will then return a sample to
it. To enable an incremental approach that reuses the com-
putational effort, SM stores the samples from the previous
iterations in a sample pool. In the new trial, it attempts to
reuse the stored samples, if possible, instead of sampling the
influence graph again.

The principle of SM is illustrated in Figure 3(b). In a new
trial, when the sample-based IM algorithm requires a sample,
it sends requests to SM (Step 1). SM then randomly selects
a sample s, which has not been used in this trial, from the
sample pool (Step 2). After that, SM conducts two checks,
called local check and global check, on s, whose purpose is
to determine whether s is allowed to be reused after local
and global updates performed in previous rounds (Step 3).
If s passes these two checks, SM simply returns the sample
to the IM algorithm (Step 4); otherwise, SM generates a
new sample s′ based on the current influence graph (Step
5), and returns it to the IM algorithm (Step 6) as well as
replaces s by s′ in the sample pool (Step 7).

In the above framework, assuming that conducting the
local and global checks is much more efficient than sampling
the influence graph and the ratio of reused samples is high,
SM has the potential to significantly reduce the running time
of the IM algorithm in the OIM framework.

Next, we demonstrate how this principle can be applied in
practice on the TIM+ algorithm. Please note that the same
principle can be easily applied to develop the incremental
approaches for other sample-based IM algorithms.

7.2 Case Study: TIM+
In this section, we demonstrate the case that TIM+ is exe-

cuted when an IM algorithm is called in OIM framework. For
example, in Explore, TIM+ is run with the input influence
graph obtained by taking the mean of the random variable as
the influence probability of the edge, i.e., pij =

αij

αij+βij
. We

next demonstrate how to develop the incremental approach
for TIM+ in Exploit with SM. The principle also applies for
Explore as well as CB. We focus on Exploit here and omit
details for others.

Briefly speaking, TIM+ generates a set of random reverse
reachable sets (or random RR sets) on the influence graph,
and estimates the expected spread of nodes, based on the
generated random RR sets. Here, an RR set for node v ∈ V ,
denoted by Rv, is a set of nodes which are: (1) generated on
an instance of a randomly sampled influence graph g (an edge
exists with a probability equal to its influence probability),
and (2) able to reach v in the sampled graph g. In other
words, ∀i ∈ Rv, there exists a path from i to v in g. A random
RR set is then an RR set where v is selected uniformly at
random from V . We omit the formal definition of random RR
sets as well as their generation and refer interested readers
to [26] for details.

Let E(Rv) be the set of all incoming edges for nodes in Rv,
i.e., E(Rv) = {(i, j)|(i, j) ∈ E ∧ j ∈ Rv}. The next lemma is
the foundation of the incremental approach for TIM+.

Lemma 1. Given node v ∈ V , the occurrence probability of
an RR set (Rv) keeps unchanged if the influence probabilities
for edges in E(Rv) do not change.

Proof. Let ξij be a random variable for the existence of
edge (i, j) ∈ E. We have ξij = 1 with probability of pij , and
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ξij = 0 with probability of 1− pij . Pr(Rv) is the probability
that the following two events happen: (i) ∀i ∈ Rv, there
exists a path from i to v, i.e., ∃j ∈ Rv s.t. ξij = 1; and
(ii) ∀i 6∈ Rv, there exists no path from i to v, i.e., ∀j ∈ Rv,
ξij = 0. And therefore, Pr(Rv) is some function of pij where
(i, j) ∈ E(Rv). Hence, if pij (∀(i, j) ∈ E(Rv)) is unchanged,
Pr(Rv) keeps unchanged, too.

Let us consider SM introduced in Section 7.1. The samples
stored in SM for TIM+ are the random RR sets described
above. After each round, local and global graph updates may
be performed according to the real world feedback. Suppose
the current trial is n, for a randomly selected s (or Rv) from
the sample pool, we have to conduct local and global checks
for it. Lemma 1 gives an intuition on how these checks can
be performed for these checks. Pr(Rv) remains the same (or
only deviates a bit) if the updates have no effect (or only
some minor effects) on the influence probabilities for edges
in E(Rv).

Before we detail the local and global checks, let us first
define the age of a sample s and the age of a node u. The
age of s is the trial when s was sampled, and the age of a
node u is the latest trial when the real world test attempted
to activate u (regardless of the activation’s success).

Local check. Let Rv’s age to be t, and Elocal be the
set of edges that exist in the feedbacks from the t-th trial
to the (n − 1)-th trial, i.e., Elocal = {(i, j)|∃q(t 6 q 6 n −
1) s.t. (i, j) ∈ Fq}. Local updates only affect edges that are
included in the real world feedback, and so, Elocal∩E(Rv) = ∅
indicates that influence probabilities for edges in E(Rv) in
the n-th trial are the same as the ones in the t-th trial. Hence,
Rv is not affected by local updates. In other words,

(Elocal ∩ E(Rv) = ∅)⇒ (Rv passes local check) .

We use the sample and node ages for an efficient local
check as follows.

Lemma 2 (Local Check). If for all u ∈ Rv, u’s age
is smaller than Rv’s age, we have Elocal ∩ E(Rv) = ∅.

Proof. Recall that u’s age, denoted l, is the latest trial
that the real world test tried to activate it. We have,
(l < t) ⇒ (∀(i, u) ∈ E, (i, u, aiu) 6∈ Fq(t 6 q 6 n − 1)).
Lemma 2 is then a direct consequence by considering the
definition of Elocal.

According to Lemma 2, we store the sample as well as its
age in the sample pool, and we also store the node’s age in
a node activated history (refer to Figure 3(c)). Then, the
time complexity to do local check is O(|Rv|) as the age’s
information can be accessed in constant time.

Global check. After global update is performed, the
global α and β priors may be changed. Since they are shared

by all edges, changes on global priors lead to changes on
all edges’ influence probabilities. However, we observe that
they will converge as we get more activation feedback from
the real world. Intuitively, if the influence probabilities for
edges in E(Rv) only deviate a bit, there is only minor effect
on the random RR sets. Note that, only samples which
pass local check will be then evaluated by the global check.
And so, if the global priors when the sample s (or Rv) was
generated are close to the current global priors, the influence
probabilities for edges in E(Rv) do not change much.

Let αt and βt be the priors at trial t, and the current priors
are α and β. We use a threshold τ to measure whether two
priors are close, moreover, whether global check is passed.(∣∣∣∣ αt

αt + βt
− α

α+ β

∣∣∣∣ < τ

)
⇒ (Rv passes global check) .

Hence, in SM, we also store the priors when the sample was
generated in the sample pool (Figure 3(c)). And therefore,
the global check is conducted in constant time O(1).

Discussions. The total time complexity of conducting
local and global checks on a sample Rv is O(|Rv|). As
mentioned in [26], the complexity of generating a sample Rv
is of the order of the total in-degree for nodes in Rv, i.e.,
O(|E(Rv)|). Let d be the average in-degree for a node, we
have |E(Rv)| = d × |Rv| on average. This indicates that
conducting checks for a sample is about d times faster than
generating a new sample. Hence, the incremental approach
for TIM+ with SM can significantly save computation effort
if the ratio of re-used samples is high.

Note that if CB is employed, θ may also be updated accord-
ing to the real-world feedback. We design a similar mech-
anism with global check, called θ check, to verify whether
Rv is allowed to be re-use. Let θt be the θ when Rv was
generated and σt be the standard deviation for global prior.
We have (∣∣θtσt − θσ∣∣ < τ

)
⇒ (Rv passes θ check) .

In the next section, we show our experimental results to
verify our OIM framework.

8. EXPERIMENTAL EVALUATION
We now present the results. Section 8.1 describes the

experiment settings. In Sections 8.2 and 8.3 we discuss our
results on different datasets.

8.1 Setup
We developed a “real-world simulator” to mimic the user

feedback process of Figure 1. This simulator first uses a real
social network to obtain a graph G. It then associates an
influence probability to each edge in G, where pij = 1/dj ,
with dj the in-degree of node j. This setting of influence



10 20 30 40 50
700

800

900

1,000

1,100

1,200

k (NetPhy, Budget = 50)

In
fl
u
en

ce
S
p
re

ad

(a) Varying k under fixed budget

0 10 20 30 40 50
0

1,000

2,000

3,000

4,000

Trial (NetPhy, k = 5)

In
fl
u
en

ce
S
p
re

ad

0 10 20 30 40 50
0

2,000

4,000

6,000

Trial (NetPhy, k = 10)

In
fl
u
en

ce
S
p
re

ad

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

·104

Trial (NetPhy, k = 25)

In
fl
u
en

ce
S
p
re

ad

(b) Varying k under fixed trials

Real Random MaxDegree CB CB-INC

Figure 4: Heuristic-based v.s. Explore–Exploit.

Table 2: Datasets

Dataset NetHEPT NetPHY DBLP

# of Nodes 15K 37K 655K
# of Edges 59K 231K 2.1M
avg. degree 7.73 12.46 6.1
max. degree 341 286 588

probability values is adopted in previous works [6,7,11,16,
18,26].

When the chosen seed nodes are tested on whether they can
influence other nodes, the simulator runs a single independent
cascade simulation on G, and obtains feedback information
Fn, in a form of (i, j, aij) and An, the set of successfully
activated nodes. We measure the effectiveness of an OIM
solution by its influence spread in the real world, after N
trials, as the total number of successfully activated nodes in
these trials, i.e, | ∪Nn=1An|. We repeat each solution 10 times
and report the average.

Datasets. We have studied several real social network
datasets. We have used NetHept and NetPhy are col-
laboration networks, obtained from arXiv.org in the High
Energy Physics Theory and Physics domains, respectively.
We have also used the DBLP graph, which is an academic
collaboration network. In these datasets, nodes represent au-
thors, and edges representing co-authorship. These datasets
are commonly used in the literature of influence maximiza-
tion [6, 7, 11, 16, 26]. Table 2 shows the details of these
datasets.

Options for OIM algorithm. We have evaluated sev-
eral possible options for the seed selection and graph update
components for our OIM solution:

[Choosing seeds]
• Heuristic-based strategies: Random, MaxDegree;
• Explore–Exploit strategies: 1) Exploit contains only

exploit algorithm; 2) ε-greedy represents ε-greedy al-
gorithm; 3) CB is our Confidence-Bound explore–exploit
algorithm with Exponentiated Gradient update.

[Updating graph]
• NO does not conduct any update;
• LOC only local updates;
• LSE local and global updates where Least Squares Esti-

mation is adopted in global update;
• MLE as LSE, but Maximum Likelihood Estimation is

adopted.
In our experiments, we compare the algorithms using com-

binations of the above two components. Note that Random

and MaxDegree do not rely on the influence probability of
the edges, and they are not combined with update meth-
ods. When a particular EE strategy is adopted, the update
method would be specified, for instance, CB+MLE means that
we use CB with MLE update. By default, we use MLE for up-
dating the graph. Furthermore, if the EE strategy is used in
choosing seeds, we use CB by default.

When an IM algorithm is invoked in an EE strategy, we
use TIM+ since it is the state-of-art influence maximization
algorithm. We also compare the incremental approach with
the non-incremental one for EE strategy. For example, we
denote the incremental version for CB as CB-INC.

Parameters. By default, the global prior is set to be
B(1, 19), θ = {−1, 0, 1} in CB, ε = 0.1 in ε-greedy, and
τ = 0.02 in the incremental approach.

Our algorithms, implemented in C++, are conducted on a
Linux machine with a 3.40 GHz Octo-Core Intel(R) processor
and 16GB of memory. Next, we focus on NetPHY, and
evaluate different combinations of the algorithms in our OIM
framework. We summarize our results for other datasets in
Section 8.3.

8.2 Results on NetPHY
Heuristic-based v.s. Explore–Exploit. We first fix

the total budget and verify how the OIM algorithms perform
with different number of trials. We set Budget = 50, and
vary k in {1, 5, 10, 25, 50}. By varying k, we essentially vary
the total budget. For example, with k = 5, 50 units of
budget is invested over N = 10 trials. Figure 4a shows our
results. Since Random only has influence spread less than 200
on average, we do not plot it. We observe that the spread of
MaxDegree does not change much since it does not depend
on the real-world feedback. For CB, its spread increases when
k decreases and it is better than MaxDegree when k 6 10 (or
N ≥ 5). Specifically, when k = 1, CB is about 35% better
than MaxDegree. The reason is that, for CB, a smaller k
indicates more chances to get real-world feedback, and thus,
more chances to learn the real influence graph, which leads
to a better result. Moreover, when k = 50, all budget is
invested once, which can be regarded as an offline solution,
and produces the worst result for CB. This further indicates
the effectiveness of our OIM framework. For CB-INC, it
performs close to CB with only a small discount (around 5%
for different k) on the spread. It supports our claim that the
incremental approach can perform without incurring much
error.
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Figure 5: Explore–exploit strategies
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(a) Different updates
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(b) Effect of priors
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Figure 6: Comparing different updating methods

We next fix k and compare different algorithms in Figure 4b.
The results are consistent with our previous findings that CB

outperforms other variants. CB-INC produces similar results
with CB. We observe that the gap between CB and MaxDegree

increases with N and k. For example, at N = 50, CB is about
20% better than MaxDegree when k = 5, and the percentage
grows to 45% when k = 25. The reason is that larger k
and larger N give more chances for CB to learn the real
influence graph. We also plot the result for TIM+ when the
real influence probability is known, denoted as Real. This
can be seen as an oracle, serving as a reference for other
algorithms. We find that CB performs close to Real, and its
discount on the spread decreases with N . For example, when
k = 5, the discount decreases from 30% at N = 10 to 13% at
N = 50. This indicates that, with more real-world feedback,
the learned graph for CB is closer to the real graph, and thus,
leads to a closer result to Real.

Explore–Exploit Strategies. We compare three ver-
sions of the EE strategies for different k in Figure 5. We
observe that Exploit is the worst, since it may suffer from
the wrong prediction of the influence probabilities and does
not explore other potential high influencing nodes. CB is the
best, especially, for small k. When k = 5, N = 50, CB is
about 20% and 32% better than ε-greedy and Exploit, re-
spectively. The reason is that for a smaller k, fewer feedback
tuples are returned in one trial, which makes the learned
influence graph converge to the real graph slower. Hence, the
effect of exploration is strengthened, which is more favorable
to CB. We have also conducted experiments for ε-greedy by
varying ε. We observe that its performance is sensitive to ε
and ε = 0.1 is the best one in our results, but it is still worse
than CB in all cases.

Updating the uncertain influence graph. In Fig-
ure 6a, we compare different updating methods for the un-

certain influence graph. Although NO makes use of the prior
knowledge about the influence graph to select seeds, it still
performs worse than other update options. LOC is slightly
better, but still worse than MLE and LSE, since it does not
employ any global update and it suffers from the sparseness
of the activations. MLE is the best (about 25% better than
LSE and 40% better than LOC), which is consistent with the
fact that MLE makes use of the full feedback to update the
graph while LSE only utilizes the set of successfully activated
nodes.

We also test the updating methods with different priors
(Figure 6b) to check whether they are sensitive to the prior.
We observe that while LOC and NO fluctuate a lot with different
priors, MLE and LSE’s performance is very stable. In fact,
during different runs of MLE and LSE with different priors, the
global β values all converge to around 27. This supports the
fact that the global updating techniques are crucial when we
do not have good prior information. Even an inexact choice
of prior will be generally fixed, minimizing the impact on
performance.

Efficiency. In Figure 7a, we illustrate the cumulative
running time for running N trials for different algorithms.
Random and MaxDegree are most efficient as they do not rely
on any influence evaluation. With the help of incremental
approach, CB-INC runs significantly faster than CB, and for
the case where N > 10, it achieves about 10 times speedup.
For instance, at N = 50, CB-INC reduces the running time
by 88%, compared to CB. This is intuitive, as in the first few
trials the graph is more uncertain, and the updates affect the
samples a lot. However, when N > 10, we observe that the
global priors become more stable, leading to a high ratio of
re-using samples (e.g., the ratio is about 80% to 99% when
N > 10). Moreover, the average in-degree of NetPHY is
12.46, making the time of generating a new sample about
an order of magnitude slower than re-using a sample. These
two factors together make CB-INC have a much more efficient
performance than CB.

We then show the efficiency results by fixing Budget = 50
and varying k in Figure 7b. The running time of MaxDegree
and Random is stable for various k, while CB and CB-INC show
a decline on efficiency when k decreases. This is because a
smaller k indicates that more trials are required to invest all
budget, and so, TIM+ should be executed more often, for
a general decrease in efficiency. Another observation is that
the improvement of CB-INC over CB increases with k. This
further strengthens the utility of using CB-INC in practice.
Figure 7b and Figure 4a together show a tradeoff of setting
k: a smaller k leads to a better performance in spread but
worse performance in efficiency. We suggest to set a small k
to ensure the algorithm’s better performance in spread. The
value of k will depend on how much total time that the user
can afford.

Effect of τ . We also verify the effect of τ in the in-
cremental approach by varying τ from 0.01 to 0.03 and
fixing k = 1, Budget = 50. We compare them with CB, the
non-incremental algorithm. First, a smaller τ gives better
results in terms of influence spread. For instance, it leads
to 3%, 5%, 15% discount in spread compared with CB for
τ = 0.01, 0.02, 0.03, respectively. However, a smaller τ leads
to a slowdown in efficiency since it has a stricter requirement
in global check. For example, the running time for τ = 0.01
is about 28% slower than the one for τ = 0.02 and 38% worse
than the one for τ = 0.03.
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Figure 8: Effectiveness on other datasets

Discussion. The OIM framework is highly effective in
maximizing influence when the real influence probabilities
are unknown. In this framework, MLE is the best updating
method. Moreover, CB and CB-INC consistently outperform
other algorithms. By using CB-INC, we can also significantly
improve the efficiency of CB, with only a small discount in
influence spread.

8.3 Results for NetHEPT and DBLP
Figure 8 and Figure 9 show representative results for

NetHEPT and DBLP. These results are consistent with
the ones for NetPHY, where CB and CB-INC are close to the
oracle (Real), and better than heuristic-based algorithms in
maximizing influence spread. For efficiency, CB-INC signifi-
cantly reduces the running time of CB, especially for a large
dataset DBLP. For instance, at k = 1, N = 50, CB-INC saves
16 hours compared with CB which costs 19 hours in total to
get the result for DBLP.

9. CONCLUSIONS
In this paper, we examine how to perform influence maxi-

mization when influence probabilities may not be known in
advance. We develop a new solution, where IM is performed
in multiple trials, and we have proposed explore–exploit
strategies for this problem. We showed experimentally that
explore–exploit based on the uncertainty in the graph per-
forms well. We also proposed novel methods to update the
knowledge of the graph based on the feedback received from
the real world, and showed experimentally that they are
effective in longer campaigns. Even when the influence prob-
abilities are not known in advance, the influence spread of
our solution is close to the spread using the real influence
graph, especially when the number of trials increases.
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Figure 9: Efficiency on other datasets

In the future, we will examine the scenario where budgets
are different in each trial. We will extend our solution to
handle other complex situations (e.g., the change of influence
probability values over time), consider IM methods (e.g., [27],
[2]) that utilize community and topic information, and other
influence propagation models, such as linear threshold or
credit distribution [11,14,25]. Another direction is to increase
the scalability of our methods; this may require distributed
algorithm, such as distributed sampling.
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