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Abstract

Cloud computing is becoming a mainstream aspect of
information technology. The cloud applications are usually
large-scale, complex, and include a lot of distributed
components. Providing highly reliable cloud applications
is a challenging and critical research problem. To attack
this challenge, we propose FTCloud which is a component
ranking based framework for building fault-tolerant cloud
applications. FTCloud employs the component invocation
structures and the invocation frequencies to identify the
significant components in a cloud application. An al-
gorithm is proposed to automatically determine optimal
fault tolerance strategy for these significant components.
The experimental results show that by tolerating faults
of a small part of the most significant components, the
reliability of cloud application can be greatly improved.

Keywords-Cloud application; fault tolerance; component
ranking;

I. Introduction

Cloud computing is a style of computing, in which

resources (e.g., infrastructure, platform, and service) are

sharing among the cloud service consumers, cloud part-

ners, and cloud vendors in the cloud value chain [1], [2].

Strongly promoted by the leading industrial companies

(e.g., Microsoft, Google, IBM, Amazon, etc.), cloud com-

puting is becoming increasingly popular in recent years.

Applications running on such cloud environment are taken

as cloud applications. Cloud applications, which involve a

number of distributed components, are usually large-scale

and very complex. Before enterprises transfer their critical

systems to the cloud environment, one question they ask

is: Can clouds become as reliable as the power grid
achieving 99.999% uptime? Unfortunately, the reliability

and availability of the cloud applications are still far from

perfect in reality. Nowadays, the demand for highly reliable

cloud applications is becoming unprecedentedly strong.

Building highly reliable and available clouds is a critical,

challenging, and urgently-required research problem.

In traditional software reliability engineering, there

are four main approaches to build reliable software sys-

tems, i.e., fault prevention, fault removal, fault tolerance,

and fault forecasting [3]. The trend towards large-scale

complex cloud applications makes developing fault-free

systems by only employing fault prevention techniques

(e.g., by rigorous development process) and fault removal

techniques (e.g., by testing and debugging) exceedingly

difficult. Another approach for building reliable systems,

software fault tolerance [4], makes the system more robust

by masking faults instead of removing faults. One of the

most well-known software fault tolerance techniques, also

known as design diversity, is to employ functionally equiv-

alent yet independently designed components to tolerate

faults [5]. Due to the cost of developing and maintaining

redundant components, software fault tolerance is usually

only employed for critical systems (e.g., airplane flight

control systems, nuclear power station management sys-

tems, etc.). Different from traditional software system,

there are a lot of redundant resources in the cloud environ-

ment, making software fault tolerance a feasible approach

for building highly reliable cloud applications.

Since cloud applications usually involve a large number

of components, it is too expensive to provide redundant

alternative components for all the cloud components. To

reduce the cost and to develop highly reliable cloud

applications within the limited budget, a small set of

critical components need to be identified from the cloud

applications. Microsoft reported that by fixing the top 20%

of the most reported bugs of Windows and Office, 80%

of the failures and crashes would be eliminated [6]. Our

idea is also based on this well-known 80-20 rules, i.e.,
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Figure 1. System Architecture of FTCloud

by tolerating faults of a small part of the most significant

cloud components, the cloud application reliability can be

greatly improved. Based on this idea, we propose FTCloud,

which is a component ranking framework for building

fault-tolerant cloud applications. FTCloud identifies the

most significant components and suggests the optimal

fault tolerance strategies for the significant components

automatically. FTCloud can be employed by designers of

cloud applications to design more reliable and robust cloud

applications efficiently and effectively.

The contribution of this paper is two-fold:

• This paper identifies the critical problem of locating

significant components in complex cloud applications

and proposes a ranking based framework to build

fault-tolerant cloud applications. We first propose a

ranking algorithm to identify significant components

from the huge amount of cloud components. Then,

we present an optimal fault tolerance strategy selec-

tion algorithm to determine the most suitable fault

tolerance strategy for each significant component.

To the best of our knowledge, FTCloud is the first

systematic ranking-based framework for developing

fault-tolerant cloud applications.

• We provide extensive experiments to evaluate the

impact of significant components on the reliability of

cloud applications.

The rest of this paper is organized as follows. Section

2 introduces the system architecture, Section 3 proposes a

ranking algorithm for discovering significant components,

Section 4 presents an optimal fault tolerance strategy

selection algorithm, Section 5 shows experiments, Section

6 introduces related work, and Section 7 concludes the

paper.

II. System Architecture

Figure 1 shows the system architecture of FTCloud,

which includes two parts: (1) ranking and (2) optimal

fault tolerance selection. The development procedures of

FTCloud are as follows:

(1) The initial architecture design of a cloud application

is provided by the system designer and a component

graph is built for the cloud application.

(2) A component ranking algorithm is employed to calcu-

late the significance values of the cloud components.

Based on the significance values, the components can

be ranked.

(3) The most significant components in the cloud appli-

cation are identified.

(4) The performance of various fault tolerance strategy

candidates is calculated and the most suitable strategy

is selected for each significant component.

(5) The improved design of the provided cloud applica-

tion and the component ranking results are returned

to the system designer.

Technical details of our significance component rank-

ing algorithm will be introduced in Section III, and the

optimal fault tolerance strategy selection algorithm will be

introduced in Section IV.

III. Significant Component Ranking Algo-
rithm

The target of our significant component ranking algo-

rithm is to measure the importance of cloud components

based on component invocation relationships and invoca-

tion frequencies. The design of this ranking algorithm is

based on the intuition that components which are invoked

frequently by a lot of other important components are

more important, since the failures of these components

have greater impact to the whole system compared with

normal components. As shown in Figure 1, our significant

component ranking algorithm includes three steps (i.e.,

component graph building, component ranking, and signif-

icant component determination), which will be described

in Section III-A to Section III-C, respectively.

A. Component Graph Building

A cloud application can be modeled as a weighted

directed graph G, where a node ci in the graph represents

a component and a directed edge eij from node ci to node

cj represents a component invocation relationship, i.e., ci
invokes cj . Each node ci in the graph G has a nonnegative
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significance value V (ci), which is in the range of (0,1).

Each edge eij in the graph has a nonnegative weight value

W (eij), which is in the range of [0,1]. The weight value

of an edge eij can be calculated by:

W (eij) =
frqij∑n
j=1 frqij

, (1)

where frqij is the invocation frequency of component cj
by component ci and n is the number of components

invoked by ci. In this way, the edge eij has a larger

weight value if component cj is invoked more frequently

by component ci compared with other components invoked

by ci.
For a component graph which contains n components,

an n× n transition probability matrix W can be obtained

by employing Eq. (1) to calculate the invocation weight

values. Each entry wij in the matrix is the value of W (eij).
wij = 0 if there is no edge from ci to cj , which means

that ci does not invoke cj . In the case that a node ci
has no outgoing edge, wij = 1/n. For ∀i, the transition

probability matrix W satisfies:

∀i,
∑

j∈M(ci)

wij = 1, (2)

where M(ci) is a set of nodes that ci invokes.

B. Component Ranking

In a cloud application, some components are frequently

invoked by a lot of other components. These components

are considered to be more important, since their failures

will have greater impact on the system compared with

other normal components. Intuitively, the significant com-
ponents in a cloud application are the ones which have

many invocation links coming in from other important

components. Inspired by the PageRank algorithm [7], we

propose an algorithm to measure the significance values of

the cloud components as follows:

1. Randomly assign initial numerical scores between 0

and 1 to the components in the graph.

2. Compute the significance value for a component ci
by:

V (ci) =
1− d

n
+ d

∑
k∈N(ci)

V (ck)W (eki), (3)

where n is the number of components and N(ci) is a set

of components that invoke component ci. The parameter

d (0 ≤ d ≤ 1) in Eq. (3) is employed to adjust the

significance values derived from other components, so that

the significance value of ci is composed of the basic

value of itself (i.e., 1−d
n ) and the derived values from

the components that invoked ci. By Eq. (3), a component

ci has larger significant value if the values of |N(ci)|,

V (ck), and W (eki) are large, indicating that component

ci is invoked by a lot of other significant components

frequently.

In vector form, Eq (3) can be written as:
⎡
⎢⎣

V (c1)
...

V (cn)

⎤
⎥⎦ =

⎡
⎢⎣

(1− d)/n
...

(1− d)/n

⎤
⎥⎦+ dW t

⎡
⎢⎣

V (c1)
...

V (cn)

⎤
⎥⎦ , (4)

where W t is the transposed matrix of the transition proba-

bility matrix W , which has been defined in Section III-A.

4. Solve Eq. (4) by computing the eigenvector with

eigenvalue 1 or by repeating the computation until all

significance values become stable.

With the above approach, the significance values of

the cloud components can be obtained. A component

is considered to be more significant (larger significance

value) if it is invoked frequently by a lot of other significant

components.

C. Significant Component Determination

Based on the obtained significance values of the com-

ponents in the cloud application, the components can be

ranked and the top k (1 ≤ k ≤ n) most significant

components can be returned to the designer of the cloud

application. In this way, the application designer can

identify significant components early at the architecture

design time and can employ various techniques (e.g., the

fault tolerance techniques which will be introduced in

Section IV) to improve the reliability and performance of

these significant components.

IV. Optimal Fault Tolerance Strategy Selec-
tion

A. Fault Tolerance Strategies

Software fault tolerance is widely adopted to increase

the overall system reliability in critical applications. Sys-

tem reliability can be improved by employing function-

ally equivalent components to tolerate component failures.

Three well-known fault tolerance strategies are introduced

in the following with formulas for calculating the failure

probabilities of the fault-tolerant modules. In this paper,

failure probability of a cloud component is defined as the

probability that an invocation to this component will fail.

The value of failure probability is in the range of [0,1].

• Recovery Block (RB). Recovery block [8] is a well-

known mechanism employed in software fault tol-

erance. A recovery block is a means of structuring

redundant program modules, where standby compo-

nents will be invoked sequentially if the primary

400400
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Table I. Fault Tolerance Strategy Comparison

RB NVP Parallel
Response-time Middle Middle Good

Required resources Middle High High
Fault tolerance Crash Crash, Value Crash

component fails. A recovery block fails only if all the

redundant components fail. The failure probability f
of a recovery block can be calculated by:

f =

n∏
i=1

fi, (5)

where n is the number of redundant components and

fi is the failure probability of the ith component.

• N-Version Programming (NVP). N-version pro-

gramming, also known as multiversion programming,

is a software fault tolerance method where multiple

functionally equivalent programs (named as versions)

are independently generated from the same initial

specifications [5]. When applying the NVP approach

to the cloud applications, the independently imple-

mented functionally-equivalent cloud components are

invoked in parallel and the final result is determined

by majority voting. The failure probability f of an

NVP module can be computed by:

f =

n∑

i=n+1
2

F (i), (6)

where n is the number of functionally equivalent

components (n is usually an odd number in NVP)

and F (i) is probability that i alternative components

from all the n components fail. For example, when

n=3, then f=F(2)+F(3), where F (2) = f1f2(1−f3)+
f1(1− f2)f3 + (1− f1)f2f3 and F (3) = f1f2f3. In

other words, an NVP module fails only if more than

half of the redundant components fail.

• Parallel. Parallel strategy invokes all the n functional

equivalent components in parallel and the first re-

turned response will be employed as the final result.

An parallel module fails only if all the redundant

components fail. The failure probability f of a parallel

module can be computed by:

f =
n∏

i=1

fi, (7)

where n is the number of redundant components and

fi is the failure probability of the ith component.

Different fault tolerance strategies have different fea-

tures. As shown in Table I, the response time performance

of the RB and NVP strategy is not good compared with

the Parallel strategies, since RB strategy invokes standby

component sequentially when the primary component fails,

NVP strategy needs to waiting for all the n responses from

the parallel invocations for determining the final result,

while Parallel strategy employs the first returned response

as the final result. The required resources of NVP and

Parallel are much higher than those of RB since paral-

lel component invocations consume a lot of networking

and computing resources. All the RB, NVP, and Parallel

strategies can tolerate crash faults (e.g., component crash,

communication link crash, etc.). The NVP strategy can also

mask value faults (e.g., data corruption), since majority

voting is employed for determining the final results in

NVP.

Employing a suitable fault tolerance strategy for the

cloud components is important to achieve optimal cloud

application design. For example, RB strategy for the

resource-constrained components, NVP strategy for the

components with value faults, and Parallel strategy for

the components which have restrict real-time requirements.

Since cloud applications usually include a large number of

distributed components, automatic optimal fault tolerance

strategy selection reduces the workload of system design-

ers and helps achieve optimal allocation of resources.

Employing the component ranking algorithm in Sec-

tion III, a set of significant components can be identified

from the cloud application. The optimal fault tolerance

strategies can be determined for these significant compo-

nents employing the approach proposed in Section IV-B.

B. Optimal FT Strategy Selection

The fault tolerance strategies have a number of varia-

tions based on different configurations. For example, both

the RB and Parallel strategy have n − 1 variations (i.e.,

configured with 2, 3, ..., n redundant components), where

n is the maximal number of redundant components. The

NVP strategy has (n−1)/2 variations (i.e., NVP with 3, 5,

..., n redundant components), where n is an odd number.

For each significant component in a cloud application,

these fault tolerance strategy variations are candidates and

the optimal one needs to be identified.

For each significant component that requires fault tol-

erance strategy, the designer can specify constraints (e.g.,

response-time of the component has to be smaller than
1000 milli-seconds, etc.). Two user constraints are consid-

ered: one for response-time and one for cost. The optimal

fault tolerance strategy selection problem for a cloud

component with user constraints can then be formulated

mathematically as:

Problem 1: Minimize:
m∑
i=1

fi × xi

Subject to:

401401
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•
m∑
i=1

si × xi ≤ u1

•
m∑
i=1

ti × xi ≤ u2

•
m∑
i=1

xi = 1

• xi ∈ {0, 1}
In Problem 1, xi is set to 1 if the ith candidate is

selected for the component and 0 otherwise. Moreover, fi,
si and ti are the failure-probability, cost, and response-time

of the strategy candidates, respectively, m is the number of

fault tolerance strategy candidates for the component, and

u1 and u2 are the user constraints for cost and response-

time, respectively. Problem 1 is extensible, where more

user constraints can be added easily in the future.

Algorithm 1: Optimal FT Strategy Selection

Input: si, ti, and fi values of candidates; user

constraints u1, u2;

Output: Optimal candidate index ρ.

m: number of candidates;1

for (i = 1; i ≤ m; i++) do2

if (si ≤ u1&&ti ≤ u2) then3

vi = fi;4

end5

end6

if no candidate meet user constraints then7

Throw exception;8

end9

Select vx which has minimal value from all the vi;10

ρ = x;11

To solve Problem 1, we first calculate the cost,

response-time, and the aggregated failure probability val-

ues of different fault tolerance strategy candidates em-

ploying the equations presented in Section IV-A. Then,

Algorithm 1 is designed to select the optimal candidate.

First, the candidates which cannot meet the user constraints

are excluded. After that, the fault tolerance candidate with

the best failure probability performance will be selected

as the optimal strategy for component i. By the above

approach, the optimal fault tolerance strategy, which has

the best failure probability performance and meets all the

user constraints, can be identified.

V. Experiments

In this section, Section 5.1 shows the prototype imple-

mentation, Section 5.2 introduces the experimental setup,

Section 5.3 conducts extensive experiments to compare the

performance of our approach with other three approaches,

Section 5.4 and Section 5.5 investigate the impact of the

parameter Top-K and the values of failure probability on

the fault tolerance performance, respectively.

A. Implementation

A prototype of FTCloud is implemented. As shown in

Figure 2, our FTCloud implementation includes several

modules:

• Component extraction: The components are extracted

from a cloud application.

• Invocation extraction: The invocation links of differ-

ent components are extracted from a cloud applica-

tion.

• Weight calculation: The weight values of the invo-

cation links are calculated by Equation 1, which has

been introduced in Section III-A.

• Component graph building: Based on the components

and the invocation links, a component graph is built

for a cloud application.

• Component ranking: The significant component rank-

ing algorithm in Section III-B is implemented and

encapsulated in this module. The input of this module

is the component invocation probability matrix and

the output is a list of ranked components based on

their significance values.

• FT strategy selection: The optimal fault tolerance

strategy selection algorithm presented in Section IV-B

is implemented in this module. This module calculates

failure probabilities of various fault tolerance strategy

candidates and selects the most suitable one for each

significant component.

• FT strategies: This module defines different fault

tolerance strategies. The design of this module makes

our fault tolerance model extensible, where more fault

tolerance strategy candidates can be added easily.

B. Experimental Setup

Our significant component ranking algorithm is im-

plemented by C++ language. To study the performance

of reliability improvement, we compare four approaches,

which are:

• NoFT: No fault tolerance strategies are employed for

the components in the cloud application.

• RandomFT: Fault tolerance strategies are employed

to mask faults of k components, which are randomly

selected.

• FTCloud: Fault tolerance strategies are employed to

mask faults of the top k significant components.

• AllFT: Fault tolerance strategies are employed for all

cloud components.

A scale-free graph is a graph whose degree distribution

follows a power law. Many empirically observed networks

402402
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Figure 2. Implementation of FTCloud

Table II. Performance Comparison of Failure Probability
Component FP = 1% Component FP = 5% Component FP = 10%

Node Numbers Methods Top-5 Top-10 Top-20 Top-5 Top-10 Top-20 Top-5 Top-10 Top-20
NoFT 0.134 0.134 0.134 0.251 0.251 0.251 0.329 0.329 0.329

RandomFT 0.133 0.122 0.123 0.246 0.242 0.244 0.322 0.312 0.321
FTCloud 0.098 0.021 0.018 0.229 0.145 0.143 0.317 0.288 0.254

100

AllFT 0.002 0.002 0.002 0.053 0.053 0.053 0.122 0.122 0.122
NoFT 0.258 0.258 0.258 0.448 0.448 0.448 0.516 0.516 0.516

RandomFT 0.245 0.231 0.227 0.434 0.425 0.429 0.508 0.502 0.499
FTCloud 0.177 0.039 0.032 0.397 0.196 0.187 0.493 0.390 0.379

1000

AllFT 0.005 0.005 0.005 0.104 0.104 0.104 0.256 0.256 0.256
NoFT 0.505 0.505 0.505 0.817 0.817 0.817 0.888 0.888 0.888

RandomFT 0.478 0.479 0.462 0.815 0.798 0.790 0.884 0.872 0.869
FTCloud 0.354 0.036 0.029 0.740 0.304 0.271 0.851 0.604 0.578

10000

AllFT 0.009 0.009 0.009 0.218 0.218 0.218 0.505 0.505 0.505

appear to be scale-free, including the protein networks,

citation networks, and some social networks. Several pre-

vious work [9], [10] show that the internal structures of

software programs (e.g., class collaboration graphs, call

graphs for procedural code, inter-package dependency of

applications, etc.) exhibit approximate scale-free proper-

ties. We use Pajek [11] to generate scale-free directed

component graphs for making experimental studies and

comparing the performance of different approaches.

For a cloud component, we employ the fault tolerance

strategy determination algorithm to automatically select

optimal fault tolerance strategy for tolerating faults. During

the execution of the cloud application, the execution is

considered as failed if an invoked component is failed and

there is no fault tolerance strategy for this component. If

a fault tolerance strategy is applied for this component,

the component fails only when the whole fault tolerance

strategy fails. In our approach, the parameter d balances

the significance value derived from other components and

the basic value of the component itself. In our experiment,

the component ranks are fairly stable when we change the

parameter d of Eq. (3) from 0.75 to 0.95. Therefore, similar

to the work [7], [12], we also set the parameter d to be

0.85.

C. Performance Comparison

We employ random walk to simulate the invocation

behavior in cloud applications. Specifically, Pajek [11]

is employed to generate scale-free directed component

graphs, and the edge weight is used to simulate the

invocation probability. A node in the invocation graph

is randomly selected, and a random walk is performed

starting from the selected node. A very small stop rate

is used for the random walk to guarantee the invocation

coverage of all nodes in the graph. In our experiments,

10,000 invocation sequences are generated for each setting

of number of nodes (e.g. 100). Four types of fault tolerance

mechanisms (i.e. NoFT, RandomFT, FTCloud, AllFT) are

applied on these invocation sequences, and the average

result is reported in Table II .

In Table II, Component FP represents the failure proba-

403403

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 28,2020 at 11:48:41 UTC from IEEE Xplore.  Restrictions apply. 



Table III. Impact of Top-K on Application Failure Probability
Component Values of Top-K

FP Methods 1 2 4 8 16 32 64 128 256 512 1024
RandomFT 0.421 0.412 0.413 0.395 0.407 0.43 0.405 0.398 0.330 0.260 0.011

1% FTCloud 0.393 0.367 0.336 0.183 0.053 0.038 0.037 0.024 0.024 0.016 0.011
RandomFT 0.621 0.632 0.613 0.614 0.605 0.577 0.574 0.585 0.577 0.567 0.068

3% FTCloud 0.607 0.585 0.553 0.403 0.166 0.125 0.129 0.13 0.106 0.099 0.068
RandomFT 0.677 0.678 0.685 0.681 0.678 0.670 0.671 0.664 0.639 0.579 0.168

5% FTCloud 0.673 0.651 0.619 0.487 0.272 0.255 0.233 0.211 0.215 0.191 0.168
RandomFT 0.775 0.770 0.788 0.761 0.766 0.768 0.750 0.737 0.713 0.689 0.396

10% FTCloud 0.757 0.756 0.734 0.677 0.567 0.552 0.530 0.510 0.477 0.472 0.396

bility of the cloud components, Top-K (K = 5, 10, and 20)

indicates that fault tolerance mechanisms are applied for K
components (K most significant components in FTCloud

and K randomly selected components in RandomFT). The

experimental results in Table II show that:

• Among the four approaches, AllFT provides the best

failure probability performance (smallest failure prob-

ability values) while NoFT provides the worst fail-

ure probability performance. Because AllFT employs

fault tolerance strategies for all the components while

NoFT provides no fault tolerance strategies for the

components.

• Compared with RandomFT, FTCloud obtains better

failure probability performance in all experimental

settings. This experimental result indicates that tol-

erating failures of the significant components can

achieve better system reliability than tolerating fail-

ures of randomly selected components. This is be-

cause the significant components identified by FT-

Cloud are invoked more frequently and their failures

have greater impact on the whole system.

• When the Top-k value increases from 5 to 20, the

failure probability performance of FTCloud decreases

monotonically, while RandomFT may or may not

decreas the failure probabilities. This observation

indicates that the by tolerating failures of more

components (set Top-K to be a larger value), the

system reliability can be improved by employing the

FTCloud approach.

• With the increase of the node number from 100 to

10,000, the failure probability performance of NoFT

increases, since larger system is easier to fail in error-

prone environments. FTCloud can consistently pro-

vide better performance compared with RandomFT

with different node numbers, indicating that by toler-

ating a small part of important components, the sys-

tem reliability can be greatly improved for different

scale cloud applications.

• With the increase of the component failure probability

from 1% to 10%, the execution failure probability for

all the approaches are greatly increased. Because 10%

component failure probability makes the application

execution fail easily. In this case, only tolerating faults

of the Top-20 significant components is not enough

to provide a highly reliable system.

D. Impact of Top-K

To study the impact of the parameter Top-K on the

system reliability, we compare FTCloud with RandomFT

with different Top-K value settings. The node number in

this experiment is 1024. Table III shows the experimental

results of application failure probabilities under different

Top-K value settings. Table III shows that:

• Under different component failure probability settings

(i.e., 1%, 3%, 5%, and 10%), FTCloud consistently

outperforms RandomFT in the from Top-K = 1 to

Top-K = 512. The performance of FTCloud and

RandomFT is the same in Top-K = 1024, since fault

tolerance strategies are applied to all the components

in both FTCloud and RandomFT in this experimental

setting.

• With the increase of Top-K value, the failure prob-

ability of FTCloud decreases much faster than Ran-

domFT. For example, when Component FP = 1%,

FTCloud provides good failure probability results

with Top-16 (i.e., 0.053), while RandomFT provides

poor failure probability performance (i.e., 0.407).

• With the increase of component failure probability

from 1% to 10%, the system failure probability be-

comes larger, which is mainly caused by the fail-

ures of the components without any fault tolerance

strategies. Larger Top-K value is required to achieve

good application failure probability performance un-

der large failure probability settings. The experimental

results show that the optimal Top-K value is influ-

enced by the component failure probability.

E. Impact of Failure Probability

To study the impact of the component failure probabil-

ity on the system reliability, we compare FTCloud with
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Table IV. Impact of Component Failure Probability on Application Failure Probability
Component Failure Probability

Top-K Methods 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%
RandomFT 0.407 0.550 0.637 0.663 0.684 0.704 0.726 0.757 0.760 0.766

Top-5 FTCloud 0.304 0.434 0.523 0.573 0.617 0.664 0.670 0.694 0.718 0.734
RandomFT 0.415 0.548 0.612 0.664 0.683 0.712 0.736 0.736 0.756 0.767

Top-10 FTCloud 0.046 0.098 0.175 0.236 0.311 0.356 0.442 0.488 0.513 0.585
RandomFT 0.413 0.560 0.626 0.671 0.681 0.702 0.730 0.744 0.742 0.741

Top-20 FTCloud 0.054 0.097 0.183 0.226 0.286 0.323 0.381 0.465 0.515 0.552
RandomFT 0.404 0.523 0.631 0.656 0.675 0.701 0.728 0.742 0.761 0.758

Top-40 FTCloud 0.034 0.083 0.133 0.191 0.259 0.334 0.396 0.453 0.493 0.527
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Figure 3. Impact of Component Failure Probability

RandomFT under failure probability settings of 1% to

10% with a step value of 1%. The node number in this

experiment is 1024. Table IV and Figure 3 show the ex-

perimental results of cloud application failure probabilities

under different Top-K settings (i.e., Top-5, Top-10, Top-20,

and Top-40). Table IV and Figure 3 show that:

• As shown in Figure 3(a) to Figure 3(d), under differ-

ent Top-K values, FTCloud outperforms RandomFT

in all the component failure probability settings from

1% to 10% consistently.

• With the increase of component failure probability

from 1% to 10%, the application failure probabili-

ties of both RandomFT and FTCloud become larger.

Larger Top-K value is required to build reliable cloud

applications under large component failure probability

settings.

• With the increase of Top-K value, the application

failure probability of FTCloud approach decreases

much faster than RandomFT, indicating that FTCloud

has a better effective use of the redundant components

than RandomFT.

The above experimental results show, again, that FT-

Cloud achieves better failure probability performance than

RandomFT.

VI. Related Work and Discussion

The main approaches to build reliable software sys-

tems include fault prevention, fault removal [13], fault

tolerance [4], [14], and fault forecasting [15], [16], [17].

Software fault tolerance is widely employed for building

reliable distributed systems [18], [19]. The major software

fault tolerance techniques include recovery block [8], N-

Version Programming (NVP) [5], N self-checking pro-

gramming [20], distributed recovery block [21], and so

on. The major fault tolerance strategies can be divided into

passive strategies and active strategies [22], [23], [24]. Pas-

sive strategies have been discussed in FT-SOAP [25] and

FT-CORBA [26], while active strategies have been inves-

tigated in FTWeb [27], Thema [28], WS-Replication [29],

SWS [30], and Perpetual [31]. In the cloud computing en-

vironment, there are a lot of redundant resources available

in the cloud. Alternative components are easier to be ob-

tained to build reliable cloud applications. Complementary

to the previous research efforts which are mainly focused

on the design of fault tolerance strategies, we propose a

systematic and extensible framework for building fault-

tolerant cloud applications by component ranking.

The component ranking approach of this paper is based

on the intuition that components which are invoked fre-

quently by other important components are more impor-

tant. Similar ranking approaches include Google PageR-

ank [7] (a ranking algorithm for Web page searching)

and SPARS-J [12] (software product retrieving system for

Java). Different from the PageRank and SPARS-J models,

invocation frequencies of the components are explored in

our approach. The target of our approach is identifying

significant components for cloud applications instead of
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Web page searching (PageRank) or reusable code search-

ing (SPARS-J).

A great number of research efforts have been per-

formed in the area of service component selection and

composition. Various approaches, such as Qos-aware mid-

dleware [32], adaptive service composition [33], efficient

service selection algorithms [34], reputation conceptual

model [35], and Bayesian network based assessment

model [36], have been proposed in recent years. Some

recent work also take subjective information (e.g. provider

reputations, user requirements, etc.) to enable more accu-

rate service component selection [37], [38]. Instead of em-

ploying non-functional performance (e.g., QoS values) or

functional capabilities, our approach determines the signif-

icant component by employing the component invocation

structures as well as the invocation frequencies. At design

time, FTCloud can be employed to achieve more reliable

system design. At runtime, FTCloud can be employed for

dynamically determining significant components using the

updated invocation frequency information.

In this paper, we focus on cloud applications, since (1)

cloud applications are usually large-scale and include a

hug number of components. Identifying significant com-

ponents provides valuable information to the application

designers; (2) redundant components are easier to be

obtained in the cloud environment, since there are a lot

of software/hardware resources in the cloud which can be

used on demand; (3) the global information of component

invocation structures and invocation frequencies can be

obtained since the components are all running on the

same cloud. Nevertheless, beside cloud applications, our

FTCloud framework can also be applied to a lot of other

component-based systems where the component structure

information is available.

VII. Conclusion and Future Work

This paper proposes a component ranking framework

for fault-tolerant cloud applications. In our FTCloud ap-

proach, the significance value of a component is deter-

mined by the number of components that invoke this com-

ponent, the significance values of these components, and

how often the current component is invoked by other com-

ponents. After finding out the significant components, we

propose an optimal fault tolerance selection algorithm to

provide optimal fault tolerance strategies to the significant

components automatically, based on the user-constraints.

The experimental results show that our FTCloud approach

significantly outperforms other baseline approaches.

Our current FTCloud framework can be employed to

tolerate crash and value faults. In the future, we will

investigate more types of faults, such as Byzantine faults.

Different types of faults can be added into our FTCloud

framework easily without fundamental changes. Our future

work also includes: (1) considering more factors (such

as invocation latency, throughput, etc.) when computing

the weights of invocations links; (2) investigating the

component reliability itself besides the invocation struc-

tures and invocation frequencies; (3) more experimental

analysis on open-source cloud applications; and (4) more

investigations on the component failure correlations.
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